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Abstract

This paper presents a method for automatic color and intensity normalization of digitized histology slides stained with
two different agents. In comparison to previous approaches, prior information on the stain vectors is used in the plane
estimation process, resulting in improved stability of the estimates. Due to the prevalence of hematoxylin and eosin
staining for histology slides, the proposed method has significant practical utility. In particular, it can be used as a
first step to standardize appearance across slides and is effective at countering effects due to differing stain amounts
and protocols and counteracting slide fading. The approach is validated against non-prior plane-fitting using synthetic
experiments and 13 real datasets. Results of application of the method to adjustment of faded slides are given, and the
effectiveness of the method in aiding statistical classification is shown.
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1. Introduction

Stains are often used to highlight distinct structures in
microscopy slides of tissue samples. Frequently two stains,
such as eosin and hematoxylin, are applied for purposes
such as discriminating cell nuclei and cytoplasm. Stan-
dardized staining protocols help to reduce variations in
staining results, however, various factors can affect stain
color and intensity in practice. For example, stains can
fade over time, stain colors may differ slightly, or different
imaging equipment may be used.

Standard stains absorb light. The concentrations of the
various stains on a sample will determine its appearance
when illuminated under a microscope, with higher con-
centrations appearing darker. The amount of light ab-
sorbed by a stain is wavelength dependent, and each stain
can be characterized by its absorption coefficients. These
coefficients form a vector (the stain vector) of dimension
equal to the number of wavelengths in the imaging sen-
sor (three for a standard RGB camera). Given the stain
vectors, an image can be decomposed into components of
each idividual stain via color deconvolution (Ruifrok and
Johnston, 2001). These components can be adjusted and
recomposed into an image which appears to have different
amounts of each stain than before. This paper proposes
a method for automatic stain vector estimation and slide
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appearance normalization (both color and intensity). This
can improve quality both for viewing the slides as well as
quantitative analysis of the slides.

Previous approaches to extract stain vectors include
manual region of interest definition, methods relying on
non-negative matrix factorizations (Rabinovich et al.,
2003), and working in the optical density domain, includ-
ing plane fitting (Macenko et al., 2009) and learning per-
image vectors from manually segmented regions Magee
et al. (2009).

Stain vector estimation is not the only approach used for
normalization of histology slides. Reinhard et al. (2001)
transform images into the Lab colorspace and normalize
the mean and standard deviation of each channel of an
image to a target image. Magee et al. (2009) propose an
extension to this method which first segments the pixels
into multiple classes based on color and then normalizes
each class separately. This method uses a prior obtained
by computing the mean of each pixel class over a set of
manually segmented images. Another common approach
is equalization of color histograms. Kothari et al. (2011)
use a modification of this approach which normalizes us-
ing rank functions of unique colors rather than all colors
present in an image.

Methods which do not use prior information often have
trouble dealing with images which do not fit the assump-
tions made by their models. Histogram-based methods
assume that two images are similar in the amount of stain
present. Stain vector estimation via plane-fitting becomes
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unstable in the cases where the number of pixels with
each stain are highly unbalanced. The method of Magee
et al. (2009) which does include prior information on stain
vectors requires per-image manual segmentations of each
stain.

This paper addresses these issues by introducing prior
information to the plane-fitting algorithm of Macenko
et al. (2009). This is an extension of the work by Ni-
ethammer et al. (2010) with additional applications and
validation. Novel contributions include: (1) a rigorous
theory for the color model used, (2) the introduction of
prior information for the stain vector taking into account
varying amounts of stain (such as that encountered in the
case of sparsely distributed nuclei on large amounts of
stained background tissue), (3) an alternating optimiza-
tion method and its connection to a sub-problem from
trust region optimization, (4) a novel twist on Otsu thresh-
olding (Otsu, 1975) which also includes prior informa-
tion, and (5) quantitative validation on synthetic and real
datasets.

The rest of this paper is organized as follows: section
2 gives background information on the stain vector model
used, section 3 describes the basic plane optimization prob-
lem, section 4 adds prior information to this optimization,
section 5 describes the prior-based clustering method, sec-
tion 6 describes the digital restaining procedure, section 7
gives results from a variety of experiments, section 8 de-
scribes several applications of this method, and section 9
gives conclusions and discussion.

2. Stain Vector Model

According to the Beer-Lambert law, the transmission of
light through a material can be modeled as

I = I0e
−αcx, (1)

where I0 is the intensity of the incident light, I is the
intensity of the light after passing through the medium,
α is the absorption coefficient, c the concentration of the
absorbing substance, and x the distance traveled through
the medium. The optical density (OD) or absorbance is

OD = αcx = − log

(
I

I0

)
. (2)

We assume that α and x are constant for a specimen and a
given stain, but that a stain’s concentration c may change
both locally and between slides. For a multispectral image,
such as an RGB image captured with three wavelengths,
equation 1 becomes vector-valued

I = I0 � e−αcx, (3)

resulting in an OD vector

OD = − log(I � I0) = αcx. (4)

Here, the absorption coefficients αi are color dependent,
and � and � represent element-wise vector multiplication
and division. Note that dark intensities will correspond to
large optical density values and bright image parts where
no absorption occured will have small values. Each stain
has a characteristic vector α of absorption coefficients.
Given a traced distance x the optical density OD is lin-
early related to the absorption coefficient, with a propor-
tionality constant given by the stain concentration, i.e.,
OD = αxc. Applying the vector-valued Beer-Lambert
law to the case of a two-stain color image, such as one
stained by eosin and hematoxylin, yields

I = I0 � e−(α1c1x1+α2c2x2) (5)

where subscripts denote values for the two distinct stains.
The optical density can be computed as

− log(I � I0) = α1c1x1 +α2c2x2. (6)

This shows that, for a given illumination I0, the obtain-
able intensity vectors I lie in the plane spanned by the
absorption coefficients, or stain vectors, αi. Since ci ≥ 0,
xi ≥ 0, and the αi are linearly independent, any color
which can be represented by the imaging model must lie
in the convex cone

C = {x|x = q1α1 + q2α2, q1, q2 ≥ 0} (7)

If all possible optical density vectors are normalized, all
points must lie inside

CN = {x̃|x̃ =
x

‖x‖
, x ∈

◦
C }, (8)

where
◦
C denotes C \ 0. Geometrically, CN = S2 ∩ C, the

intersection of C and the three-dimensional unit sphere,
which is the sector of a great circle.

3. Plane Fitting

In the previous section, we described a method for trans-
forming an RGB image into optical density space. As
shown in figure 1, when an image stained with two stains
is transformed into OD space, the image colors lie in the
convex cone defined by the two stain vectors. The fol-
lowing sections develop a method for estimating both this
plane and the associated stain vectors.

By definition, the convex cone spanned by the stain vec-
tors is a subset of a plane P passing through the origin

P = {x : nTx = 0}, (9)

where n is the plane’s unit normal. The signed distance
of any point to the plane can be computed as

d(x,P) = nTx.
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Figure 1: Distributions of image colors in RGB space (left) and OD
space (right). The colors lie on a curved surface in RGB space yet
are planar when transformed into OD space.

The plane which minimizes the sum of squared distances
to all given optical density vectors is given by minimizing

E(n) =
∑
i

(
nTxi

)2
= nT

(∑
i

xix
T
i

)
n = nTSn,

s.t.‖n‖ = 1., (10)

Since S is positive semi-definite, n is the eigenvector of the
smallest eigenvalue of S. This unconstrained optimization
was proposed in Macenko et al. (2009).

The results of this estimation are only reliable when
a sufficient amount of both stains is present in the sam-
ple. When this assumption does not hold, additional con-
straints are needed. Adding prior information helps to en-
sure the estimator performs well. While introducing prior
information gives up the convenience of a closed-form so-
lution, it has clear benefits for increasing the stability of
the plane estimation (see section 7). We use an EM-style
alternating optimization approach with efficient solutions
for both stages.

4. Plane Prior Information

To introduce prior information, we penalize the devia-
tion from a given reference plane (nTp x = 0) through a
reference normal np. The energy to be minimized now
becomes

E(n) =

(
1

2σ2

n∑
i=1

d2(xi,P)

)
+

1

2σ2
0

‖n− np‖2,

s.t. ‖n‖ = 1, (11)

where σ is the standard deviation for the measured points
(assumed to be independent) and σ0 is the standard devi-
ation of the prior (assumed to be Gaussian).

Equation 11 shows how, as n→∞, the effect of the prior
shrinks. The distribution of points will only be approxi-
mately planar when there are a large number of measure-
ments for both stains. This distribution cannot be guar-
anteed, especially if working with smaller sub-regions of
a stained slide which may contain low amounts of nuclei
and high amounts of stained background. In this case,

without the stabilizing effect of the prior information, the
plane that is fit will be heavily biased towards the cluster
with a large number of points and will be a poor fit to the
actual stains present. This problem can be overcome by
weighting the data points assigned to a stain vector.

Assuming the partitioning of these data points into two
clusters (one for each stain) is known, the minimization
energy (up to constants) is given by

E(n) =

2∑
j=1

 nj∑
i∈Pj

d2(xi,P)

2σ2
+

α

2σ2
0

‖n− np‖2
wj , (12)

where the wi are the weights, Pi the partitions, and ni
the number of points in each partition. The partitioning
method used is described in section 5.

The weights are chosen based on several conditions. The
weights must take into account whether there are a suffi-
cient number of data points in each cluster, and should
simplify back to equation 11 if the clusters are of equal
size. The following conditions are placed upon the weights
for these properties to hold:

αw1 + αw2 = 1 (first limit condition),

w1
n

2
+ w2

n

2
= n (second limit condition),

γ

n1
= w1 (first cluster size condition),

γ

n2
= w2 (second cluster size condition).

The first two conditions ensure that equation 12 simplifies
back to equation 11 for equal size clusters, and the second
two set the weights inversely proportional to the cluster
sizes. These conditions are fulfilled for α = 1

2 , w1 = 2n2

n ,

and w2 = 2n1

n . This allows clusters to contribute equally
even when the cluster sizes are uneven, while simplify-
ing back to the original equation when they are equal, as
desired. Substituting these values into Equation 12, rear-
ranging, and rescaling by 2σ2n/(4cn1n2), the energy to be
minimized becomes

E(n) = nT

(
1

2n1

n1∑
i=1

xix
T
i +

1

2n2

n2∑
i=1

xix
T
i

)
n+

n

4n1n2

σ2

σ2
0

‖n− np‖2

which is of the general form

Ep(n) = nTSn+
1

σ2
‖n− np‖2, s.t. ‖n‖ = 1,

a weighted covariance matrix and cluster-dependent
weighting of the prior term, and assumes at least one point
per cluster. Additional conditions for the weights could
be used to remove this condition if desired. This opti-
mization problem is closely related to finding a minimum
over a boundary in trust-region optimization (Nocedal and
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Wright, 2006) and can be solved as such. The overall solu-
tion alternates between solving this optimization problem
and reclustering the data points until convergence.

5. Clustering

The plane-fitting algorithm described in section 4 re-
quires a clustering method to partition the set of data
points into two classes. K-means(Macqueen, 1967) is one
of the most popular clustering methods. Standard k-
means clustering minimizes

S = argmin{Sk}
∑
k

∑
i∈Sk

‖xi − µi‖2 (13)

over all possible cluster sets Sk. For the case when only
two classes are sought, k-means simplifies to

E =
∑
i∈S1

‖xi − µ1‖2 +
∑
i∈S2

‖xi − µ2‖2,

where µk =
∑
i∈Sk

‖xi−µk‖2

|Sk| are the cluster centers. Prior

information can be added to this two-class case to obtain

E =

(∑
i∈S1

‖xi − µ1‖2
)

+
1

σ2
1

‖µ1 − µ1‖2+(∑
i∈S2

‖xi − µ2‖2
)

+
1

σ2
2

‖µ2 − µ2‖2,

where σ =
σµk
σk

is a user-defined constant and µ1 and µ2

are priors for the cluster centers.
In the standard k-means algorithm, elements are as-

signed to a current estimate of the cluster centers. From
this new partitioning, new cluster centers are calculated as
the means of the current clusters, and this process is iter-
ated until convergence. This optimization is non-convex,
and so is not guaranteed to reach a global minimum. When
seeking two cluster centers for one-dimensional features,
however, k-means simplifies to Otsu thresholding. Otsu
thresholding (Otsu, 1975) computes the globally optimal
separation between two classes by searching the feature
histogram for the threshold which minimizes the intra-
class variance.

A one-dimensional feature suitable for clustering the
points in the plane-fitting algorithm is angle in the fitting
plane with respect to a reference direction; in this case, the
midpoint of the projections of the stain vector priors. Prior
stain vector information is used to prevent mis-clustering
when the number of data points for one stain direction
clearly dominates the other. The actual stain vectors are
extreme directions specifying the boundaries of the opti-
cal density cone. These directions of pure color are not
the norm, as most colors are a mixed combination of these
two extremes. For this reason, the stain vectors themselves
are not chosen as the priors for clustering. Instead, priors
are chosen to be slightly inward from the cone boundaries.

Given two stain vectors s1 and s2, the priors are chosen
as the angles with respect to the reference direction of
the projections Π {qi} = qi − qTi nn onto the current esti-
mate of the fitting plane, where q1 = (1− α)s1 + αs2 and
q2 = αs1 + (1 − α)s2, α ∈ [0, 0.5) are directions moved
slightly inward from the cone boundary. Including this
prior information, the minimization problem becomes

E(I ≤ Iθ, µ1, µ2) = 1

σ2
1

∑
i∈j:Ij≤Iθ

(Ii − µ1)2

+

 1

σ2
2

∑
i∈j:Ij>Iθ

(Ii − µ2)2


+

1

(σµ2 )2
(µ2 − µ2)2 +

1

(σµ1 )2
(µ1 − µ1)2, (14)

which is computed for all thresholds Iθ. For a given par-
titioning, the optimal values for µ1 and µ2 are

µi =
σ2
i

σ2
i + (σµi )2ni

µi +
(σµi )2ni

σ1
i + (σµi )2ni

Ii, (15)

where ni represents the numbers of points in a cluster and
Ii the mean angles in the cluster. Note that µ1 and µ2

are not simply the foreground and background means, but
a weighted average of the means and priors. Algorithm 5
gives an overview of the plane fitting algorithm with prior.

Algorithm 1: Algorithmic description of the optimal
plane-fit algorithm.

Data: σ/σ0, s1, s2
Result: Normal vector for plane fit: n
Compute prior normal vector np = s1×s2

‖s1×s2‖ ;

Initialization n = np ;
repeat

Project data points onto plane nTp x = 0 ;
Project priors q1 and q2 onto the plane

(computed from s1, s2);
Express all points (including the priors) in

angular coordinates ;
Perform globally optimal Otsu thresholding

with priors in angular domain;
Compute new scatter matrix (based on

clustering) ;
Compute new data variance (based on

clustering) ;
Compute optimal normal vector n;

until convergence (i.e., cluster assignments no longer
change);

6. Restaining

Once an image’s stain vectors have been computed, it
can be restained to better match a target image. As stated
in section 2, the relationship between an image’s optical
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density OD, its stain vectors αi, and the amounts of each
stain qi is given by the equation

OD = αq = α1q1 +α2q2.

Once the αi have been estimated, the concentration of
each stain present in each pixel can be solved for. The
stain concentrations are given by

qi = α−1i OD (16)

In order to restain the image to a different color space,
these concentrations must be rescaled to match a desired
distribution. This is done by adjusting the concentrations
so that their median mq matches a desired median mq̂:
q̂ = (

mq̂
mq

)q. Given these adjusted saturations and a set of

desired stain vectors α̂, the restained image is given by

Î = e−(α̂1q̂1+α̂2q̂2) (17)

In practice, pixels with nearly no stain are thresholded out
for stability reasons.

7. Experiments and Results

This section presents results on several different exper-
iments done to validate the effectiveness of the proposed
method. Section 7.1 demonstrates how the method per-
forms when estimating the plane normal direction for a
synthetic data set. Section 7.2 shows how incorporating
prior information improves the consistency of the plane es-
timation on a real dataset. Section 7.3 shows the effective-
ness of the method in restaining slides which have faded
over time. Section 7.4 shows how normalization improves
the performance of feature extraction and classification.

7.1. Plane Normal Estimation

Figure 2 shows the results of a synthetic experiment to
estimate the plane normal. Three methods are compared:
(1) estimation without a plane normal prior (correspond-
ing to the method in Macenko et al. (2009)), (2) estima-
tion with a plane normal prior, but without the clustering
step, and (3) the full algorithm. Estimation results shown
are deviations (in degrees) of the estimated normal vec-
tor n̂ with respect to the ground truth normal vector. To
assess the influence of varying cluster sizes and normal
priors, two stain vectors s1, s2 were chosen at a 30 degree
angle

s1 =

− sin γ
cos γ

0

 s2 =

sin γ
cos γ

0

 with γ = π
15

180
.

(18)
Priors q1 and q2 were then determined by rotating them
in the plane by angle Φ, i.e.,

q1 =

− sin(γ + Φ)
cos(γ + Φ)

0

 q2 =

sin(γ − Φ)
cos(γ − Φ)

0

 (19)

and subsequently tilting them with respect to the plane
that they define by an angle θ. For testing purposes the
such created priors were used directly, but the stain data
was generated by creating samples using an isotropic Gaus-
sian distribution with the respective means of the stain
vectors (s1 and s2) and standard deviation of 0.1 (which
is comparable to what we observe in real datasets). For
each combination of (θ,Φ) we created 1000 datasets to
evaluate the mean performance of the different estimation
methods in recovering the true normal vector of the plane
defined by s1 and s2, n = s1×s2

‖s1×s2‖ . The estimation per-

formance was tested for different distributions of stains.
For s2 1000 sample points were created while for s1 the
number of sample points was 5, 50, or 1000. The esti-
mation algorithms had no knowledge of this unequal dis-
tribution. Only for (θ,Φ) = (0, 0) are the priors correct.
Otherwise they indicate various levels of deviation to as-
sess the behavior of the estimators for inaccuracies in the
prior. As shown in Figure 2, all three methods to deter-
mine the plane normal have similar performance for clus-
ters of equal size (1000/1000) with angular errors of less
than one degree. However, prior information improves the
results greatly for uneven point distributions. In the most
extreme case of a 5/1000 sample point distribution the
error of the proposed method is on average about 10 de-
grees smaller than the error of the method using a plane fit
only. Such imbalances are expected to occur for example
in regions with sparsely distributed nuclei. In cases where
the effect of the prior is most pronounced, the clustering
further improves estimation results slightly.

7.2. Consistency of Estimation

Figure 3 shows the performance of the method on thir-
teen slides compared to the direct plane fitting without a
plane prior as in Macenko et al. (2009). These slides were
randomly selected from a study of melanocytic lesions and
were scanned digitally using an Aperio ScanScope. The
histology images were subdivided into areas of 1000x1000
pixels and were independently adjusted for stain intensity
and stain direction using the two methods. Figure 3 shows
the estimation consistency for the two methods by com-
paring the mean deviation from the mean normal vector
across a slide (mean with respect to the tiles). Estima-
tion consistency is statistically significantly better for the
proposed method (with p < 1e − 4 using a t-test or non-
parametric permutation test). The mean deviation from
the prior was around 11 degrees for the method using prior
information and 20 degrees for the method not using the
prior information. The tight distribution for the consis-
tency results for the proposed method demonstrates that
the prior was not chosen to dominate the results. Figure 4
shows the results of application of the methods with and
without prior information on a slide. Figure 5 shows the
results of using the method with prior to normalize the
appearance of 12 images.
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Figure 5: A set of 12 slides before (left) and after (right) normalization.
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Figure 6: Results of the 4 different unfading schemes on the groups with low, medium, and high fading. In each graph, the first box is the
difference between the original and unadjusted faded image. The next three show difference between the original and adjusted faded images
using the local, global, and mixed restaining schemes. The last shows the difference between the original and faded images, both adjusted to
a third color space.

7.3. Faded Slide Normalization

An application of this method is normalizing the color
of slides which have faded over time. Figure 6 shows the
results of an experiment on 23 pairs of images of cuta-
neous melanomas taken 2-7 years apart. The second scans
show fading of stain intensities compared with their orig-
inal scans to varying degrees. The two scans were reg-
istered to each other using a similarity transform com-
puted from specified landmarks to allow direct compari-
son of corresponding image regions. The images were then
downsampled by a factor of 10 to ease computation, but
the method can work on full-size images if desired. This
data is available online at http://midas3.kitware.com/
midas/folder/11138.

Stain vectors and intensities are estimated for the orig-
inal scan and the faded scan is adjusted to more closely
match the original. Effectiveness of this method is mea-
sured by computing the distance between a pair of images
before and after the faded image is adjusted. Distance

is computed by calculating the earth mover’s distance
(EMD) between the color histograms of the image. EMD
represents the minimum energy needed to turn one his-
togram into another. A simpler, equivalent computation
is taking the distance between the quantile functions of the
two histograms (Levina and Bickel, 2001). For this exper-
iment, the images were registered and subdivided into 100
patches (10 × 10 grid). An average EMD is computed on
the R, G, and B channels for each patch. These patch-wise
distances are then averaged over all patches, giving a total
image-to-image distance.

There are several ways to estimate the stain vectors and
intensity scalings needed to perform these adjustments. If
the images are treated in a purely local manner, the stain
vectors and scalings are estimated and applied on a patch-
wise basis. This local approach typically yields good im-
provement in the image distance metric, but the resulting
images often show artifacts of this local treatment, espe-
cially on images with more severe fading. An alternative
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Figure 2: Synthetic experiments: Angle difference (in degrees) be-
tween the estimated normal vector and the ground truth. Top row:
proposed method. Middle row: plane fit with prior without clus-
tering. Bottom row: plane fit without prior. Estimates are average
results over 1000 random datasets for different priors and varying
numbers (5/1000, ...) of points in the two stain clusters. The pro-
posed method performs best. For equal stain distributions all three
method perform well. The difference is most striking for a highly un-
balanced stain distribution (5/1000). Note that the results are fairly
insensitive to the prior itself and that the clustering step improves
results over the prior slightly.

approach treats the images from a purely global perspec-
tive, estimating a single set of stain vectors and intensity
scalings and globally adjusting the faded image to match.
This yields smooth restained images, but at the cost of
lower quantitative performance. By computing the stain
vectors of the original image globally, but performing in-
tensity adjustment locally, a middle ground between the
two previous methods offers better performance than the
purely global approach while giving smoother images than
purely local. It is also possible to restain both the original
and faded images to a third, separate color space instead
of adjusting one to match the other. The results of this
approach using a local restaining scheme are included as
well.

Examining the distances between the original and faded
images prior to adjustment reveals that the pairs fall into
three distinct clusters, representing low, medium, and high
levels of fading. Figure 8 shows examples of each of these
three classes and the results of the various methods de-
scribed above on each. The low fading class shows small
improvement across all methods, which is expected since
there is only small room for improvement. The classes
with medium and large fading show much more significant
improvements across all methods. In general, the more
local methods show the most improvement in distance,
while the more global methods produce visually smoother
images.

Figure 6 shows the results of these different unfading
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Figure 3: Estimation consistency for the proposed
method and the method not using prior information (Ma-
cenko et al., 2009) comparing the mean deviation from
the mean normal vector across a slide (with respect to the
tiles) in degrees. Smaller values and a tighter distribu-
tion demonstrate the advantage of the proposed method.
Results are statistically significantly different.

original restain no prior restain prior

Figure 4: Restaining of a real dataset using the proposed method
(right) and the method not using prior information (middle).

schemes on a set of 23 pairs of images. The first plot shows
results for 11 pairs of images which show low amounts of
fading, all of which were scanned approximately 2 years
apart. The second plot shows results for the 8 pairs which
show moderate amounts of fading, and the third shows the
4 pairs with high amounts of fading. Both the medium and
high fading groups were scanned approximately 7 years
apart. In each plot, the first box shows the distribution
of EMDs between the faded and nonfaded images. The
following boxes show EMDs between the nonfaded and
adjusted images in the local, mixed, global, and separate
color space schemes respectively.

Figure 7 shows the results of evaluating our method
against 3 others for the task of restaining faded slides.
R is the method of Reinhard et al. (2001), K the method
of Kothari et al. (2011), M the method of Macenko et al.
(2009), and O is our method. The results are on the set
of slides which showed medium fading and all restaining
is done globally. Methods R and K show small or no
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Figure 7: Comparison of our method with others on slides with
medium fading. Boxes are B (base distance), R (Reinhard et al.), K
(Kothari et al.), M (Macenko et al.), and ours.

improvement overall. The M method (plane fitting with
no prior information) shows good overall improvement in
the mean but at the cost of high variation. Our method
shows a similar improvement in mean but much lower vari-
ation, demonstrating the additional stability provided by
the prior.

Figure 8 shows the results of our restaining on typical
images from each of the three classes. As can be seen,
the global method provides a smoother result, but recovers
less information overall than methods which include a local
component.

The weight of the prior, here defined as its standard
deviation σ0, is an important parameter in determining
the effectiveness of the restaining. The results above were
computed by setting σ0 = 0.5 globally, which is a mod-
erate weight for the prior. The results for the low fading
class stay consistent across a wide range of prior values.
The medium class is somewhat less robust to change in
the prior. A somewhat tighter distribution is obtained for
this class near σ0 = 0.2, but the difference in mean EMD
is small (77.4 vs 80.1). For the class with high fading, a
marked improvement is seen at much lower standard de-
viations, such as σ0 = 0.01. In these cases, the higher
prior weight seems to stabilize the estimation of stain di-
rection when there is only a small amount of stain infor-
mation present. This effect is much more strongly seen
in global schemes rather than local. These results suggest
that adaptively choosing σ0 based on the initial difference
between the faded and unfaded images in a pair could be
desirable.

7.4. Effect on Classification

Another important application of slide appearance nor-
malization is in statistical analysis. Figure 9 shows the ef-
fect of color normalization on statistical classification. The

Normalization Accuracy AUROC

None .899 .967
Partial .936 .967
Full .962 .981

Figure 9: Classification accuracy and AUROC for varying levels of
normalization. None uses no normalization, partial normalizes for
segmentation but not feature extraction, and full normalizes for both.

goal of this analysis is to classify slides as containing either
melanoma or benign nevi. This experiment compares 31
slides containing nevi and 21 containing melanoma. Each
image has approximately 10 regions identified by a pathol-
ogist. In each of these regions, cell nuclei are segmented
and then features are extracted based on these nuclear seg-
mentations using the process described in Miedema et al.
(2012). Classification was done using three different pro-
cessing methods: (1) no appearance normalization, seg-
mentation and feature extraction done on original slides,
(2) normalized slides used for segmentation, features ex-
tracted from original slides, and (3) normalized slides used
for both segmentation and feature extraction.

As figure 9 shows, for distance-weighted discrimination
(DWD)(Marron et al., 2007) classification with 10-fold
cross-validation, there is clear improvement when normal-
ization is added. In particular, normalization yields im-
provement in both the segmentation and feature extrac-
tion steps.

The significance of the difference in AUROC value be-
tween the normalized and unnormalized data is evaluated
using a bootstrapping approach. Bootstrapping is done
by, for a population of size n, randomly sampling n val-
ues from the population with replacement. From this re-
sampled population, a statistic of interest (in our case,
AUROC) can be computed. If this process is iterated, a
distribution of these values can be created and analyzed.

We perform bootstrapping on both the normalized and
unnormalized data to get distributions of AUROC values
for both populations. We perform a two-sample t-test
in order to assess the significance of the difference be-
tween the two populations. For 100 resamplings, we find
significant difference between the two populations at the
p = 0.01 level.

Projecting the data onto the DWD separating direction
and looking at the receiver operating characteristic (ROC)
shows similar results. Figure 9 shows the area under the
ROC curve (AUROC). While this shows little difference in
the segmentation step, it again shows improvement when
using the normalized images over the original for feature
extraction.

7.5. Variation Between Manufacturers

Computing a plane fit using prior information is desir-
able due to the variations in stains between batch and
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Low Fading

Medium Fading

High Fading

Figure 8: Examples of restained faded images. From top to bottom: images that show low, medium, and high fading. In each subfigure:a) the
unadjusted faded image, b) the original image, c) faded image with global restaining, d) faded image with mixed restaining, e) faded image
with local restaining, f) original image restained to new space, and g) faded image restained to new space.

9



manufacturer. If the stain directions were always identi-
cal, estimation would be unnecessary as one could simply
take the stain directions as fixed.

Five slides of normal skin were stained using stains
from two different manufacturers. For the first group, the
eosin and hematoxylin were from Richard-Allan with other
reagents from Fisher. For the second, the stains and other
reagents were from Leica. For each pair of images, we
convert them to OD space and compute a PCA of the re-
sulting data. In each case, the third principal component
explains less than 1% of the variation, indicating that the
data is highly planar. We define the plane of the data as
the plane spanned by the first two principal components.

The normal to these planes are compared for each pair
of images. In each case, the normal varies from 3 to 10
degrees, with an average deviation of 6.5 degrees. While
this difference is not large, is it consistent. Figure 10 shows
that the normals in each case show a consistent direction of
movement, going from the left side of the plot to the right
in each case. This demonstrates the need for estimating
the stain directions rather than taking them as constant
in order to correct for this bias.

−0.35−0.3−0.25−0.2−0.15−0.1−0.050

0.55

0.6

0.65

−0.82

−0.8

−0.78

−0.76

−0.74

−0.72

Differences in Normal Directions between Manufacturers

Figure 10: Normal directions for slides stained from two manufac-
turers: one set in blue, the other in red. The colored lines are drawn
between the two normals computed for each slide. Notice there is a
consistent left-to-right shift going from blue to red.

8. Applications

The method proposed in this paper has a variety of ap-
plications. One such application is the restaining of slides
which have faded over time as discussed in the results sec-
tion. While its application here was in pairs of faded and
nonfaded slides, the method could also be used to unfade
slides for which there is no nonfaded image available, thus
allowing them to be analyzed more easily.

Another application is the restaining of a population of
images to a common color space. This adjustment would

allow for easier comparison and statistical analysis of a
group of images. The extra constraint provided by the
prior information would help to stabilize this adjustment
for statistical purposes.

Another possible application would be the restaining of
an image into a new color space for visualization purposes.

9. Conclusions

This paper presented a method to automatically adjust
the appearance of stained histology slides. It described a
novel way of adding prior information for the stain vectors
and how to deal with unequal stain distribution through
a clustering process which is a novel adaptation of Otsu
thresholding to include prior information. The underly-
ing optimization problem is related to trust-region opti-
mization, and is therefore well studied and easy to solve.
Experiments on real and synthetic data show the supe-
rior performance of the method developed compared with
methods which use no prior information. Results of apply-
ing the method to slides which have faded over time show a
potentially powerful application of this method. Normal-
ization of histology slides is shown to improve performance
of statistical classification of those slides.
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