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Abstract. To be able to statistically compare evolutions of image time-
series data requires a method to express these evolutions in a common
coordinate system. This requires a mechanism to transport evolutions be-
tween coordinate systems: e.g., parallel transport has been used for large-
displacement diffeomorphic metric mapping (LDDMM) approaches. A
common purpose to study evolutions is to assess local tissue growth or
decay as observed in the context of neurodevelopment or neurodegenera-
tion. Hence, preserving this information under transport is important to
allow for faithful statistical analysis in the common coordinate system.
Most basically, we require scale invariance. Here, we show that a scale
invariant metric does not exist in the LDDMM setting. We illustrate the
impact of this non-invariance on parallel transport. We also propose a
new class of Riemannian metrics on shapes which preserves the variation
of a global indicator such as volume under parallel transport.

Keywords: parallel transport, scale invariance, Riemannian metrics on
shapes

1 Introduction

Classical image registration deals with the spatial alignment of pairs of images.
It is one of the most fundamental problems in medical image analysis. In par-
ticular, for population-studies image registration is an indispensable tool, as it
allows to align image information to a common coordinate system for localized
comparisons. Recently, studies for example on Alzheimer’s disease (ADNI), os-
teoarthritis (OAI), and brain development (NIHPD) have acquired large volumes
of longitudinal imaging data. However, computational methods to adequately
analyze such longitudinal data are still in their infancy. Analyzing longitudinal
image data is challenging: not only is a method for spatial alignment to a common
coordinate system required, but also the temporal aspect of a longitudinal image
change needs to be expressed in this common coordinate system. Arguably, the
theoretically most advanced existing methods to address these problems have
been methods grounded in the theory of large-displacement-diffeomorphic met-
ric mapping (LDDMM) [2]. Indeed, LDDMM provides a convenient Riemannian
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setting [14] for image registration. Other Riemannian metrics have been de-
veloped in the past years [15, 10, 11] sometimes due to the simple calculation
of geodesics. Thus, tools from Riemannian geometry can be used to perform
statistics on shape deformations [13, 8, 6]. In particular, parallel transport un-
der the Levi-Civita connection gives a method to transport small longitudinal
evolutions between two different images. The use of parallel transport in com-
putational anatomy has been introduced in [16], including a numerical method
based on Jacobi fields for its computation. Other numerical methods for parallel
transport have been successfully developed in [5]. Note that parallel transport is
path-dependent. For shapes it has a strong relation to shape correspondence [12]
making it a promising candidate to transport longitudinal information. Alterna-
tively, the adjoint [7] and the co-adjoint [3] actions on the tangent space have
been proposed to transport tangent information.

In this paper, we show that these methods preserve properties which may
be undesirable for computational anatomy. Further, we explore the design of
a Riemannian metric conserving quantities such as absolute or relative volume
variation. As a case in point, consider Alzheimer’s disease where the decay of the
hippocampus is an important biomarker. Hence, preserving the relative volume
variation when transporting longitudinal change to an analysis space is desirable.
However, only specific metrics result in such a parallel transport – volume vari-
ations will be distorted under parallel transport using an “unsuitable” metric.
In particular, this is the case for LDDMM, which is not scale-invariant.

Sec. 2 illustrates shortcomings of parallel and co-adjoint transport for LD-
DMM. This is not a shortcoming of a particular LDDMM metric, but holds for
all as a non-degenerate scale-invariant metric does not exist for LDDMM (see
Sec. 3). Consequentially, we introduce a new model decomposing volume and
shape variation in Sec. 4 as an example of a Riemannian metric addressing some
of the shortcomings of LDDMM. Sec. 5 illustrates behavioral differences between
LDDMM and the shape/volume-decomposed model. The paper concludes with
a summary of results and an outlook on future work in Sec. 6.

2 Motivating examples

To illustrate the behavior of different types of transport under the LDDMM
model we consider a uniformly expanding or contracting n-sphere of radius r,
Sn, with uniformly-distributed momentum. Due to the spherical symmetry this
allows us to explicitly compute expressions for co-adjoint and parallel transport.
Specifically, we define the momentum at radius 1 as m1 = c x

‖x‖δ{‖x‖ − 1},
where c ∈ R is a given constant and δ{x} denotes the Dirac delta function.
Uniform scaling to radius r is described by the map Φ−1(x) = 1

rx, which is in
the coordinate system of the sphere of radius r. We note that the local volume-
change of the n-sphere, |DΦ−1| with respect to the unit-sphere is given by

|DΦ−1| = vol(Sn(r))

vol(Sn(1))
=

(
1

r

)d

, (1)
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where d is the space dimension and vol(Sn(r)) denotes the volume of Sn(r).
Co-adjoint and parallel transport respectively preserve the dual pairing and

the riemannian norm, so that due to the symmetry of momentums and spheres,
this property completely determines the transported momentums in both cases.
Sec. 2.1 derives the co-adjoint and Sec. 2.2 the parallel transport for this sphere
under contraction and expansion. Sec. 2.3 demonstrates their differences.

2.1 Co-adjoint transport

In what follows, n will denote the unit normal to the sphere and v is vector field
defined on the whole domain.

Definition: We can define the co-adjoint transport to the momentum-velocity
pairing 〈m1, v〉 :=

∫
Sn(1)

〈n, v(x)〉 dS(x). Then (with g−1 = Φ)

〈Adg−1
∗(m1), v〉 =

∫
Sn(1)

〈n, r−1v(rx)〉 dS(x) =

∫
Sn(r)

〈n, v(y)〉r−d dS(y). (2)

Hence, the co-adjoint transport of the momentum is given by

mr = m1 ◦ Φ−1|DΦ−1| = c
1
rx

‖ 1rx‖
δ{‖1

r
x‖ − 1}

(
1

r

)d

= c
x

‖x‖
δ{‖x‖ − r}

(
1

r

)d

.

Velocity computation: The velocity is the momentum convolved with kernel K:

vr(x) = K ∗mr(x) =

(
1

r

)d

c

∫
Sn(r)

K(x− y)
y

‖y‖
dS(y). (3)

Since we assume a perfectly symmetric distribution it is sufficient to evaluate
the velocity at one location on the circle, e.g., at re1, i.e., we need to compute

ṽr := vr(re1) · e1 =

(
1

r

)d

c

∫
Sn(r)

K(re1 − y)y1 dS︸ ︷︷ ︸
:=q(r)

=
cq(r)

rd
, (4)

where we made use of the fact that vr(re1) will only have a velocity component
in the e1 direction due to symmetry and e1 is the first canonical unit vector.

Note that we computed co-adjoint transport with respect to the uniform
scaling map Φ. Another natural map that could be used for co-adjoint transport
is the optimal diffeomorphism obtained by solving the LDDMM functional, but
this reduces to parallel transport developed in the next section.

2.2 Parallel transport

The geodesic between the sphere of radius 1 and radius r will possess the same
symmetry in its shape evolution. The momentum will also be radial and constant
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on the sphere. It can also be checked that the parallel transport (along the
geodesic) of m1 to radius r will be λmr for a real λ that we have to determine.
To this end, we use the conservation of the norm under parallel transport, i.e.,∫

Sn(1)

〈v1(x),m1(x)〉 dS =

∫
Sn(r)

〈vr(x),mr(x)〉 dS. (5)

In the e1 direction we can then write ṽ1m̃1 = rd−1ṽrm̃r , where m̃r := mr(re1) ·
e1. But according to our assumption: m̃r = λm̃1 and we obtain ṽ1 = rd−1λṽr,
and ṽr = λcq(r), which yields

|λ| =

√
ṽ1

rd−1cq(r)
and finally ṽr = λcq(r) = sign(c)

√
ṽ1cq(r)

rd−1
. (6)

We note that this is up to a multiplicative constant, the square root of the co-
adjoint transport. Hence, we can expect a drastically different behavior for the
two types of transport.

2.3 Simulations

We solve the equations for parallel (6) and co-adjoint (4) transport numeri-
cally for different kernels and different radii. In particular, we use an isotropic

Gaussian kernel of the form K(x) = cge
− xT x

2σ2 , where the normalization constant
cg can be subsumed into c (and will therefore be disregarded in what follows).
In our experiments we computed all integrations in polar coordinates (2D) and
spherical coordinates (3D) respectively. Fig. 1 shows numerical results for S1

(i.e., the two-dimensional case) for the scaling map. We observe the following:

1) The velocity is kernel-size dependent.
2) Depending on the relation of the size of the object to the kernel-size, velocity

may either increase or decrease with increased radius.
3) The radius for which the maximal velocity is obtained roughly coincides with

the standard deviation of the Gaussian kernel.
4) The velocity versus radius plots are asymmetric.
5) Velocities converge to zero as r → 0+ and r →∞.
6) Parallel transport and co-adjoint transport show similar trends however with

different asymptotes for the velocity.

The same conclusions hold in the 3D case, albeit with different slopes than in
2D (figures not shown).

To illustrate the effect of parallel transport on shapes (represented as a group
of points) we compute the geodesic evolution between a circle and an ellipse with
small anisotropy using LDDMM. The resulting initial momentum is then parallel
transported along a geodesic mapping the initial circle to a smaller circle. Fig. 2
shows the used shapes and the result of evaluating the exponential map at time
1. From a geometric point of view it would be desirable to retain the anisotropy
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Co-adjoint transport Parallel transport

Fig. 1. Co-adjoint and parallel transport for a 2D circular example for varying kernel
sizes. Double-logarithmic plot (velocity magnitude over radius). A clear dependence
of the velocity on the kernel size is observed. Maximal velocity normalized to 1 for
comparison. Results were obtained using recursive adaptive Simpson quadrature.

of the resulting ellipse at t = 1. However, LDDMM-based parallel transport
clearly distorts the geometry and results in a much more circular shape: the
ratio between the biggest and smallest axes decreases from 1.25 to 1.18.

Longitudinal evolution (geodesic) Transported evolution

Fig. 2. Left: 60 points on unit circle are matched via a geodesic onto an ellipse with
small anisotropy. Right: the transported evolution on a smaller circle of radius 0.5.
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Fig. 3. Left: two random shapes in red and green and the blue template. Right: his-
togram of transported volume changes.

Last, we show an experiment illustrating the scaling issue when using parallel
transport for population studies under the LDDMM metric: consider a popula-
tion of closed curves drawn from a Gaussian model on the initial momentum
around a template shape as shown in Fig. 3. Each shape of the population un-
dergoes a small longitudinal change which is a uniform scaling centered on its
barycenter. The population is separated into two groups, the first group has a
scale evolution of 1.04 and the second group of 1.06. Hence, when looking at
volume variation alone, the population clearly separates into two groups using a
Gaussian Mixture Model (GMM) for instance. However, GMM completely fails
to distinguish between the population when applied to the transported volume
change. The histogram of the transported volume changes is given in Fig. 3.

These experiments motivate the need for a metric invariant to scale. Ideally,
this should be accomplished by LDDMM to allow building on all its theory.
Unfortunately, this cannot be achieved as described in the following Sec. 3.

3 Scale invariance and LDDMM geodesic flow

In Sec. 2 we observed that co-adjoint and parallel transport may exhibit counter-
intuitive behavior under scaling using a Gaussian kernel. In this section, we show
that the non-linear scaling effect is unavoidable when working with LDDMM,
whatever the choice of the right-invariant metric.

We consider a group G of diffeomorphisms of the Euclidean space Rn which
may or may not contain a group of diffeomorphisms denoted by G0 that will rep-
resent the scaling transformations for instance. The first attempt to have scale
invariance in the LDDMM framework is to ask whether we can design a kernel
that defines a metric producing a global invariance of the flow of geodesics. Let
us assume that G0 contains the group of scaling transformations: x ∈ Rn 7→ λx
for λ ∈ R∗+, but it may include more transformations such as translations and
rotations. The LDDMM framework is built on a group with a right-invariant
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distance that acts on the left on the space of shapes. It then induces a Rieman-
nian metric on each orbit. A priori, requiring scale invariance for the induced
metric is less demanding than asking it on the group itself. However, let us first
explore the case of scale invariance on the group:

Definition 1 The geodesic flow is invariant under G0 if for any geodesics t 7→
φ(t) the curve t 7→ g0 φ(t) g−10 is also a geodesic.

Remark 31 This definition implies the following natural statement: if (q0, q1)
are two objects connected by the geodesic q(t) then g0·q(t) is a geodesic connecting
(g0 · q0, g0 · q1).

Theorem 32 There does not exist any smooth right-invariant metric on the
group of diffeomorphisms for which the geodesic flow is invariant under G0 that
contains the scaling transformations.

Remark 33 What is actually proven is that the invariance condition implies an
invariance condition on the kernel which is satisfied only if the kernel corresponds
to the L2 metric on the space of vector fields. However, it is known that the
geodesic distance degenerates for such a metric.

Remark 34 This result is not really surprising since a heuristic argument is the
following: At identity (a fixed point for the conjugate action), the scale-invariance
requires that the geometry of the whole group is in fact the flat geometry cor-
responding to its Lie algebra. Very few groups of diffeomorphisms of Rn satisfy
this strong hypothesis.

Proof. Let us consider a geodesic path φ(t) whose vector field is denoted by v(t). By Ad
invariance the vector field associated with g0φ(t)g−1

0 is u(t) := Adg0(v(t)). In addition
to that, we know that φ(t) is a geodesic on the group if and only if it satisfies the
Euler-Poincaré equation which is

ṁ(t) + ad∗
v(t)m(t) = 0 , (7)

where m(t) = Lv(t) (or v(t) = Km(t)). Equivalently, we have

v̇(t) +K ad∗
v(t) Lv(t) = 0, Adg0(v̇(t)) +K ad∗

u(t) Lu(t) = 0.

This implies that

Ad−1
g0 (K ad∗

Adg0 v(t)
LAdg0 v(t)) = K ad∗

v(t) Lv(t) , (8)

which is, taking the dual pairing with ω ∈ V ∗ and using the Ad invariance:(
adAdg0 v(t)

K Ad−1∗
g0 ω,LAdg0 v(t)

)
=

(
adv(t)Kω,Lv(t)

)
.

adAdg0 v(t)
K Ad−1∗

g0 ω = Adg0
(
adv(t) Ad−1

g0 K Ad−1∗
g0 ω

)
.

Therefore, we have: (
adv(t) K̃ω, L̃v(t)

)
=

(
adv(t)Kω,Lv(t)

)
, (9)



8 Marc Niethammer and François-Xavier Vialard

where K̃ = Ad−1
g0 K Ad−1∗

g0 and L̃ = K̃−1. Hence, the Levi-Civita connections re-

spectively associated with the right-invariant metrics K and K̃ are the same. As a
consequence, the metrics themselves coincide which gives the condition K̃ = β(g0)K
where β(g0) is a constant depending on g0. The map β satisfies the group relation
β(g0g1) = β(g0)β(g1) which implies, in the case of a scaling action by a positive scalar
λ, the existence of a scalar value a such that β(λ) = λa. To exploit this condition, we
evaluate the previous equality on Dirac distributions:(

Ad−1∗
λ δpxx ,K Ad−1∗

λ δ
py
y

)
= λa

(
δpxx ,Kδ

py
y

)
. (10)

Finally, using the fact that Ad−1∗
g0 δpxx = δ

px/λ
λx when g0 : x 7→ λx, we get:

〈px,K(x, y)py〉 = 〈px, λa−2K(λx, λy)py〉 , (11)

and therefore: K(x, y) = λa−2K(λx, λy) for all λ ∈ R∗
+. In particular, λ2−aK(x, y) =

K(λx, λy) and letting λ→ 0, we obtain three cases using the continuity of K:

– K(0, 0) = 0 if 2− a > 0,
– ‖K(0, 0)‖ =∞ if 2− a < 0,
– For any couple (x, y), K(x, y) = K(0, 0) if a = 2.

In all those three cases, K cannot be a well-defined positive definite kernel. �

Remark 35 If the kernel were not required to be continuous, a possible solution
would be the Dirac kernel δx,y. Such metrics are known to be degenerate [1].

Hence, it is necessary to go beyond the LDDMM framework to obtain scale
invariance. Our interest in scale invariance is motivated by the study of parallel
transport and its global and local effects. In Sec. 4, we characterize Riemannian
metrics with invariance of a global indicator under parallel transport.

4 Designing Riemannian metrics

4.1 Decomposition theorem

Let us assume that we aim at preserving the volume variation in longitudinal
evolutions, which is of interest in the case of Alzheimer’s disease. In more mathe-
matical words, the volume variation must be preserved under parallel transport.
We will restrict ourselves to the space of shapes that are described as embed-
dings of the unit circle S1 in R2 or sphere embeddings in R3. We would like to
distinguish between local shape variation and global volume change. Although
the two quantities are strongly linked in general situations, it seems quite rea-
sonable to assume a uniform volume change. A natural approach to distinguish
between volume variation and shape (up to scaling) variation is to decompose
the space of shapes (in the spirit of [9]) using the following map:

Emb(S1,R2) 7→ R∗+ × Emb1(S1,R2); s→ (vol(s), P (s)) ,

where vol is the surface delimited by the closed curve s and P is a chosen
projection on the space of unit surface embeddings denoted by Emb1(S1,R2).
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A product between the standard Euclidean metric on R+ and a metric on the
space Emb1(S1,R2) gives a (Riemannian) metric on the shape of space that
meets our requirement: Namely, that the volume variation is invariant w.r.t.
parallel transport. It turns out that this is the only possible sort of metric that
fulfills this invariance condition. This result is stated in the following theorem,
which is close to results in the literature of Riemannian foliations (Chapter 2 in
[4]).

Theorem 41 Let g be a Riemannian metric on a connected Riemannian man-
ifold M and a surjective function f : M 7→ R such that df(x) 6= 0 for all x ∈M
and which is invariant under parallel transport, i.e. ∇df = 0, then (M, g) can be
decomposed into a direct product of Riemannian metrics as follows:

(M, g) = (R, dt2)× (M0, g0) (12)

where g0 is a Riemannian metric on the submanifold M0 := f−1({0}).

Proof. Let us first introduce the notation V being the unit length vector field associated
with df via the metric g. In other notations, one has V = df ]. In particular, if Y ∈
Tx0M0 then 〈V, Y 〉 = df(Y ) = 0. It is easy to prove that the following mapping is a
global diffeomorphism:

Ψ : R×M0 7→M ; (t, x0) 7→ expx0(tV (x0)) , (13)

where exp denotes the Riemannian exponential. Indeed, since

∇XV = 0 ∀X ∈ χ(M) , (14)

we get ∇V V = 0 so that V is a geodesic vector field. In addition, for every vector field
X, we have R(V,X)V = ∇V∇XV −∇X∇V V −∇[V,X]V = 0 so that the Jacobi field

equation for a vector J(x0) ∈ Tx0M reduces to D2J
dt2

+R(V, J)V = D2J
dt2

= 0 .
Hence, the map (13) is a local diffeomorphism, which is obviously an injection so

that this is a global diffeomorphism. Now, let us denote by X,Y two vector fields
on M0 trivially extended on M via the diffeomorphism Ψ . Namely, for each t ∈ R∗,
one defines (t, x) 7→ ψ∗(t)X(x) and (t, x) 7→ ψ∗(t)Y (x) the natural extensions of X
and Y . One has ψ∗(t)[X,Y ] = [ψ∗(t)X,ψ∗(t)Y ] = 0. By construction, we also have
V (t, x0) = ψ∗(t)V (0, x0) so that this implies that [X,V ] = [Y, V ] = 0. Using [X,V ] =
0 = ∇XV −∇VX , and equation (14), we get ∇VX = 0. In particular,

V · g(X,Y ) = g(∇VX,Y ) + g(X,∇V Y ) = 0

holds which means that the pull-back of the metric g by Ψ is dt2 + g0. �

Remark 42 – This result is valid in finite dimension and might remain valid
in a smooth infinite dimensional context. In applications however, shapes
are approximated in high-dimensional spaces and the theorem does apply.
Proving a convergence theorem (when the dimension increases) goes beyond
the scope of the paper.

– The theorem can be generalized using the same proof to k functions. The
condition on the differentials would be that the family (df1(x), . . . , dfk(x)) is
linearly independent.
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4.2 An induced Riemannian metric

To design a metric following the theorem, we therefore need a Riemannian metric
on the space of unit volume shapes. To this end, one can use the restriction of
any Riemannian metric on the space of volume preserving embeddings. Since
we based our discussion on the LDDMM metric, we consider the Riemannian
metric induced by LDDMM on that submanifold and we now present the geodesic
computation for the LDDMM metric with a volume constraint.

We denote by V an admissible RKHS of vector fields (see [14]). Let q ∈
Emb1(S1,R2) be an embedding of surface of volume 1, we consider the set of
vector fields Vq := {v ∈ V | d volq(v(q)) = 0}. Since V is a RKHS of admissible
vector fields, v → d volq(v(q)) is a continuous linear form and its kernel Vq is a
closed subspace of V . Note that the notation d volq stands for the differential of
the volume at point q which is a linear form on the tangent space Tq Emb(S1,R2).
We denote by πq the orthogonal projection on Ker d volq for the L2 scalar product
on L2(S1,R2) ' Tq Emb(S1,R2).

A geodesic between two elements q0, q1 ∈ Emb1(S1,R2) is a solution of

inf

∫ 1

0

‖v(t)‖2Vq(t) dt , (15)

under the constraints q̇ = v(t)(q) where v(t) ∈ Vq(t) and q(0) = q0 and q(1) = q1.

Proposition 1 The minimization problem (15) can be recast into:

inf

∫ 1

0

‖v(t)‖2V dt , (16)

under the constraint q̇ = πq(v(t)(q)) where v(t) ∈ V and q(0) = q0 and q(1) = q1.

Proof. Clearly, Problem (15) is contained in Problem (16), since v(t) ∈ Vq(t)
implies πq(v(t)(q(t))) = v(t)(q(t)). Let v(t) be an optimal solution of Problem
(16), then denoting πq : V 7→ Vq the orthogonal projection, we get:∫ 1

0

‖πq(v(t))‖2V dt ≤
∫ 1

0

‖v(t)‖2V dt .

Therefore, we have πq(v(t)) = v(t) which is a solution of Problem (15). �

Using an optimal control approach, the optimal solutions of Problem (16) are
given by the solutions of the Hamiltonian equations{

q̇ = ∂pH(p, q)

ṗ = −∂qH(p, q) ,
(17)

where the Hamiltonian function is given by H(p, q) = 1
2 〈π(p),K(q)π(p)〉; K(q)

is the kernel matrix associated to the LDDMM metric at point q.
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4.3 The choice of projection

A geodesic on the space of shapes can then be decomposed into a straight line
on the volume axis and a geodesic on the submanifold of unit volume shapes.
In the previous section, we have defined the metric on the space of unit volume
shapes. It remains to define the volume geodesics. As mentioned in remark 42, the
range of choice of projection may be large and it is natural to impose additional
assumptions such as invariance w.r.t. translations, i.e. P (T (m)) = T (P (m)) for
every translations T in Rn. This is still not sufficiently constrained to uniquely
determine the metric. Scaling invariance around the barycenter of the shape
defined by m(s) :=

∫
S
c(s)ds = 0 uniquely defines the projection: scale invariance

means P (λm) = P (m) for every λ ∈ R∗+ for a centered (at 0) shape m. This is
the first metric we will consider in the experiments.

The notion of scale invariance also depends on the definition of the center of
the shape which may be unnatural for some shapes. In order to avoid such a bias,
we also propose to define the projection using the gradient flow of the volume
with respect to a given metric, for instance the LDDMM metric: indeed, if f is
a real function defined on a manifold M with no critical points, then the vector
field ∇f is non-vanishing on M and defines the volume geodesics. However, the
gradient is defined by the choice of a metric on the tangent space: for instance,
an LDDMM type of metric which provides spatial correlation. This defines the
second metric in our experiments.

5 Experimental Results

We compare LDDMM and the volume/shape-decoupled model represented by
the two metrics introduced in Sec. 4.3. We use the Schild’s ladder method to
compute parallel transport. Fig. 4 illustrates the effect of the non-preservation of
volume variation with the standard LDDMM metric even if template and target
volumes and scales are equivalent. This shows that volume variation transport is
already affected by shape deformations at the same scale. We use 60 landmarks
and a Gaussian kernel of standard deviation 0.1 for the simulation. The volume
variation for the LDDMM transported evolution is 1.06 whereas the initial data
shows a volume variation of 1.104. By construction, for the new metrics, the
volume variation is the same for the transported evolution. However, since the
projections are different, the two different final curves in red and green are dis-
tinct. The last experiment illustrates the difference between the two new metrics,
where the second metric uses a Gaussian kernel of width 0.01 in the definition of
the volume gradient. We perform parallel transport of the longitudinal evolution
shown in Fig. 4 (upper left) on the blue curve (bottom right). The transported
evolutions exhibit very different behavior: the green curve is the transport using
the scale invariant metric and shows that in some parts of the shape there is no
local growth, whereas the other metric (represented by the red curve) offers a
more uniform growth pattern on the shape.
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Longitudinal evolution (a simple scaling composed with a bump) Transported evolution
Target shape in red. LDDMM with Gaussian kernel σ = 0.1.

Transported evolutions under the scale invariant
metric in green and the other metric in red. Difference between the two metrics.

Fig. 4. Examples of parallel transport under the new metrics.

6 Conclusions and Future Work

This paper explored the behavior of parallel transport for the LDDMM regis-
tration model. We showed that LDDMM is never scale invariant and does not
conserve global properties such as absolute or relative volume changes. To achieve
preservation of global properties we developed a new set of Riemannian metrics
and demonstrated their behavior in comparison to the standard LDDMM model.
While this paper so far only scratched the surface of metric design to achieve
desired properties under parallel transport it raises fundamental issues for the
analysis of longitudinal shape and image data when moving beyond global in-
dicators. Future work will consist in estimating the statistical gain (e.g., w.r.t.
LDDMM) when using the proposed metrics on a particular data set of biomedical
shapes where a global indicator already achieves good performance.
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2. Beg, M., Miller, M., Trouvé, A., Younes, L.: Computing large deformation metric
mappings via geodesic flows of diffeomorphisms. IJCV 61(2), 139–157 (2005)

3. Fiot, J.B., Risser, L., Cohen, L.D., Fripp, J., Vialard, F.X.: Local vs global de-
scriptors of hippocampus shape evolution for Alzheimer’s longitudinal population
analysis. In: STIA. pp. 13–24 (2012)

4. Gromoll, D., Walschap, G.: Metric foliations and curvature, vol. 268. Springer
(2009)

5. Lorenzi, M., Ayache, N., Pennec, X.: Schilds ladder for the parallel transport of
deformations in time series of images. In: IPMI. pp. 463–474. Springer (2011)

6. Muralidharan, P., Fletcher, P.: Sasaki metrics for analysis of longitudinal data on
manifolds. In: CVPR. pp. 1027–1034. IEEE (2012)

7. Rao, A., Chandrashekara, R., Sanchez-Ortiz, G., Mohiaddin, R., Aljabar, P., Haj-
nal, J., Puri, B.K., Rueckert, D.: Spatial transformation of motion and deformation
fields using nonrigid registration. IEEE TMI 23(9), 1065–1076 (2004)

8. Singh, N., Fletcher, P., Preston, J., Ha, L., King, R., Marron, J., Wiener, M., Joshi,
S.: Multivariate statistical analysis of deformation momenta relating anatomical
shape to neuropsychological measures. MICCAI pp. 529–537 (2010)

9. Sundaramoorthi, G., Mennucci, A., Soatto, S., Yezzi, A.: A new geometric metric
in the space of curves, and applications to tracking deforming objects by prediction
and filtering. SIAM Journal on Imaging Sciences 4(1), 109–145 (2011)

10. Sundaramoorthi, G., Mennucci, A., Soatto, S., Yezzi, A.: A new geometric metric
in the space of curves, and applications to tracking deforming objects by prediction
and filtering. SIAM J.also Imaging Sciences (2011)

11. Sundaramoorthi, G., Yezzi, A.J., Mennucci, A.C.: Properties of Sobolev-type met-
rics in the space of curves. Interfaces and Free Boundaries, European Mathematical
Society , 10(4), 423–445 (,2008)

12. Twining, C., Marsland, S., Taylor, C.: Metrics, connections, and correspondence:
the setting for groupwise shape analysis. In: Energy Minimization Methods in
Computer Vision and Pattern Recognition. pp. 399–412. Springer (2011)

13. Vaillant, M., Miller, M., Younes, L., Trouvé, A., et al.: Statistics on diffeomor-
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