Crack characterization using guided circumferential waves
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This paper examines the propagation of guided circumferential waves in a hollow isotropic cylinder
that contains a crack, with the goal of using these guided waves to both locate and size the crack.
The crack is sized using a modified Auld’s formula, which relates the crack’s length to a reflected
energy coefficient. The crack is then located by operating on the backscattered signal with a
time-frequency digital signal processifigSP technique, and then comparing these results to those
obtained if the cylinder is perfect. The guided circumferential waves are generated with a
commercial finite element methd&EM) code. One objective of this work is to demonstrate the
effectiveness of using sophisticated DSP techniques to describe the effect of scattering on dispersive
waves, showing it is possible to characterize cracks systematically and accurately by quantifying
this scattering effect. The results show that the need for high frequency signals to detect small cracks
is significantly decreased by using these techniques.2001 Acoustical Society of America.
[DOI: 10.1121/1.1385899

PACS numbers: 43.20.Fn, 43.20.NWEC]

I. INTRODUCTION tion to detect cracks in long thin pipelsChat is, the expres-
) ) o sions for the field quantities contain terms such asra)sgr
It is well known that fatigue cracks can initiate and grow sin(né), whered is the usual polar anglsee Fig. 1andn is
in the radial direction of an annular structure that is subjected integer. Thus quantities such as velocities or stresses are

to a large number of fatigue cycles. These annular structurgs, 1o 2] periodic] However, these longitudinal waves
are used extensively in a variety of industrial apphcatlons,are not well suited for determining thadial location of a

such as the aerospace, oil and nuclear industries. A quanm%?ack in a short annular structure. This is especially true for

tive and systematic inspection methodology is needed to deai cylindrical component whose diameter is on the same order

tect and characterize these cracks, before a catastrophnf magnitude as its length. Circumferential waves, that is

. 0
structural failure occurs. . . ) A
Ultrasonic testing is a candidate nondestructive evaluagu'ded wgves;hat prppagate n th_e C|rcumfe_rent|al direction
tion (NDE) methodology for this application. Unfortunately, of thz c;ylln(:]er €., |n|_the_0 d|recSt|onh(see Fig. 1, are pro- h

traditional ultrasonic techniquésuch as pulse-echare in- posed for these applications. Such waves, contrary to the

effective in this application because of problems associateB'€VI0US case, contain terms SQChG%’H' where ¢ has the
with curvature and accessibility difficulties. Guided ultra- S8Me meaning as previously akié areal number(and not

sonic waves, i.e., waves that propagate in the direction of th@" integey. Thus quantities such as velocities and stresses
layer while behaving as standing waves through the thick&re not periodic modulp2m]. These circumferential waves
ness of the layer, are a potential alternative. Nagyl! ~ d0 not propagate in thedirection(in the axis of the cylinder
recently proposed using guided ultrasonic waves that propd2" along its length Guided circumferential waves have been
gate in the circumferential direction to detect radial cracks irstudied in Refs. 4 and 5 and were first introduced by
weep holes of airframes. Viktorov®’ as the natural extension of Lamb waves from a
The main advantage in using guided ultrasonic waves i§at plate to a curved plate. Liu and Quaonsider the time
that they can interrogate the entire specimen, including inad?armonic analysis of gperfec hollow cylinder, while Valle
cessible portions. Unfortunately, the detected ultrasonic siget al* examine the time harmonic behavior of a double-
nals are very complicated, causing difficulties in signal interlayered, hollow cylinder. None of these studies consider tran-
pretation. Previous researchers have studied guided waves$ient circumferential waves propagating in a cracked cylin-
plate and cylinders. For example, Alleyne and Cawlgy drical component.
examine cylindrical waves that propagate down the axis of  This paper examines the propagation @fansient
the cylinderbut remain standing in its circumferential direc- guided circumferential waves in a metallistee) hollow
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FIG. 1. Specimen geometry, taking
advantage of symmetry of hollow cyl-
inder, and simulating laser interroga-
tion with a normal point load/point re-
ceiver system for backscattered energy
detection.

Guided
circumferential
wave

Source

cylinder that contains a crack, using these guided waves thigh. It has been shown recently that the FEM is capable of
both locate and size the crack. The crack is sized using modeling such problems accurately and efficiently. This
scattering formula first developed by Auldyhich is modi-  computer power increase makes the FEM an excellent
fied in the current work to analyze transiefrion-time-  method for solving wave propagation problems that are in-
harmonig signals. The crack is then located by operating ontractable by analytical methodé:®

the backscattered signal with a time-frequency digital signal  This numerical study only models a porti@malf) of the
processing(DSP technique, and then comparing these re-cylinder, because the signal processing techniques only make
sults to those obtained from a perfect cylinder—one withoujyse of the backscattered data and thus the whole circumfer-
a crack. All the time signaléguided circumferential wavés ence need not be modeled. The backscattered data will reach
presented in this work are generated using a commercighe receiver before the transmitted data, and therefore the
FEM code(ABAQUS/Explicit) —except for accuracy checks packscattered data can be windowed out. Also, FE simula-
done by comparing experimental and numerical resultSions show that most of the signal attenuates by the time it
While much fundamental work has been done in the past (s traveled 360°. Therefore, there is no need to model the
dgvelop numerically efﬁmgnt methods to calculate thoelltra”'complete cylinder. As such this geometry may be thought of
sient response of waveguidésoth perfect and flawed? as an infinitely long curved plate. ABAQUS/Explicit is used

the FEM was chosen here for its robustness, accuracy ang, o numerical calculations. Convergence is reached when

con\llte_mgnce.t i1 te that fort i de in thi K the solution obtained is mesh-invaridttie solution remains
IS Important to note that no etiort IS made In tis WOrK o <5 me when the mesh size is decrensas a further

FO sglectlvely. restrict the number of guided modes propagat(—:heck’ solutions for the perfect cylinder are compared to the
ing in the cylinder

One objective of this work is to demonstrate the effec—normal modal expansiofNME) calculations of Liu and

4 : . .
tiveness of using sophisticated DSP techniques to describ u'* (see Fig. 2 and to experimentally generated signals

gide, boadband,and ml-modscumerentl vaves i |S09 055 ussen? shoun n i B e weslent
imperfect cylinders. Specifically, these DSP techniques ar 9 y

used to examine the effect of scattering on dispersive Waveé,ese FfEr'\]/l molt_je(;s. A typ()jlgal E.alf cyhnder: meéthhe dlm_en1—_ bl
showing it is possible to characterize cracks systematicall lons of the cylinder used in this research are shown in Table

and accurately by quantifying this scattering effect. ) has 4000 elementgfor loads of 0.5 MHz center fre-
In this text, the ternwavedesignates any ultrasonic sig- qguency. This number of elements is obtained by successive

nal that propagates into the annular structure under investf€finement of the mesh until mesh invariance is obtained.
gation. The termmodedesignates an ultrasonic signal fully The element size is 15 times smaller than the wavelength of
represented in a time harmonic fashion by a single curve of'® (nondispersive shear wave at the center point of the
the dispersion curves of the structure where the mode prop&andwidth(0.5 MH2) and nearly 7 times smaller at the upper
gates(such as, the familiar Lamb modeg ands,). There- end of the bandwidtli1.5 MHz). While these ratios are low

fore, a mode is a|WayS a wave, but a wave can consist (ﬂ.t the h|gher fl’equenCieS, mesh invariance and the numerical
multiple modes(since, as an example, tlig ands, modes Validation with Fortran show that they are sufficient for

can co-exist for a given frequency range ABAQUS/Explicit.

Each element is a 4-node plain strain continuum element
Il. FEM MODEL OF THE SCATTERING OF GUIDED (CPE4R. Such an element provides a second-order interpo-
ggfé"KMFERENﬂAL WAVES CAUSED BY A lation, with reduced integration and hourglass conthaiur-

glassing is a numerical phenomena by which a zero-energy
In the past, the computational cost of modeling high-mode propagates through and spoils the solution—see the
frequency wave propagation problems was prohibitivelyABAQUS Theory manual® Sec. 3.1.1, for more detalls
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8 TABLE |. Material and geometry data for the thin steel annulus.
— Fortran (NME)
4 1L Explicit v Cr CL a b 7
w | A J W 0.2817 3120m/s 5660m/s 5.08cm 538cm  0.94424
0 v
“
crack closure is of clear concern in practical cases, it will not
-8 be addressed in this work.

0 5 ; 10 15 A finer mesh is needed to accurately model cylinders
with smaller crackgi.e., of length smaller than 20% of the
wall of the waveguide Convergence is usually obtained af-

6 ter increasing the number of elements in both the thickness

J1— giglfii‘i‘t(NME) and the waveguide axis directions. Therefore, the computa-

u 3 tional models presented here can detect cracks of length no
8 0 smaller than 10% of the wall, that is, no smaller than 0.3 mm
for a load with 0.5 MHz center frequency. More powerful
.3 computers can capture scattering due to even smaller cracks
because they can accurately resolve the bigger meshes
6 ‘ needed for loads of higher center frequencies.

0 5 10 15 The load in all cases is a point load, applied normally to
t the cylinder’s surface. This load has a frequency range of 0.2
FIG. 2. Comparison between wave forms from Abaqus/Explicit andto 1.5 MHz, with most of the energy centered near 0.5 MHz.
FORTRAN [normalized unit{Ref. 12]. The solution of such a FEM model takes a few minutes on a
Pentium 11l with a 433 MHz clock and 254 MB RAM.

Each node has 2-degrees of freed(ptane strain assump-
tion). ,

Cracks in the cylinder are modeled by releasing noded!- AULD'S FORMULA
along the cylinder's wall and are assumed to have perfectly  ayid's formula®is developed using a two transducer,
smooth faces, subjected to stress free boundary conditionghrough transmission system applied to the structure to be
Such mesh discontinuities are infinitely thin, are a good rePinterrogated. Transducer 1 produces an incident field of
resentation of a fatigue cradlas opposed to notchesand  o\erp, and transducer 2 is the receivieee Figs. @) and
allow for a variable crack length. In the far figldhhich is the (b)]. The ratio of received electrical signal streng, , to
domain of interest hejeFor near field calculations, singular jhcigent electrical signal strengtk, , is denoted byl". The
elements must be used to accurately capture the singularity @ﬁange in the ratiodT’, due to a single scatteréa crack in

the crack tip. It is important to note that the inverse problemy,ig casy is proportional to the reflection coefficieRtand is
solved in this study does operate under the assumption th@?ven by Auld’s formula:

the shape of the crack is knovenpriori. In addition, while
Ol = ((Ei) flaw= (Ei ) noflaw/ (E) flaw- (1)

C10° experimental signal This formula may be simplified for the case of backscatter-
5 - ~ - ing, and with the hypothesis that the signals are time har-
monic:

Ve (m/s)

iw
=12 [ (o - as @

2 3 4 5 whereSis an arbitrary surface, which surrounds the scatterer

e ABAQUS signal x 10 (the crack in this cagej andk are dummy indicegthe sum-
' T mation convention is used hgrandn; is the unit outward

normal ofS. In Eqg.(2) the terms with superscrigl) relate to
the fields in the absence of the scatterer, while terms with the
superscript2) relate to the fields in the presence of the scat-
terer. For the case where the scatterer is a traction free crack,
Eq. (2) is simplified to

x 10

2 3 4 5
iw
Time (s) oI'=— 1) fA(U(k})Au(kz))m ds, (33

FIG. 3. Comparison between a laser-based experimental signal and the )
equivalent ABAQUS/Explicit signal. whereA is the crack area and
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Transducer A
\ Transducer B
¥ Displacements  from
cracked mesh
Unit normal n
Surface of
integration § * *
o U, uz
Uy, U,
Scatterer
(a) Nonpiezoelectric elastic body Au: =u, —uy,
o = Zo,, * Au, + 0y, * Au,
Rayleigh wave transducer (Reflection coefficient at that point)
! Stresses from perfect
Incident mesh =m
wave BV aVaVas Reflected i
‘wave
VN /' i
Crack integration surface 4 ——
(b) H
, . , Gi1, Gz | |
FIG. 4. (a) Auld’s formula(general scattering geomelryb) Auld’s formula i

(backscattering cage

FIG. 5. Auld’s formula—scheme of FEM computations.

(2)_ =y _ +
AU =Ui(xz ) =Xz ). (3b) a filter-based approach whereby the structures of the data are

cross multiplied:

The two previous equations are used to calculate the back-
scattering from a surface crack at the inner radius of the
cylinder. y(n)=f(n)*g(n)

Since the stress and displacement signals obtained from
ABAQUS are transient and not time harmonic, they cannot  The advantage of using the cross multiplication, as done
be multiplied directly into the integrand of E(B). The typi- in MATLAB, is that much fewer operations are required
cal procedurt '8 involves applying the fast Fourier trans- (than in the alternative FFT-based formulaji@nd that the
form (FFT) to the transient displacement and stress signalsutput is directly in the time domain. The only additional
(the signals calculated with ABAQUSirst, then multiplying  step that is required for agreement with E§) is a time
them (element by element, array multiplication andtvec-  differentiation, since multiplying byw in the frequency do-
tor multiplication, repeating the steps for each new value,main is equivalent to differentiatingvith respect to timgin
and finally adding everything. Once the sum is obtained, ithe time domain.
has to be multiplied byw (element by element agaimand The time-domain reflection coefficien®, is therefore
the resulting output is Auld’'s formula in the frequency do- calculated by using the following formulaip to a multipli-
main. In addition, the inverse FFT has to be applied if a timecative constant
domain result is desired. This procedure is lengthy and re-
quires careful attention to the proper application of the FFT. d nn
In particular, zero-padding the time-domain data is abso- R“a ; Ui* iz ],
lutely necessary. Otherwise, the final signal violates causal-
ity. wheren is the number of the element in consideratidor

An interesting alternative to the frequency-domain for-the stress tenspand of that element’s bottom node on the
mulation is to adapt Eq.3) so that it can be applied directly crack surfacefor the displacement fie)jd* denotes convo-
to time-domain signals. It is well known that the convolution lution, andi=1,2.
in the time domain is equivalent to the multiplication in the All the cracks considered in this study are radialg.,
frequency domain. In fact, many convolution programs usevertical along the 90° angle, or theaxis). Therefore, the
that property directly in their codes: they first zero-pad thestress tensor will always have a normal in the 0° angle di-
data, apply the FFT, array multiply, and apply the inverserection, or thex axis (see Fig. 5. Therefore, thg index is
FFT to get the final outcom¥.Equivalently, MATLAB uses always equal to 1.

o]

> f(n—m).g(m). (4)

m=—oo

®)
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35><1o“3 wall. The slope also tends to flatten slightly as the crack
' ' T T T depth increases beyond 70%. Please note that mesktlisize
number of elements needed to ensure convergeoicéhe

+ ] ABAQUS model increases as the crack length decreases.
The quasilinear characteristic of the RMS plot shows
v ] that Auld’s method, combined with the FEM model, gives a
gquantitative estimate of the crack length in a cracked steel
cylinder using guided circumferential waves. Moreover, this
method allows the sizing of cracks up to 3@0n even
though the signal frequency is centered at 0.5 Midmd

+ never goes beyond 1.5 MhlzNote that a Rayleigh wave

| with a wavelength of 30um has a frequency of 9.7 MHz in
steel.

2.5}

Normalized RMS

. ) . . . . . . . V. TIME-FREQUENCY REPRESENTATIONS (TFRs) OF
0 10 20 30 40 50 60 70 8 90 100 GUIDED WAVES

Crack length as % of ring thickness

Now that a crack’s length can be quantitatively mea-
FIG. 6. Normalized RMS of FFT of Auld's reflection coefficieRtversus  sured, consider a procedure to determine the crack’s location.
crack depth. Once again the main challenge is the dispersive and multi-
mode nature of guided waves. For example, consider a time-
IV. REFLECTION COEFFICIENT VERSUS CRACK domain scheme that uses arrival times to determine the un-
LENGTH known location of a crack on a cylinder’s inner surface.
Since this scheme must be based on the arrival times of a

Clearly, the longer the crack, the higher the overall levely, icyiar wave form feature, the dispersive nature of guided
of the resulting reflection coefficient. One way to obtain a5y es presents a large source of error. The reason for this

guantitative measure of this relationship is to plot the RMS(potentia} breakdown is that the different frequencies of a

(root-mean-squajevalue of the_freque,ncy spectrum of the gighersive wave travel with different group velocities, chang-
reflection coeff|C|ent_ obtained via Auld’s for_mula, for various ing the wave's shape as it propagates. As a result, it is diffi-
crack lengths. That is, once the F,E model is used to calculatg it (if not impossible to track and identify the exact arrival
the ﬂeld around the crack, AuId§ formula is then used tOime of the same feature of a propagating guided wave.
predlgt the length of the crack with this FE data. The proce- In order to alleviate this problem, changes in the fre-
dure involves a series of steps. quency content of the signal need to be tracked as a function
(1) Construct a FEM model of the cylinder with a prescribedof time so that dispersion can be taken into account
crack length. The time-frequency representatiofFR) of a signal is a
(2) Solve for the pertinent displacement and stress field§luantitative measure of how a signal's frequency changes
around the crackfor the load case with a center fre- With respect to time. A TFR is obtained by dividing a time-
quency of 0.5 MHE domain signal into a series of small pieces in time; each of
(3) Obtain the time-domaiftransient reflection coefficient, these pieces is windowed and then individually transformed
R, from the procedure described in the preceding sectiofto the frequency domain. Popular transforms include wave-
and by applying Eq(5), up to an arbitrary multiplicative 1ets, the short time Fourier transfortSTFT), and the
constant. Wigner—Ville distribution(WV). Please recall from the pre-
(4) App|y the FFT toR to get its frequency spectrum. ceding discussion that the identification of an individual
(5) Get the RMS value oR's frequency spectrum, and nor- mode’s arrival time is very difficultif not impossible from
malize it with respect to the RMS value of the incident ither the time-domain signal or its frequency spectrum, be-
signal. cause the contributions from each mode in a multimode sig-
(6) Plot the normalized RMS value with respect to cracknal are not separable. However, the TFR enables the separa-
length, and repeat the entire procedure for other crackion of the contribution of each mode, as a function of time
lengths. and frequency simultaneously.
One problem inherent to a TFR is the time-frequency
The resulting plot is shown in Fig. 6 for six different resolution limitation, that is, the impossibility to simulta-
crack lengthg10%, 20%, 30%, 50%, 70%, and 90% of cyl- neously have perfect resolution in both time and frequency.
inder wal). Figure 6 demonstrates that there is a quasilinea©One way to increase time-frequency resolution, is through
correlation between the crack length and the overall value othe reassignmerfor reallocation method?® Reassignment is
the reflection coefficient. For a perfect cylinderack length  not another TFR, but a way to reduce the spread of a TFR by
of 0%) there should be no backscattered energy and thus theoncentrating its energy to itshe energy’s center of grav-
normalized RMS should be 0. If the cylinder is completelyity. The reassignment method is not restricted to a specific
cut (crack length of 100%the backscattered energy should TFR, but can be applied to any time-frequency shift invariant
be equal to the incident energy. Figure 6 shows that the slopaistribution of Cohen’s class. The energy density spectrum
is steeper for crack depths smaller than 10% of the cylindeof the reassigned STFT, called the reassigned spectrogram, is
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selected for this study, since previous wdrk shows that it One of the greatest advantages of the proposed tech-

is extremely effective in capturing the dispersive nature ofnique is that both numerical and experimental TFRs are not
guided, multimode ultrasonic signals in thin metallic plates.limited to perfect geometries, while analytical dispersion
Therefore, as was done in earlier studies for pl&tétsis  curves(in general have this limitation. It is thus possible to
possible to compare analytical dispersion curves for the cyleomparein the time-frequency domaimnalytically obtained
inder (calculated in the time-frequency dompito a TFR  dispersion curvegfor a perfect cylinden to a reassigned
calculated from either experimentally or numericaljEM) spectrogram obtained from a signal numerically calculated
generated guided circumferential wave signgge Fig. 7a)  (or experimentally measuredn a crackedcylinder, using
for a comparison between the reassigned spectrogram ofthis comparison to quantify the crack’s effect on these dis-
synthetic, i.e., numerical, signal from a perfect cylinder andpersion curvesThis comparison offers a systematic proce-
the analytical dispersion curves, calculated in the timedure to locate a crack that does not require the selective
frequency domain, for that same perfect cylinfi@he “lad-  generation or detection of a particular modapplying the
der” effect described earlier in plateéds clearly still present reassigned spectrogram tmckscatteredultrasonic energy
for guided circumferential waves, and although the Rayleigland comparing it to analytical dispersion curves for the cyl-
mode is well represented by the TFR, the procedure breakisder (calculated in the time-frequency dompaprovides an
down beyond 0.8 MHz because the FE model's mesh is opexcellent way to calculate the arrival times of specific modes
timized for frequencies around 0.5 MHz. (see Fig. 1 for the positioning of the source, the receiver and
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the crach. A typical plot that results from the proposed pro- 18
cedure is given in Fig. (b).

From Fig. 7b) it is possible to determine: bl

e which modes are affected by the crack, 12 1

 for what times and what frequencies,

* and even more importantly, by how much time is the ar-
rival of each mode changed by the mode’s interaction with g
the crack, for any given frequency. k']

10

ce {cm]

This information is then used to determine the crack’s 6 -
location. The next section will illustrate how this information

is extracted from the signals. 41
2 T T T T T T
VI. CRACK LOCATION USING THE REASSIGNED 20 30 40 50 60 70
SPECTROGRAM Degrees of separation between receiver and crack
This portion of the study develops FE models for two
cases of the same steel cylinder, one with a crack length o T bredicted
10% of the cylinder’s wallon the inner surfageand a load — - 2nd time

of center frequency of 0.5 MHz, and the second is the asso-
ciated “perfect” cylinder(no crack. The time-domain signal FIG. 8. Comparison between predicted distanc_es receiver to ¢rawkr
backscattered from this crack is determined by subtracting"® UPper boundand the true distance, for the ring cracked at 10%.
the signal predicted with the cracked cylinder model from

the signal of the perfect cylinddr.e., the model without a ) )
crack, noting that each signal has tsame source and re- the time delay between the reassigned spectrogram of a

ceiver locations The reassigned spectrogram is then app”e(packscattv_ared mode and its dispersion curve Will_also be hard
to this backscattered signal, and this TFR is compared to thi detérmine accurately. The only mode for which the pre-
(perfect cylinder’s analytical dispersion curvésalculated, —c€ding statement is not true is the Rayleigh mode, because its
in the time versus frequency domain, for thame source 9roup velocity is constant for almost all frequencies, so the
and receiver locations This comparison illustrates which frequency distortion between the Rayleigh mode’s analytical
modes are affected by the crack, as well as enabling th@ispersion curve and its reassigned spectrogram is nearly
calculation of the time delay between the backscattered angonexistenfbeyond 0.4 MHz, shown in Fig.(@]. The time
the corresponding analytical dispersion cunjsge Fig. delay between the backscattered Rayleigh mode from the re-
7(b)]. The reason for this time delay is that the backscattere@ssigned spectrogram and its predicted analytical arrival,
signal only starts after the incident signal has propagateimes the group velocity of the Rayleigh mode, gives twice
from the source to the receivéas in the perfect cylinder the distance between the receiver and the crack
case and thento the crackand then back to the receiver. Since the scattered Rayleigh mode, as calculated with
Therefore, the backscattered signal is zero for all times priofh€ reassigned spectrogram, is not an infinitely thin laeeis
to the time that it takes to return to the receiver. clear from Figs. 7a) and(b)], two distances are always cal-
This time delay is given by the ratio between the groupculated, one corresponding to the lowest bound in tifinst
velocity of each specific mode, for a specific frequency, andime), and one corresponding to the upper bound in time
twice the distance between the receiver and the crack. Not¢econd timg At 0.5 MHz, the Rayleigh wave can be as-
that there is a distortion in the backscattered reassigned spegmed to be almost nondispersive, thus if it reaches the re-
trogram, when compared to the analytical dispersion curvegeiver in a faster time, it has traveled a comparatively shorter
because the group velocity of most modes changes witHistance. Hence the “lower” bound on the distance to, or
frequency—this causes a change in the time delay, with frelocation of, the flaw. Conversely the second and longer time
quency. As a result, the shape of the backscattered spectreorresponds to a longer distance traveled by the backscat-
gram looks slightly different from the shape of the corre-tered signal to the receiver. Hence the lower bound on the
sponding analytical dispersion curves for the perfect cylindeflistance to the flaw. These distances can then be plotted
[see Fig. 7a)]. against the true distance, i.e., the actual location of the crack.
This distortion makes it difficult to identify exactly The comparison between those three distances is given in
which feature of a given backscattered mode, for a specifi€ig. 8. There is very good agreement between them, even for
frequency, corresponds to what feature of the analytical disthis small(10% of wall thicknesscrack.
persion curve for that mode and for what frequency. For  The proposed methodology also works well in the
example, in Fig. @), the highest peak in the second modenearfield of the crackor sourcg, although it is more difficult
occurs at 0.82 MHz in the analytical dispersion curve, butto accurately determine separation times between backscat-
finding this exact same feature in the backscattered spectrtered and analytical modes in this case; for example, the
gram for the second mode is impossible since the peak ignalytical modes will tend to be compressed all together to-
now spread over a small frequency randeto 1.2 MH2.  ward the zero time axis if the receiver is close to the source.
Therefore, since the group velocity depends on frequencysince the method is based on a graphical calculation of time
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delay, it is essential to have a definite separation between ttitbe reassigned spectrogram to backscattered data, and com-
analytical dispersion curves and their backscattered counteparing this to the analytical dispersion curves for the perfect
parts. cylinder provides an accurate measure of the time delay, per
More importantly, the Rayleigh mode is not always themode, between the incident signal of a perfect waveguide
mode most sensitive to the crack. Indeed, in Fidp),7one  and its backscattered counterpdift a crack is present
can see that for certain frequency rangfes example, from  Through this time delay and the group velocity of the mode
1 MHz on), the backscattered contribution from the Rayleighof interest at a specific frequency, the distance between the
mode simply vanishes. This means that for frequencieseceiver and the crack can be calculated. This method can
above about 1 MHz, the Rayleigh mode does not “see” thecharacterize cracks and notches with lengths as small as 10%
crack (this makes sense since the Rayleigh mode travels oaf the waveguide wall. Computational power needs to be
the outside radius while the crack originates from the insideéncreased if even smaller sizes are of interest.
surface—therefore, as the frequency increases the Rayleigh It is important to note that the results presented in this
mode is increasingly less likely to see the crad®nly the  paper, both for crack sizing and crack locating, are dependent
higher order modesin this case the second mgdeee the on the frequency of the input signal. Both methddsild’s
crack at that particular frequencgts was first shown in Valle formula and the reassigned spectrograre applied to sig-
et alY)—this is clearly visible in Fig. {b). Unfortunately, nals created with an input with a frequency range between
frequency distortion is a problem for these higher modes0.2 and 1.5 MHzwith most of the energy centered around
This frequency distortion makes it difficult to use higher or- 0.5 MHz) but they can detect cracks down to 30th—even
der modes to determine the location of the crack, unless ontough the wavelengths of these signals is much greater than
can select a frequency range with limited dispersion, so tha300 um. Therefore, the need for high frequency signals to
the group velocity can be calculated accurately. Typicallydetect small cracks is significantly reduced by using these
this frequency range exists, but it may be prohibitively hightechniques.
from a computational cost perspective. Please note that dis- Also, multiple cracks can be detected using those tech-
persion curves and FE signals tend to be costly for frequemiques. The reassigned spectrogram will locate them by
cies beyond 3 to 4 MHz. showing a series of time delays. Auld’s formyés presented
This problem(the Rayleigh mode not being sensitive to here with no restriction on the duration of the sighalan
cracks only occurs for very small cracks. The reassignedonly show a combined total of damage accumulation—
spectrogram applied to time-domain signals created by a 0.Bowever, if it is used in combination with the reassigned
MHz signal is clearly sufficient to locate this 3@n crack  spectrogram, the signals used in Auld’s formula can be re-

(10% of the cylinder’s thicknegs stricted to the pertinent time of flight and therefore can then
characterize each crack singly, in the same fashion presented
VIl. SUMMARY AND CONCLUSIONS earlier in this paper.
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