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ABSTRACT

We propose a coupled dictionary learning method to predict
deformation fields based on image appearance. Rather than
estimating deformations by standard image registration meth-
ods, we investigate how to obtain a basis of the space of de-
formations. In particular, we explore how image appearance
differences with respect to a common atlas image can be used
to predict deformations represented by such a basis. We use
a coupled dictionary learning method to jointly learn a basis
for image appearance differences and their related deforma-
tions. Our proposed method is based on local image patches.
We evaluate our method on synthetically generated datasets
as well as on a structural magnetic resonance brain imaging
(MRI) dataset. Our method results in an improved prediction
accuracy while reducing the search space compared to nearest
neighbor search and demonstrates that learning a deformation
basis is feasible.

Index Terms— coupled dictionary learning, deformation
prediction

1. INTRODUCTION

Image registration is a critical medical image analysis task
to establish spatial correspondences between images. Stan-
dard image registration approaches are based on the numeri-
cal solution of optimization problems. However, recent work
has focused on learning registration maps using example de-
formations, which can then be used to predict deformations
instead of optimizing with respect to them. For instance, us-
ing machine learning methods, Chou et al. [1] and Wang et
al. [2] propose prediction based models to estimate deforma-
tions based on image appearances. The deformation predic-
tion problem is challenging as it is difficult to model the re-
lationship between image appearances and deformations. For
example, the relationship between appearances and local de-
formations could be highly nonlinear. Moreover, little work
has been done to explore the distribution of image appearance
and deformations jointly. Our proposed coupled dictionary
learning method addresses this issue: it considers the distri-
bution of both spaces together to learn bases for both image
appearance as well as the associated deformations. This is
important (1) to establish if such bases can be learned, (2)

to establish if appearance differences can predict deformation
differences, and (3) to understand how appearance differences
relate to deformations.

In [1], the authors propose to learn a global correlation be-
tween image appearance and the deformation or the parame-
ters for deformation. Image intensity differences or image
level features are used to learn regression models for the cor-
responding deformation parameters. For a new test image,
the regression models are applied to predict the deformation
field. In [2], the authors predict the deformations on some
key points in a test image from a sparse linear combination of
deformations from training images based on the similarity of
appearances. A dense deformation field is then interpolated
by thin-plate splines.

This paper presents a coupled dictionary learning method
to predict deformations based on a sparse representation
model on image patches. Coupled dictionary learning meth-
ods learn a joint dictionary on two different spaces to establish
correspondence of dictionary elements. Dictionary learning
plays a key role in many applications using sparse mod-
els [3, 4]. In [3], coupled dictionary learning is performed
for image super-resolution. A multi-modal dictionary, a spe-
cial case of coupled dictionary, is learned from correlative
microscopy images and applied to multi-modal registration
in [4]. While in [4], the two parts of the coupled dictionary
are assumed equivalent to each other, Wang et al. [3] establish
an explicit mapping between the two dictionaries. We focus
on coupled dictionary learning for deformation prediction
from appearance differences in this paper.

Our main contributions include:

• a dictionary based framework for deformation predic-
tion using appearance;
• a method for learning a dictionary that accounts for dis-

parity of appearance and transformation spaces;
• an illustration of the applicability to different types of

deformations.

The paper is organized as follows: Sec. 2 describes the cou-
pled dictionary learning method. Sec. 3 introduces momenta
for deformation parametrization 1. Sec. 4 applies our model

1We also tested our method on B-spline transformations, but omitted the
results due to page constraints.



to both synthetic and real data. The paper concludes with a
summary of results and an outlook on future work in Sec. 5.

2. METHOD

Image registration estimates a transformation between a
source image and a target image. Let φ(x) denote a trans-
formation that moves a pixel at a location x in the image to
another location, y = φ(x). Suppose the source (moving)
image, S, is an atlas and the target (static) image, T , corre-
sponds to an image of a subject. The goal is to estimate the
deformations φ(·) for the entire atlas image that transforms it
to match the subject’s image in the sense that, the appearance
at a pixel in the deformed source image, S̃(y) = S(φ−1(y))
best matches with the target image, T (y), at pixel y.

There are several ways to parametrize the deformation
function, φ. We will discuss the parametrization of deforma-
tion with initial momenta in Sec. 3. In our framework, we first
extract patches from both training images and the correspond-
ing deformations, and train a coupled dictionary jointly on the
patches. Here, the training image patches are the patch-wise
intensity differences between training subject images and the
atlas image in the atlas space. Given a test image, we recon-
struct its intensity difference with respect to the atlas image
patch by patch with the dictionary corresponding to the image
appearance at the same time predicting the deformation with
the dictionary corresponding to the deformation. The over-
all predicted deformation is reconstructed from local patches.
We average reconstruction results from overlapping patches
to minimize artifacts.

2.1. Coupled Dictionary Learning based on Sparse Rep-
resentation Model

Learning a dictionary D under a sparse representation model
corresponds to solving the optimization problem,

{D̂, α̂} = argmin
D,α

N∑
i=1

1

2
‖ti −Dαi‖22 + λ‖αi‖1, (1)

where ti ∈ Rp is the training data,N is the number of training
samples. The `1 regularity term induces sparsity in the coeffi-
cients αi for the dictionary atoms (columns of D) to approx-
imate ti. To avoid D being arbitrarily large, each column of
D is normalized to have `2 norm less than or equal to one, i.e.
dTk dk ≤ 1, for k = 1, ..., p, andD = {d1, d2, ..., dq} ∈ Rp×q .

Similarly, a coupled dictionary learning (CDL) can be for-
mulated as

{ ˆ̃D, α̂} = argmin
D̃,α

N∑
i=1

1

2
‖t̃i − D̃αi‖22 + λ‖αi‖1, (2)

where D̃ = [D1, D2]T stacks two different dictionaries and
t̃i = [t1i , t

2
i ]
T is the corresponding stacked training data from

two different spaces.

The coupled dictionary is learned on the data from two
different spaces, here, image appearance space and deforma-
tion parameter space. Using only one set of coefficients im-
poses the strong assumption that the coefficients of the repre-
sentation of the two spaces are equal. To relax this assump-
tion, a semi-coupled dictionary learning (SCDL) method was
proposed in [3],

{D̂1, D̂2, α̂1, α̂2, Ŵ} = argmin
D1,D2,α1,α2,W

N∑
i=1

1

2
‖t1i −D1α1

i ‖22 +
1

2
‖t2i −D2α2

i ‖22+

λ1‖α1
i ‖1 + λ2‖α2

i ‖1 + γ1‖α2
i −Wα1

i ‖22 + γ2‖W‖2F ,

(3)

where λ1, λ2, γ1, γ2 are regularization parameters. Distinct
from CDL,W is a matrix defining a mapping between the co-
efficients in the two spaces. Unlike for CDL the columns of
the dictionaries D1 and D2 are normalized separately. As we
will show in Sec. 4 such a separate normalization is benefi-
cial to jointly compute a basis for appearance differences and
deformations. Eq. (3) is not convex with respect to D1, D2,
α1, α2, W jointly, however, it is convex with respect to each
of them when others are fixed.

2.2. Deformation Estimation

After obtainingD1,D2 and the linear mappingW from train-
ing data t1i and t2i , given a difference imageA = T−S, where
S is an input source image, and T is the common target/atlas
image, similar to Eq. (3), we solve the following

{α1
i } = argmin

α1
i

1

2
‖Ai −D1α1

i ‖22 + λ1‖α1
i ‖1, (4)

where Ai is a patch of A 2. Eq. (4) is a sparse coding prob-
lem and can be solved using SPAMS [5]. The corresponding
deformation parameters pi of Ai can be estimated as,

pi = D2Wα1
i .

Here pi are the parameters defining the deformation φi of the
ith patch, for example, B-spline coefficients or the initial mo-
menta in the large deformation diffeomorphic metric mapping
(LDDMM) framework [6, 7]. After estimating φi from pi for
all the patches, we can determine the overall φ.

3. PARAMETRIZATION FOR DEFORMATION
WITH INITIAL MOMENTUM

Given a source image S and a target image T , the deformation
φ establishes a mapping between the coordinates of S and T ,
i.e. S(φ(x)) = T (x) and T (φ−1(y)) = S(y), where x and y
are vectors of the coordinates in T and S respectively.

2We reshape the image patch to a vector.



Fig. 1: Local deformation experiment: Illustration of syn-
thetic (a) atlas, (b) deformed training, and (c) difference im-
age between atlas and deformed images; (d) corresponding
initial scalar momentum. (Intensities in (c) and (d) scaled for
better visualization.)

Many different parametrizations exist [8]. Here, we use
initial momenta to parametrize deformations within the LD-
DMM framework which are elements of a vector space and
hence a convenient parametrization in the context of the av-
eraging performed in sparse coding and dictionary learning.
Given a source I0 and target image I1 LDDMM solves

min
vt

1

2

∫ 1

0

‖vt‖2V dt+
1

σ2
‖I0 ◦ φ1,0 − I1‖22,

s.t. φ̇t,0 + (Jφt,0)vt = 0, φ0,0 = id,

(5)

where vt is the velocity vector field at time t, t ∈ [0, 1],
‖vt‖2V =< L†Lvt, vt >2, L is a differential operator, φs,t
defines a mapping for a voxel from its position at time s to
its position at time t. φ̇t,0 = ∂φt,0/∂t and J is the Jaco-
bian operator. The initial momentum, m, is defined by the
linear mapping, m = (L†L)v0. Here, m will not be spatially
smooth, but the velocity fields v will be as they are generated
through smoothing m with (L†L)−1. The initial momentum
completely parametrizes the geodesic connecting the source
and target images. For a more in-depth discussion about LD-
DMM image registration and momentum based parametriza-
tion, refer to [9].

4. EXPERIMENTAL VALIDATION

We present two experiments to validate our proposed method:
a synthetic experiment illustrating the behavior for diffeomor-
phic transformations (Sec. 4.1), and an experiment on real
brain data (Sec. 4.2).

4.1. Experiment on Synthetic Data

In this experiment, we tested our methods on random local
deformations. We used a smoothed cross image (Fig. 1) as
atlas. The training data were generated by applying random
deformations to the atlas. The deformations were parame-
terized by scalar initial momentum [7]. The random initial
momenta were generated by random sampling from a Gaus-
sian distribution with σ = 3 (corresponding to a maximum
displacement of about 10 pixels).

We trained coupled dictionaries based on the intensity
differences between atlas and deformed training images and

Table 1: Registration results for predicting random initial mo-
menta for synthetic data (Sec. 4.1). Statistics for absolute er-
rors in pixels of predicted deformation to the ground truth.
RAW indicates images without registration, CDL/SCDL are
coupled and semi-coupled dictionary learning methods and
NN indicates nearest neighbor search respectively. In the NN
method, the initial momenta are predicted using the initial
momenta corresponding to the nearest neighbor (in appear-
ance) of the test image in the training set.

Method median mean min max std
RAW 6.064 6.167 3.754 9.557 1.719
NN 3.431 3.662 1.739 6.876 1.911

CDL100 3.315 3.255 0.924 4.843 1.325
CDL500 2.354 2.316 0.532 3.681 1.084

CDL1000 1.819 1.676 0.262 2.739 1.114
CDL5000 1.525 1.570 0.222 2.568 1.181
SCDL100 2.841 2.646 0.851 4.245 1.099
SCDL500 1.805 1.728 0.320 3.027 1.111
SCDL1000 1.333 1.233 0.229 2.082 0.76
SCDL5000 1.225 1.120 0.223 1.858 0.654

their initial momenta. The image size is 128×128, and we
extracted 15×15 image patches from 200 difference images
to train the coupled dictionaries. The image patches are ex-
tracted with 1 pixel stride, obtaining overlapping patches.
During the testing, we first reconstructed each local patch,
then reconstructed the whole image by averaging the over-
lapped patches [4]. We compared the SCDL, CDL and NN
methods on deformation prediction for 50 test images. Tab. 1
shows the results of deformation prediction by comparing the
transformed test images with the predicted deformations to
the atlas images. Both SCDL and CDL methods show better
performance compared with NN. A dictionary size of 1000
is sufficient for deformation prediction. Increasing dictionary
size to 5000 does not significantly (p-valueSCDL = 0.97,
p-valueCDL = 0.99) improve performance.

4.2. Experiment on Real Data

The previous experiments were based on synthetic data. Here,
we test our method on the Open Access Series of Imaging
Studies (OASIS) Cross-sectional MRI data [10]. We con-
structed an atlas from 100 subject images with LDDMM to
obtain the initial momenta [7]. Fig. 2 shows the atlas im-
age and an example subject image. The coupled dictionary is
learned based on intensity difference between atlas and sub-
ject images and the corresponding initial momenta. We ex-
tracted 15×15 image patches from 128×128 training images.
We tested our method on 50 subject images. Tab. 2 shows the
results of deformation prediction by comparing the deformed
test images with the predicted deformations to the atlas im-
ages. The SCDL method shows better performance compared
with NN and CDL at the same time reducing the search space



Table 2: Registration results for predicting initial momenta
for OASIS dataset (Sec. 4.2). Statistics for absolute errors in
pixels of predicted deformation to the ground truth.

Method median mean min max std
RAW 7.517 7.495 5.250 9.935 1.186
NN 3.572 3.753 1.221 8.644 1.790

CDL100 3.430 3.455 0.915 6.122 1.060
CDL500 2.426 2.446 1.143 3.681 0.568
CDL1000 1.988 1.867 0.810 3.310 0.660
CDL5000 1.750 1.691 0.802 3.110 1.052
SCDL100 2.954 2.757 1.083 4.232 0.765
SCDL500 1.855 1.831 0.619 3.027 0.751

SCDL1000 1.439 1.548 0.685 2.782 0.629
SCDL5000 1.402 1.455 0.614 2.529 0.547

Fig. 2: Illustration of brain (a) atlas image, (b) subject image,
(c) difference image between atlas and subject images and
(d,e) corresponding initial momentum in x and y direction re-
spectively for experiment on OASISs dataset. (Intensities in
(c), (d) and (e) scaled for better visualization.)

compared to the NN method. A dictionary size of 1000 is
sufficient for deformation prediction. Increasing dictionary
size to 5000 does not significantly (p-valueSCDL = 0.98, p-
valueCDL = 0.98) improve performance.

5. DISCUSSION AND CONCLUSION

We proposed two coupled dictionary learning methods (CDL
and SCDL) for deformation prediction from image appear-
ance differences through a regression model. Both dictio-
nary learning methods are capable of learning a basis relating
appearance differences to deformations. In particular, they
allow for faithful deformation prediction using moderately
sized dictionaries even for high-dimensional appearance and
deformation spaces. Our experiments show that prediction
performance for CDL and SCDL saturates when moving to-
wards larger dictionaries, indicating that the learning proce-
dure is able to capture a meaningful basis for the observed
deformations. Consequentially, both methods generalize bet-
ter than the NN method when training data is scarce in com-
parison to the deformation space, which is the case for general
deformable registration. SCDL further improves performance
over CDL, because it enables flexible coupling between the
appearance and the deformation spaces and provides an im-
proved way of learning dictionaries through independent nor-
malization.

Another application of our model is to study how appear-

ance influences the shape of an object. This could be useful
where biological processes within an object drive the move-
ment of its boundaries, e.g., when studying how cell-signaling
(as imaged through a biosensor) relates to cell shape changes.
In this case the learned relation between appearance and de-
formation will be the objective itself rather than using a pre-
dicted deformation to obtain image correspondences.
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