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Abstract. This paper presents an approach to estimate the uncertainty
of registration parameters for the large displacement diffeomorphic met-
ric mapping (LDDMM) registration framework. Assuming a local mul-
tivariate Gaussian distribution as an approximation for the registration
energy at the optimal registration parameters, we propose a method to
approximate the covariance matrix as the inverse of the Hessian of the
registration energy to quantify registration uncertainty. In particular,
we make use of a low-rank approximation to the Hessian to accurately
and efficiently estimate the covariance matrix using few eigenvalues and
eigenvectors. We evaluate the uncertainty of the LDDMM registration
results for both synthetic and real imaging data.

1 Introduction

Image registration is critical for many medical image analysis systems to provide
spatial correspondences. Consequentially, a large number of image registration
methods have been developed which are able to produce high-quality spatial
alignments of images. However, most image registration approaches do not pro-
vide any measures of registration uncertainty and hence do not allow a user to
assess if a registration result is locally “trustworthy” or not. This is particularly
problematic for highly flexible registration approaches, such as elastic or fluid
registration with very large numbers of parameters to model deformations.

Different approaches to address uncertainty quantification in image registra-
tion have been proposed. For example, for rigid deformations, physical land-
marks have been used to estimate the average registration error for the whole
volume. [2]. Non-rigid deformations are challenging as landmarks only capture
local aspects of the deformations. Instead, methods have been proposed to assess
uncertainty based on probabilistic models of registration and the image itself.
For B-spline models, sampling based methods have been proposed for images [5]
or the optimal spline parameters [11] to create multiple registrations from which
to estimate deformation uncertainty. Simpson [9] uses a variational Bayesian ap-
proach to infer the posterior distribution of B-spline parameters. Monte-Carlo
sampling methods have also been explored in the context of elastic registration [8]
and for LDDMM [12].

Existing methods mainly focus on parametric non-rigid registration methods
such as the B-spline model or require large computational effort to sample over



high-dimensional parameter spaces [8,12] as for LDDMM [1]. Here, we develop a
method to estimate uncertainty in the deformation parameters of the shooting
formulation [10] of LDDMM.

We assume a local multivariate Gaussian distribution at the optimal solution,
and approximate the covariance matrix through the inverse of the approximated
energy Hessian to quantify uncertainty of the registration parameters. Using the
Hessian of the energy to estimate the covariance matrix of parameters has been
discussed for large-scale inverse problems in other application domains [3,4]. For
high dimensional parameter spaces, computing the full Hessian is prohibitive
due to large memory requirements. Therefore, we develop a method to compute
Hessian vector products for the LDDMM energy. This allows us to efficiently
compute and store an approximation of the Hessian. In particular, we directly
approximate the covariance matrix by exploiting the low-rank structure of the
image mismatch Hessian. Our framework therefore allows uncertainty analysis
for LDDMM at a manageable computational cost.

Sec. 2 discusses the relationship of the covariance matrix of the parame-
ter distribution and the Hessian of the energy function. Sec. 3 introduces our
framework to compute the Hessian and to estimate the covariance matrix. Sec. 4
shows experimental results for both synthetic and real data, and discusses how
our method extends to other registration models and its potential applications.

2 Covariance Matrix and Hessian of the Energy

Consider a Gaussian random vector θ of dimension Nθ with mean value θ∗ and
covariance matrix Σθ. Its joint probability density function can be written as

P (θ) = (2π)−
Nθ
2 |Σθ|−

1
2 exp

[
−1

2
(θ − θ∗)TΣ−1θ (θ − θ∗)

]
. (1)

In image registration one typically minimizes the energy given by the negative
log-likelihood of the posterior distribution. As the negative log-likelihood of the
multivariate Gaussian is given by

E(θ) = −ln(P (θ)) =
Nθ
2

ln2π +
1

2
ln|Σθ|+

1

2
(θ − θ∗)TΣ−1θ (θ − θ∗), (2)

computing the Hessian of E(θ) with respect to θ results in HE(θ) = Σ−1θ and
directly relates the covariance matrix of the multivariate Gaussian model to the
Hessian of the energy through its inverse.

In our method, we assume that at optimality the LDDMM energy can be
locally approximated by a second order function and hence by a multivariate
Gaussian distribution. In particular, we make use of the shooting based formu-
lation of LDDMM [10] which parameterizes the spatial deformation by an initial
momentum (or equivalently by an initial velocity field) and associated evolution
equations describing the space deformation over time. Specifically, the registra-
tion parameter in shooting based LDDMM is the initial momentum m, which is



the dual of the initial velocity v, an element in a reproducing kernel Hilbert space
V . The initial momentum belongs to V ’s dual space V ∗, and it is connected with
v via a positive-definite, self-adjoint differential operator L : V → V ∗ such that
m = Lv and v = Km. Here the operator K denotes the inverse of L. The energy
of LDDMM with the dynamic constraints [10] can then be written as

E(m0) = 〈m0,Km0〉+
1

σ2
||I(1)− I1||2, (3)

mt+ad∗vm = 0, m(0) = m0, It+∇IT v = 0, I(0) = I0 m−Lv = 0, (4)

where the operator ad∗ is the dual of the negative Jacobi-Lie bracket of vector
fields: advw = −[v, w] = Dvw −Dwv, σ > 0, and I0 and I1 are the source and
the target images for registration respectively. The Hessian of this energy is

Hm0
= 2K +

∂2 1
σ2 ||I(1)− I1||2

∂m2
0

. (5)

Computing this Hessian is not straightforward, because I(1) only indirectly de-
pends on m0 through the dynamic constraints and m0 can become very high-
dimensional, making computation and storage challenging. Sec. 3 therefore dis-
cusses how to compute the Hessian and its inverse in practice.

3 Hessian Calculation and Covariance Estimation

3.1 Calculating Hessian-vector products using the adjoint method

To avoid computation of the full Hessian we instead compute Hessian-vector
products. This enables us to make use of efficient iterative methods (such as
the Lanczos method) to perform eigen-decomposition of the Hessian, which we
exploit to compute an approximation of the Hessian and the covariance matrix.

The equivalent of Hessian-vector products for LDDMM can be computed us-
ing the second variation of the LDDMM energy. Specifically, the second variation
in the direction δm0 can be written as

δ2E(m0; δm0) :=
∂2

∂ε2
E(m0 + εδm0)|ε=0 = 〈δm0,∇2Eδm0〉. (6)

Here ∇2E denotes the Hessian of E(m0). Using this formulation, we can read
off the Hessian-vector product ∇2Eδm0 from the second variation. Computing
this second variation of the LDDMM shooting energy can be accomplished by
linearizing both the forward equations for shooting as well as the associated
adjoint equations around the optimal solution (the solution of the registration
problem). Solving these equations for a given initial condition δm0 then allows
the computation of the Hessian vector product (in a functional sense) as

∇2Eδm0 = 2Kδm0 − δm̂(0). (7)

Here, 2Kδm0 can be computed directly and δm̂(0) is the perturbation of the
adjoint of the momentum propagation constraint at t = 0, which is obtained
efficiently through a forward-backward sweep through the linearized forward
and adjoint equations. Please refer to the supplementary material for details.



3.2 Covariance estimation using low-rank Hessian

To estimate the covariance, a straightforward way is inverting the Hessian of the
full energy. This is not feasible for standard LDDMM because the number of
parameters is so large that saving or computing the inverse of the full Hessian is
prohibitive1. Another possibility is to approximate the full energy Hessian. Note
that the Hessian of the LDDMM energy can be separated into the Hessian of
the regularization energy and the Hessian of the image mismatch energy. Thus
we can separately calculate Hessian vector products for these two parts based
on Eq. 7 as:

Hregularization
m δm0 = 2Kδm0, Hmismatch

m δm0 = −δm̂(0).
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Fig. 1: First 1000 largest ab-
solute eigenvalues of image
mismatch Hessian for a 100 ×
140 pixels heart registration
case using initial momentum
LDDMM.

A simple low-rank pseudoinverse as an approxima-
tion of the Hessian would result in approximation
errors for both Hregularization

m and Hmismatch
m . This

can be partially avoided by using the exact inverse
of the Hessian of the regularization combined with
an approximation for the image mismatch Hessian.
To compute the covariance matrix, we realize that
for many ill-posed inverse problems, the spectrum
of the absolute values of the eigenvalues of the
image mismatch Hessian decays rapidly to zero.
Fig. 1 shows an example of the largest 1000 abso-
lute values of the eigenvalues for a 2D 100 × 140
pixels heart registration case for initial momen-
tum LDDMM. By computing only a few dominant
eigenmodes (using an iterative eigensolver such as
the Lanczos method) of the image mismatch Hes-
sian with respect to initial momentum, we can ac-
curately approximate the Hessian with much less
memory and computational effort. Suppose we approximate the image mismatch
Hessian with k dominating eigenmodes as

Hmismatch
m(k) ≈ V Tm(k)Dm(k)Vm(k).

Here Dm(k) is a k × k diagonal matrix, where the diagonal elements are the
eigenvalues; Vm(k) is a k × n matrix, where n is the number of all parameters,

and each row of Vk is an eigenvector. For simplicity we write Hregularization
m as

Hreg
m . We can then approximate the covariance matrix Σm as

Σm = (Hreg
m +Hmismatch

m )−1 ≈ (Hreg
m + V Tm(k)Dm(k)Vm(k))

−1. (8)

Since we have a closed-form solution for the inverse of Hreg
m , we can directly

apply the Woodbury identity to the right hand side of equation 8 and obtain

Σm ≈ (Hreg
m )−1−(Hreg

m )−1V Tm(k)(D
−1
m(k)+Vm(k)(H

reg
m )−1V Tm(k))

−1Vm(k)(H
reg
m )−1.

(9)

1 Note that this would be possible when using a landmark-based LDDMM variant
where the parameterization of the deformation becomes finite-dimensional.



The advantage of this formulation is that D−1m(k) +Vm(k)(H
reg
m )−1V Tm(k) is a small

k × k matrix, and its inverse can be computed easily using dense algebra.

In LDDMM we could quantify the uncertainty through the covariance with
respect to either the initial momentum or its corresponding initial velocity. If we
use the initial momentum, the approximation of (D−1m(k)+Vm(k)(H

reg
m )−1V Tm(k))

−1

will be accurate for small k, because the image mismatch Hessian for the initial
momentum has a rapidly decreasing eigen-spectrum. However, the inverse of the
regularization kernel would be (Hreg

m )−1 = (2K)−1 = 1
2L, which is a rough ker-

nel. In experiments, using the rough kernel significantly increases the difference
between approximations for different k’s. On the other hand, in the initial ve-
locity formulation, (Hreg

m )−1 is a smoothing kernel, and it further decreases the
approximation difference for different k’s. Unfortunately, the image mismatch
Hessian with respect to the initial velocity does not have a fast-decreasing spec-
trum due to the implicit smoothness of the initial velocity.

We want to use the rapidly decreasing eigen-spectrum of the momentum-
based formulation, but at the same time we want to avoid its rough kernel
when calculating the covariance matrix. Our solution is to use the low-rank
approximation of the initial momentum image mismatch Hessian to approximate
the covariance with respect to the initial velocity. Recall the relation between
momentum and velocity: v = Km. This means the Jacobian of v with respect to
m is J v

m
= K. Thus by change of variables, we can obtain our final approximation

of the covariance with respect to the initial velocity as

Σv = J v
m
ΣmJ

T
v
m
≈ K

2
− 1

4
V Tm(k)(D

−1
m(k) + Vm(k)

L

2
V Tm(k))

−1Vm(k). (10)

4 Experiments and Discussions

We evaluate our proposed model using synthetic and real data. In the following
experiments, L corresponds to the invertible and self-adjoint Sobolev operator,
L = a∆2 + b∆ + c, with a = 9 × 10−4, b = −6 × 10−2, and c = 1; σ = 0.1. For
the eigen-decomposition we use PROPACK [6], which uses a Lanczos bidiago-
nalization method. Computing 200 dominant eigenvectors for the 2D synthetic
example, which gives a very accurate Hessian estimation, requires less than 3
min in Matlab; however computing the full Hessian requires more than 30 min.
Hence, our method is an order of magnitude faster. All images below are rescaled
to a [0, 1] space range.

Synthetic data. The synthetic example is a simple registration of an ex-
panding square. Figure 3 shows the source image, the target image, and the
final registration result. The size of the image is 51 × 51 pixels, thus the size
of the Hessian is 5202 × 5202. Since this Hessian is small, we compute the full
covariance matrix using finite differences as the ground truth for our covariance
estimation. We compare our method with the low rank pseudoinverse using both
the initial momentum Hessian and the initial velocity Hessian.
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Fig. 2: Relative low-rank approximation differences for synthetic data.
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Fig. 3: Square registration case.
Left: top to bottom: source image,
target image, warped result. Right:
Uncertainty visualization by el-
lipses, mapped on source image.

We approximate two uncertainty mea-
sures: the variance of each parameter, and the
spatially localized covariance matrix for each
image pixel2. Fig. 2 shows the mean of rel-
ative differences with respect to the ground
truth for different methods. Our method out-
performs the other methods even with very
few eigenmodes selected. In some test cases
(see supplementary material) when only a few
eigenmodes are selected (e.g., 10), the pseu-
doinverse of the Hessian achieves relatively
better accuracy than our method, but in those
cases, the relative difference can be up to
100%, making the approximation unusable.
For reasonable numbers of eigenmodes (e.g.,
larger than 100), our method is always better.
E.g., in Fig 2, while 100 eigenmodes result in a relative error of around 1% for our
method, around 1000 are required for the other approaches for similar accuracy.

To visualize the uncertainty information, we extract the local covariance ma-
trices from the approximated covariance matrix and visualize these matrices
as ellipses on the source image. Fig. 3 shows the uncertainty visualization for
the synthetic data. The ellipses are estimated using 200 dominant eigenmodes
from the image mismatch Hessian. The color indicates the determinant of local
covariance matrices. The closer to the center of the square, the smaller the de-
terminant is, meaning a more confident registration result closer to the center.
Furthermore, the uncertainty along the edge is larger than the uncertainty per-
pendicular to the edge, indicating the aperture problem of image registration.

2D heart image. We use cardiac data from the Sunnybrook cardiac MR
database [7]. The image corresponds to a beating heart of a 63 years normal
individual at two different time points.

2 In 2D this amounts to computing

(
σ2
xx(i, j) σ2

xy(i, j)
σ2
xy(i, j) σ2

yy(i, j)

)
for each pixel location (i, j),

i.e., not considering non-local cross-variances.



(a) Source image (b) Target image (c) Warped result
Fig. 4: Heart registration test case
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Fig. 5: Uncertainty visualization
of heart test case mapped on
source image.

We cropped the axial images to a common
2D rectangular region around the heart. Fig. 4
shows the heart image and registration result.
The size of the heart image is 100 × 140 pix-
els, resulting in a 28000× 28000 Hessian. We
select the top 500 eigenmodes for approxima-
tion and achieve a mean relative difference for
variance of 1.13%, and for the Frobenius norm
of the local covariance matrix of 0.94%. Using
the pseudoinverse of the full Hessian gives a
mean relative difference of 6.81% and 6.27%
for the initial velocity Hessian, and 31.17%
and 30.04% for the initial momentum Hessian.

Fig. 5 shows the uncertainty visualization
for the initial velocity on the source image. From the image we see that the area
inside the ventricle has high uncertainty, indicating low deformation confidence
in the isotropic area. Also, there exists high uncertainty at the upper right edge
of the atrium. This indicates high uncertainty for shifting along the edge.

3D brain image. Here our data is two MR images (75×90×60 voxels) of a
macaque monkey at 6 months and 12 months of age. The size of this Hessian is
1, 215, 000× 1, 215, 000. We calculate the largest 1000 eigenmodes for covariance
approximation. For visualization of uncertainty, we use the trace of the local
covariance matrix. Fig. 6 shows the 3D test case as well as the uncertainty vi-
sualization. We can see that although the deformation is very small despite of
overall intensity change, our method can still capture isotropic areas that have
very small changes. These areas have a higher uncertainty compared to others.

Discussions. Although we focus on LDDMM, our method has much wider
applicability. Using the Hessian-vector product for efficient low-rank Hessian
optimization is relevant for many other non-parametric registration approaches
formulated with similar regularization and image similarity measures, such as
optic flow and registration by stationary velocity fields, since they are usually
over-parameterized. Even for low-dimensional parameterization methods such as
landmark LDDMM, our method could be used to compute the full Hessian. Our
method could also be used as in [9] for uncertainty-based smoothing, and for
surgical- or radiation-treatment planning to inform margins. Finally, comparing
our method with sampling-based methods for LDDMM [12] will be useful.

Support. This research is supported by NSF EECS-1148870 and EECS-0925875.



Fig. 6: 3D monkey brain test case. Left to right: source image, target image, warped
result, visualization of trace of local covariance matrix on the source image.
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