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This paper examines the propagation of guided circumferential waves in a hollow isotropic cylinder
that contains a crack, with the goal of using these guided waves to both locate and size the crack.
The crack is sized using a modified Auld’s formula, which relates the crack’s length to a reflected
energy coefficient. The crack is then located by operating on the backscattered signal with a
time-frequency digital signal processing~DSP! technique, and then comparing these results to those
obtained if the cylinder is perfect. The guided circumferential waves are generated with a
commercial finite element method~FEM! code. One objective of this work is to demonstrate the
effectiveness of using sophisticated DSP techniques to describe the effect of scattering on dispersive
waves, showing it is possible to characterize cracks systematically and accurately by quantifying
this scattering effect. The results show that the need for high frequency signals to detect small cracks
is significantly decreased by using these techniques. ©2001 Acoustical Society of America.
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I. INTRODUCTION

It is well known that fatigue cracks can initiate and gro
in the radial direction of an annular structure that is subjec
to a large number of fatigue cycles. These annular struct
are used extensively in a variety of industrial applicatio
such as the aerospace, oil and nuclear industries. A quan
tive and systematic inspection methodology is needed to
tect and characterize these cracks, before a catastro
structural failure occurs.

Ultrasonic testing is a candidate nondestructive eva
tion ~NDE! methodology for this application. Unfortunatel
traditional ultrasonic techniques~such as pulse-echo! are in-
effective in this application because of problems associa
with curvature and accessibility difficulties. Guided ultr
sonic waves, i.e., waves that propagate in the direction of
layer while behaving as standing waves through the th
ness of the layer, are a potential alternative. Nagyet al.1

recently proposed using guided ultrasonic waves that pro
gate in the circumferential direction to detect radial cracks
weep holes of airframes.

The main advantage in using guided ultrasonic wave
that they can interrogate the entire specimen, including in
cessible portions. Unfortunately, the detected ultrasonic
nals are very complicated, causing difficulties in signal int
pretation. Previous researchers have studied guided wav
plates2 and cylinders.3 For example, Alleyne and Cawley3

examine cylindrical waves that propagate down the axis
the cylinderbut remain standing in its circumferential direc
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tion to detect cracks in long thin pipes.@That is, the expres-
sions for the field quantities contain terms such as cos(nu) or
sin(nu), whereu is the usual polar angle~see Fig. 1! andn is
an integer. Thus quantities such as velocities or stresses
modulo @2p# periodic.# However, these longitudinal wave
are not well suited for determining theradial location of a
crack in a short annular structure. This is especially true
a cylindrical component whose diameter is on the same o
of magnitude as its length. Circumferential waves, that
guided wavesthat propagate in the circumferential directio
of the cylinder, i.e., in theu direction ~see Fig. 1!, are pro-
posed for these applications. Such waves, contrary to
previous case, contain terms such aseiku, whereu has the
same meaning as previously andk is a real number~and not
an integer!. Thus quantities such as velocities and stres
are not periodic modulo@2p#. These circumferential wave
do not propagate in thez direction~in the axis of the cylinder
or along its length!. Guided circumferential waves have bee
studied in Refs. 4 and 5 and were first introduced
Viktorov6,7 as the natural extension of Lamb waves from
flat plate to a curved plate. Liu and Qu8 consider the time
harmonic analysis of a~perfect! hollow cylinder, while Valle
et al.4 examine the time harmonic behavior of a doub
layered, hollow cylinder. None of these studies consider tr
sient circumferential waves propagating in a cracked cy
drical component.

This paper examines the propagation of~transient!
guided circumferential waves in a metallic~steel! hollow
110(3)/1282/9/$18.00 © 2001 Acoustical Society of America
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FIG. 1. Specimen geometry, takin
advantage of symmetry of hollow cyl-
inder, and simulating laser interroga
tion with a normal point load/point re-
ceiver system for backscattered energ
detection.
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cylinder that contains a crack, using these guided wave
both locate and size the crack. The crack is sized usin
scattering formula first developed by Auld,9 which is modi-
fied in the current work to analyze transient~non-time-
harmonic! signals. The crack is then located by operating
the backscattered signal with a time-frequency digital sig
processing~DSP! technique, and then comparing these
sults to those obtained from a perfect cylinder—one with
a crack. All the time signals~guided circumferential waves!
presented in this work are generated using a comme
FEM code~ABAQUS/Explicit!—except for accuracy check
done by comparing experimental and numerical resu
While much fundamental work has been done in the pas
develop numerically efficient methods to calculate the tr
sient response of waveguides~both perfect and flawed!,10,11

the FEM was chosen here for its robustness, accuracy
convenience.

It is important to note that no effort is made in this wo
to selectively restrict the number of guided modes propag
ing in the cylinder.

One objective of this work is to demonstrate the effe
tiveness of using sophisticated DSP techniques to desc
guided, broadband, and multi-modecircumferential waves in
imperfect cylinders. Specifically, these DSP techniques
used to examine the effect of scattering on dispersive wa
showing it is possible to characterize cracks systematic
and accurately by quantifying this scattering effect.

In this text, the termwavedesignates any ultrasonic sig
nal that propagates into the annular structure under inve
gation. The termmodedesignates an ultrasonic signal ful
represented in a time harmonic fashion by a single curve
the dispersion curves of the structure where the mode pr
gates~such as, the familiar Lamb modesa0 ands0!. There-
fore, a mode is always a wave, but a wave can consis
multiple modes~since, as an example, thea0 ands0 modes
can co-exist for a given frequency range!.

II. FEM MODEL OF THE SCATTERING OF GUIDED
CIRCUMFERENTIAL WAVES CAUSED BY A
CRACK

In the past, the computational cost of modeling hig
frequency wave propagation problems was prohibitiv
J. Acoust. Soc. Am., Vol. 110, No. 3, Pt. 1, Sep. 2001
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high. It has been shown recently that the FEM is capable
modeling such problems accurately and efficiently. T
computer power increase makes the FEM an excel
method for solving wave propagation problems that are
tractable by analytical methods.12,13

This numerical study only models a portion~half! of the
cylinder, because the signal processing techniques only m
use of the backscattered data and thus the whole circum
ence need not be modeled. The backscattered data will r
the receiver before the transmitted data, and therefore
backscattered data can be windowed out. Also, FE sim
tions show that most of the signal attenuates by the tim
has traveled 360°. Therefore, there is no need to model
complete cylinder. As such this geometry may be though
as an infinitely long curved plate. ABAQUS/Explicit is use
for all numerical calculations. Convergence is reached w
the solution obtained is mesh-invariant~the solution remains
the same when the mesh size is decreased!. As a further
check, solutions for the perfect cylinder are compared to
normal modal expansion~NME! calculations of Liu and
Qu14 ~see Fig. 2!, and to experimentally generated signa
~using laser ultrasonics!,5 shown in Fig. 3. The excellen
agreement between these solutions confirms the accurac
these FEM models. A typical half cylinder mesh~the dimen-
sions of the cylinder used in this research are shown in Ta
I! has 4000 elements~for loads of 0.5 MHz center fre-
quency!. This number of elements is obtained by success
refinement of the mesh until mesh invariance is obtain
The element size is 15 times smaller than the wavelengt
the ~nondispersive! shear wave at the center point of th
bandwidth~0.5 MHz! and nearly 7 times smaller at the upp
end of the bandwidth~1.5 MHz!. While these ratios are low
at the higher frequencies, mesh invariance and the nume
validation with Fortran show that they are sufficient f
ABAQUS/Explicit.

Each element is a 4-node plain strain continuum elem
~CPE4R!. Such an element provides a second-order inter
lation, with reduced integration and hourglass control~hour-
glassing is a numerical phenomena by which a zero-ene
mode propagates through and spoils the solution—see
ABAQUS Theory manual,15 Sec. 3.1.1, for more details!.
1283Valle et al.: Crack characterization using guided waves
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Each node has 2-degrees of freedom~plane strain assump
tion!.

Cracks in the cylinder are modeled by releasing no
along the cylinder’s wall and are assumed to have perfe
smooth faces, subjected to stress free boundary condit
Such mesh discontinuities are infinitely thin, are a good r
resentation of a fatigue crack~as opposed to notches!, and
allow for a variable crack length. In the far field~which is the
domain of interest here!. For near field calculations, singula
elements must be used to accurately capture the singular
the crack tip. It is important to note that the inverse probl
solved in this study does operate under the assumption
the shape of the crack is knownà priori . In addition, while

FIG. 2. Comparison between wave forms from Abaqus/Explicit a
FORTRAN @normalized units~Ref. 12!#.

FIG. 3. Comparison between a laser-based experimental signal and
equivalent ABAQUS/Explicit signal.
1284 J. Acoust. Soc. Am., Vol. 110, No. 3, Pt. 1, Sep. 2001
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crack closure is of clear concern in practical cases, it will n
be addressed in this work.

A finer mesh is needed to accurately model cylind
with smaller cracks~i.e., of length smaller than 20% of th
wall of the waveguide!. Convergence is usually obtained a
ter increasing the number of elements in both the thickn
and the waveguide axis directions. Therefore, the comp
tional models presented here can detect cracks of length
smaller than 10% of the wall, that is, no smaller than 0.3 m
for a load with 0.5 MHz center frequency. More powerf
computers can capture scattering due to even smaller cr
because they can accurately resolve the bigger me
needed for loads of higher center frequencies.

The load in all cases is a point load, applied normally
the cylinder’s surface. This load has a frequency range of
to 1.5 MHz, with most of the energy centered near 0.5 MH
The solution of such a FEM model takes a few minutes o
Pentium III with a 433 MHz clock and 254 MB RAM.

III. AULD’s FORMULA

Auld’s formula9,16 is developed using a two transduce
through transmission system applied to the structure to
interrogated. Transducer 1 produces an incident field
powerP, and transducer 2 is the receiver@see Figs. 4~a! and
~b!#. The ratio of received electrical signal strength,EII , to
incident electrical signal strength,EI , is denoted byG. The
change in the ratio,dG, due to a single scatterer~a crack in
this case!, is proportional to the reflection coefficientR and is
given by Auld’s formula:

dG5~~EII !flaw2~EII !noflaw!/~EI !flaw. ~1!

This formula may be simplified for the case of backscatt
ing, and with the hypothesis that the signals are time h
monic:

dG52
iv

4P E
S
~sk j

~2!uk
~1!2sk j

~1!uk
~2!!nj dS, ~2!

whereS is an arbitrary surface, which surrounds the scatte
~the crack in this case!, j andk are dummy indices~the sum-
mation convention is used here! and nj is the unit outward
normal ofS. In Eq.~2! the terms with superscript~1! relate to
the fields in the absence of the scatterer, while terms with
superscript~2! relate to the fields in the presence of the sc
terer. For the case where the scatterer is a traction free cr
Eq. ~2! is simplified to

dG52
iv

4P E
A
~sk j

~1!Duk
~2!!nl dS, ~3a!

whereA is the crack area and
the

TABLE I. Material and geometry data for the thin steel annulus.

v cT cL a b h

0.2817 3120 m/s 5660 m/s 5.08 cm 5.38 cm 0.944
Valle et al.: Crack characterization using guided waves
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~2!5uk~x2

2!2uk~x2
1!. ~3b!

The two previous equations are used to calculate the b
scattering from a surface crack at the inner radius of
cylinder.

Since the stress and displacement signals obtained
ABAQUS are transient and not time harmonic, they can
be multiplied directly into the integrand of Eq.~3!. The typi-
cal procedure17,18 involves applying the fast Fourier trans
form ~FFT! to the transient displacement and stress sign
~the signals calculated with ABAQUS! first, then multiplying
them~element by element, array multiplication andnot vec-
tor multiplication!, repeating the steps for each new valu
and finally adding everything. Once the sum is obtained
has to be multiplied byiv ~element by element again! and
the resulting output is Auld’s formula in the frequency d
main. In addition, the inverse FFT has to be applied if a ti
domain result is desired. This procedure is lengthy and
quires careful attention to the proper application of the F
In particular, zero-padding the time-domain data is ab
lutely necessary. Otherwise, the final signal violates cau
ity.

An interesting alternative to the frequency-domain fo
mulation is to adapt Eq.~3! so that it can be applied directl
to time-domain signals. It is well known that the convolutio
in the time domain is equivalent to the multiplication in th
frequency domain. In fact, many convolution programs u
that property directly in their codes: they first zero-pad
data, apply the FFT, array multiply, and apply the inve
FFT to get the final outcome.19 Equivalently, MATLAB uses

FIG. 4. ~a! Auld’s formula~general scattering geometry!. ~b! Auld’s formula
~backscattering case!.
J. Acoust. Soc. Am., Vol. 110, No. 3, Pt. 1, Sep. 2001
k-
e

m
t

ls

,
it

e
e-
.
-
l-

-

e
e
e

a filter-based approach whereby the structures of the data
cross multiplied:

y~n!5 f ~n!* g~n!5 (
m52`

`

f ~n2m!.g~m!. ~4!

The advantage of using the cross multiplication, as do
in MATLAB, is that much fewer operations are require
~than in the alternative FFT-based formulation! and that the
output is directly in the time domain. The only addition
step that is required for agreement with Eq.~3! is a time
differentiation, since multiplying byiv in the frequency do-
main is equivalent to differentiating~with respect to time! in
the time domain.

The time-domain reflection coefficient,R, is therefore
calculated by using the following formula~up to a multipli-
cative constant!:

R}
d

dt S (n
ui

n
* s i1

n D , ~5!

wheren is the number of the element in consideration~for
the stress tensor! and of that element’s bottom node on th
crack surface~for the displacement field!, * denotes convo-
lution, andi 51,2.

All the cracks considered in this study are radial~e.g.,
vertical along the 90° angle, or they axis!. Therefore, the
stress tensor will always have a normal in the 0° angle
rection, or thex axis ~see Fig. 5!. Therefore, thej index is
always equal to 1.

FIG. 5. Auld’s formula—scheme of FEM computations.
1285Valle et al.: Crack characterization using guided waves
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IV. REFLECTION COEFFICIENT VERSUS CRACK
LENGTH

Clearly, the longer the crack, the higher the overall le
of the resulting reflection coefficient. One way to obtain
quantitative measure of this relationship is to plot the RM
~root-mean-square! value of the frequency spectrum of th
reflection coefficient obtained via Auld’s formula, for variou
crack lengths. That is, once the FE model is used to calcu
the field around the crack, Auld’s formula is then used
predict the length of the crack with this FE data. The pro
dure involves a series of steps.

~1! Construct a FEM model of the cylinder with a prescrib
crack length.

~2! Solve for the pertinent displacement and stress fie
around the crack~for the load case with a center fre
quency of 0.5 MHz!.

~3! Obtain the time-domain~transient! reflection coefficient,
R, from the procedure described in the preceding sec
and by applying Eq.~5!, up to an arbitrary multiplicative
constant.

~4! Apply the FFT toR to get its frequency spectrum.
~5! Get the RMS value ofR’s frequency spectrum, and no

malize it with respect to the RMS value of the incide
signal.

~6! Plot the normalized RMS value with respect to cra
length, and repeat the entire procedure for other cr
lengths.

The resulting plot is shown in Fig. 6 for six differen
crack lengths~10%, 20%, 30%, 50%, 70%, and 90% of cy
inder wall!. Figure 6 demonstrates that there is a quasilin
correlation between the crack length and the overall valu
the reflection coefficient. For a perfect cylinder~crack length
of 0%! there should be no backscattered energy and thus
normalized RMS should be 0. If the cylinder is complete
cut ~crack length of 100%! the backscattered energy shou
be equal to the incident energy. Figure 6 shows that the s
is steeper for crack depths smaller than 10% of the cylin

FIG. 6. Normalized RMS of FFT of Auld’s reflection coefficientR versus
crack depth.
1286 J. Acoust. Soc. Am., Vol. 110, No. 3, Pt. 1, Sep. 2001
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wall. The slope also tends to flatten slightly as the cra
depth increases beyond 70%. Please note that mesh size~the
number of elements needed to ensure convergence! of the
ABAQUS model increases as the crack length decrease

The quasilinear characteristic of the RMS plot sho
that Auld’s method, combined with the FEM model, gives
quantitative estimate of the crack length in a cracked s
cylinder using guided circumferential waves. Moreover, t
method allows the sizing of cracks up to 300mm even
though the signal frequency is centered at 0.5 MHz~and
never goes beyond 1.5 MHz!. Note that a Rayleigh wave
with a wavelength of 300mm has a frequency of 9.7 MHz in
steel.

V. TIME-FREQUENCY REPRESENTATIONS „TFRs… OF
GUIDED WAVES

Now that a crack’s length can be quantitatively me
sured, consider a procedure to determine the crack’s loca
Once again the main challenge is the dispersive and m
mode nature of guided waves. For example, consider a ti
domain scheme that uses arrival times to determine the
known location of a crack on a cylinder’s inner surfac
Since this scheme must be based on the arrival times
particular wave form feature, the dispersive nature of guid
waves presents a large source of error. The reason for
~potential! breakdown is that the different frequencies of
dispersive wave travel with different group velocities, chan
ing the wave’s shape as it propagates. As a result, it is d
cult ~if not impossible! to track and identify the exact arriva
time of the same feature of a propagating guided wave.

In order to alleviate this problem, changes in the fr
quency content of the signal need to be tracked as a func
of time so that dispersion can be taken into account.

The time-frequency representation~TFR! of a signal is a
quantitative measure of how a signal’s frequency chan
with respect to time. A TFR is obtained by dividing a tim
domain signal into a series of small pieces in time; each
these pieces is windowed and then individually transform
into the frequency domain. Popular transforms include wa
lets, the short time Fourier transform~STFT!, and the
Wigner–Ville distribution~WV!. Please recall from the pre
ceding discussion that the identification of an individu
mode’s arrival time is very difficult~if not impossible! from
either the time-domain signal or its frequency spectrum,
cause the contributions from each mode in a multimode
nal are not separable. However, the TFR enables the sep
tion of the contribution of each mode, as a function of tim
and frequency simultaneously.

One problem inherent to a TFR is the time-frequen
resolution limitation, that is, the impossibility to simulta
neously have perfect resolution in both time and frequen
One way to increase time-frequency resolution, is throu
the reassignment~or reallocation! method.20 Reassignment is
not another TFR, but a way to reduce the spread of a TFR
concentrating its energy to its~the energy’s! center of grav-
ity. The reassignment method is not restricted to a spec
TFR, but can be applied to any time-frequency shift invaria
distribution of Cohen’s class.21 The energy density spectrum
of the reassigned STFT, called the reassigned spectrogra
Valle et al.: Crack characterization using guided waves
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FIG. 7. ~a! Comparison between the
reassigned spectrogram of a FE
obtained guided circumferential wav
and the analytical dispersion curves,
the time-frequency domain, of the
same cylinder ~both perfect!. ~b!
Methodology to locate the crack: com
parison between the reassigned spe
trogram for the backscattered energ
and the analytical dispersion curves i
the time-frequency domain.
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selected for this study, since previous work21,22 shows that it
is extremely effective in capturing the dispersive nature
guided, multimode ultrasonic signals in thin metallic plate

Therefore, as was done in earlier studies for plates,22 it is
possible to compare analytical dispersion curves for the
inder ~calculated in the time-frequency domain! to a TFR
calculated from either experimentally or numerically~FEM!
generated guided circumferential wave signals.@See Fig. 7~a!
for a comparison between the reassigned spectrogram
synthetic, i.e., numerical, signal from a perfect cylinder a
the analytical dispersion curves, calculated in the tim
frequency domain, for that same perfect cylinder.# The ‘‘lad-
der’’ effect described earlier in plates22 is clearly still present
for guided circumferential waves, and although the Rayle
mode is well represented by the TFR, the procedure bre
down beyond 0.8 MHz because the FE model’s mesh is
timized for frequencies around 0.5 MHz.
J. Acoust. Soc. Am., Vol. 110, No. 3, Pt. 1, Sep. 2001
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One of the greatest advantages of the proposed t
nique is that both numerical and experimental TFRs are
limited to perfect geometries, while analytical dispersi
curves~in general! have this limitation. It is thus possible t
comparein the time-frequency domainanalytically obtained
dispersion curves~for a perfect cylinder! to a reassigned
spectrogram obtained from a signal numerically calcula
~or experimentally measured! in a crackedcylinder, using
this comparison to quantify the crack’s effect on these d
persion curves.This comparison offers a systematic proc
dure to locate a crack that does not require the select
generation or detection of a particular mode. Applying the
reassigned spectrogram tobackscatteredultrasonic energy
and comparing it to analytical dispersion curves for the c
inder ~calculated in the time-frequency domain! provides an
excellent way to calculate the arrival times of specific mod
~see Fig. 1 for the positioning of the source, the receiver
1287Valle et al.: Crack characterization using guided waves
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the crack!. A typical plot that results from the proposed pr
cedure is given in Fig. 7~b!.

From Fig. 7~b! it is possible to determine:

• which modes are affected by the crack,
• for what times and what frequencies,
• and even more importantly, by how much time is the

rival of each mode changed by the mode’s interaction w
the crack, for any given frequency.

This information is then used to determine the crac
location. The next section will illustrate how this informatio
is extracted from the signals.

VI. CRACK LOCATION USING THE REASSIGNED
SPECTROGRAM

This portion of the study develops FE models for tw
cases of the same steel cylinder, one with a crack lengt
10% of the cylinder’s wall~on the inner surface! and a load
of center frequency of 0.5 MHz, and the second is the as
ciated ‘‘perfect’’ cylinder~no crack!. The time-domain signa
backscattered from this crack is determined by subtrac
the signal predicted with the cracked cylinder model fro
the signal of the perfect cylinder~i.e., the model without a
crack!, noting that each signal has thesame source and re
ceiver locations. The reassigned spectrogram is then appl
to this backscattered signal, and this TFR is compared to
~perfect! cylinder’s analytical dispersion curves~calculated,
in the time versus frequency domain, for thesame source
and receiver locations!. This comparison illustrates whic
modes are affected by the crack, as well as enabling
calculation of the time delay between the backscattered
the corresponding analytical dispersion curves@see Fig.
7~b!#. The reason for this time delay is that the backscatte
signal only starts after the incident signal has propaga
from the source to the receiver~as in the perfect cylinde
case! and then to the crackand then back to the receiver
Therefore, the backscattered signal is zero for all times p
to the time that it takes to return to the receiver.

This time delay is given by the ratio between the gro
velocity of each specific mode, for a specific frequency, a
twice the distance between the receiver and the crack. N
that there is a distortion in the backscattered reassigned s
trogram, when compared to the analytical dispersion cur
because the group velocity of most modes changes
frequency—this causes a change in the time delay, with
quency. As a result, the shape of the backscattered spe
gram looks slightly different from the shape of the corr
sponding analytical dispersion curves for the perfect cylin
@see Fig. 7~a!#.

This distortion makes it difficult to identify exactly
which feature of a given backscattered mode, for a spec
frequency, corresponds to what feature of the analytical
persion curve for that mode and for what frequency. F
example, in Fig. 7~a!, the highest peak in the second mo
occurs at 0.82 MHz in the analytical dispersion curve,
finding this exact same feature in the backscattered spe
gram for the second mode is impossible since the pea
now spread over a small frequency range~1 to 1.2 MHz!.
Therefore, since the group velocity depends on freque
1288 J. Acoust. Soc. Am., Vol. 110, No. 3, Pt. 1, Sep. 2001
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the time delay between the reassigned spectrogram
backscattered mode and its dispersion curve will also be h
to determine accurately. The only mode for which the p
ceding statement is not true is the Rayleigh mode, becaus
group velocity is constant for almost all frequencies, so
frequency distortion between the Rayleigh mode’s analyt
dispersion curve and its reassigned spectrogram is ne
nonexistent@beyond 0.4 MHz, shown in Fig. 7~a!#. The time
delay between the backscattered Rayleigh mode from the
assigned spectrogram and its predicted analytical arriv
times the group velocity of the Rayleigh mode, gives tw
the distance between the receiver and the crack.

Since the scattered Rayleigh mode, as calculated w
the reassigned spectrogram, is not an infinitely thin line@as is
clear from Figs. 7~a! and ~b!#, two distances are always ca
culated, one corresponding to the lowest bound in time~first
time!, and one corresponding to the upper bound in ti
~second time!. At 0.5 MHz, the Rayleigh wave can be a
sumed to be almost nondispersive, thus if it reaches the
ceiver in a faster time, it has traveled a comparatively sho
distance. Hence the ‘‘lower’’ bound on the distance to,
location of, the flaw. Conversely the second and longer ti
corresponds to a longer distance traveled by the backs
tered signal to the receiver. Hence the lower bound on
distance to the flaw. These distances can then be plo
against the true distance, i.e., the actual location of the cr
The comparison between those three distances is give
Fig. 8. There is very good agreement between them, even
this small~10% of wall thickness! crack.

The proposed methodology also works well in t
nearfield of the crack~or source!, although it is more difficult
to accurately determine separation times between backs
tered and analytical modes in this case; for example,
analytical modes will tend to be compressed all together
ward the zero time axis if the receiver is close to the sour
Since the method is based on a graphical calculation of t

FIG. 8. Comparison between predicted distances receiver to crack~lower
and upper bound! and the true distance, for the ring cracked at 10%.
Valle et al.: Crack characterization using guided waves
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y a
delay, it is essential to have a definite separation between
analytical dispersion curves and their backscattered coun
parts.

More importantly, the Rayleigh mode is not always t
mode most sensitive to the crack. Indeed, in Fig. 7~b!, one
can see that for certain frequency ranges~for example, from
1 MHz on!, the backscattered contribution from the Raylei
mode simply vanishes. This means that for frequenc
above about 1 MHz, the Rayleigh mode does not ‘‘see’’
crack ~this makes sense since the Rayleigh mode travels
the outside radius while the crack originates from the ins
surface—therefore, as the frequency increases the Ray
mode is increasingly less likely to see the crack!. Only the
higher order modes~in this case the second mode! see the
crack at that particular frequency~as was first shown in Valle
et al.4!—this is clearly visible in Fig. 7~b!. Unfortunately,
frequency distortion is a problem for these higher mod
This frequency distortion makes it difficult to use higher o
der modes to determine the location of the crack, unless
can select a frequency range with limited dispersion, so
the group velocity can be calculated accurately. Typica
this frequency range exists, but it may be prohibitively hi
from a computational cost perspective. Please note that
persion curves and FE signals tend to be costly for frequ
cies beyond 3 to 4 MHz.

This problem~the Rayleigh mode not being sensitive
cracks! only occurs for very small cracks. The reassign
spectrogram applied to time-domain signals created by a
MHz signal is clearly sufficient to locate this 300mm crack
~10% of the cylinder’s thickness!.

VII. SUMMARY AND CONCLUSIONS

This paper uses the FEM to model the propagation
guided circumferential waves in a cracked cylinder and p
sents sophisticated digital signal processing algorithms
characterize the waves’ interaction with this crack. Spec
cally, this paper presents a technique to size the crack,
another to locate it.

For sizing the crack, a time domain analysis based
Auld’s scattering formula for backscattered signals is us
By using the Auld’s formula to calculate the RMS value
the frequency spectrum of the reflection coefficient for va
ous crack lengths, it is shown that there is a quasilinear
relation between the crack depth and the overall RMS va
of the reflection coefficientR. The RMS value ofR increases
with crack depth, and provides a quantitative means of c
acterizing cracks down to about 10% of the thickness of
cylinder. As a result, Auld’s method combined with the FE
model gives a quantitative estimate of the crack depth fro
measured signal.

To locate the crack, the reassigned spectrogram is
sented as a digital signal processing algorithm that accura
captures a TFR of guided circumferential waves over a la
frequency range. The reassignment method solves the t
frequency resolution problem inherent to using Fourier-ba
TFRs such as the spectrogram by redistributing the ene
content of each mode to its center of gravity, with respec
time and frequency, and therefore clearly separates the
tribution of each mode within the scattered signal. Applyi
J. Acoust. Soc. Am., Vol. 110, No. 3, Pt. 1, Sep. 2001
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the reassigned spectrogram to backscattered data, and
paring this to the analytical dispersion curves for the perf
cylinder provides an accurate measure of the time delay,
mode, between the incident signal of a perfect wavegu
and its backscattered counterpart~if a crack is present!.
Through this time delay and the group velocity of the mo
of interest at a specific frequency, the distance between
receiver and the crack can be calculated. This method
characterize cracks and notches with lengths as small as
of the waveguide wall. Computational power needs to
increased if even smaller sizes are of interest.

It is important to note that the results presented in t
paper, both for crack sizing and crack locating, are depend
on the frequency of the input signal. Both methods~Auld’s
formula and the reassigned spectrogram! are applied to sig-
nals created with an input with a frequency range betw
0.2 and 1.5 MHz~with most of the energy centered aroun
0.5 MHz! but they can detect cracks down to 300mm—even
though the wavelengths of these signals is much greater
300 mm. Therefore, the need for high frequency signals
detect small cracks is significantly reduced by using th
techniques.

Also, multiple cracks can be detected using those te
niques. The reassigned spectrogram will locate them
showing a series of time delays. Auld’s formula~as presented
here with no restriction on the duration of the signals! can
only show a combined total of damage accumulation
however, if it is used in combination with the reassign
spectrogram, the signals used in Auld’s formula can be
stricted to the pertinent time of flight and therefore can th
characterize each crack singly, in the same fashion prese
earlier in this paper.
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