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Abstract. This document contains additional material for the main ar-
ticle. It contains the full derivation of the tangent linear model and the
tangent linear adjoint model for computing the Hessian vector product.
We also provide relative difference comparisons of different low-rank ap-
proximation methods for the 2D heart model that could not be included
due to space constraints.

Appendix A Full derivation of Hessian vector product
equations

We want to compute the Hessian vector product for the initial momentum version
of the shooting formulation of LDDMM

B(mo) = {mo, Kmo) + —5|1(1) ~ 1|, 1)

with dynamic constraints

momentum evolution: m; + ad,m = 0, m(0) = myo, (2)
image evolution: I+ VITv =0, 1(0) = I, (3)
momentum-velocity transformation: m— Lv=0. (4)

We add the dynamic constraints into the energy using time-dependent adjoint
variables 1, I and © through time and space [0, 1]¢. This gives us the augmented
energy

1
E(mg, I, v,mm,1,0) = E(mo)+/ (i, my+adim)+ (I, [+VITv)+ (0, m—Lv)dt.
0
(5)



Computing the second variation for this augmented energy requires computing
2
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o2k :WE(mo + edmg, I + €61, v + edv, 1 + €drin, I + €01, + €60)|c—0  (6)
€
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- (<m0 + edmo, K (mo + edmo)) + —||1(1) + edI(1) = L[+

de?

/01 (1 + €dm, my + edmy + ad;, 5, (m + edm))+
(I+ €61, 1, + €61, + V(IT + €617 (v + €bv))+
(6 + €6, m + edm — L(v + eév))dt) lesso

Computing Eq. 6 results in

o2E = (§mo, 2K dmq) + %<5I(1),51(1)> + (7)
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Here we label every part of the equation to help following the computations. For
the transformations in the equations below, all parts are labeled according to
the number of the original component in Eq. 7. We assume periodic boundary
conditions for the momentum and the veloctity. Furthermore, we assume that
0I(0) = 0, i.e. the initial image is fixed. Thus we can perform the following
transformations

1 1
3: /0 (om, dmy)y dt = /0 (—o0my, om) dt + (dm(1),om(1)) — (6m(0),dm(0)),

3 : (oM, adom) = (ad,0m, om),
(0m, ady,m) = (ads,0m, m) = (—adsmdv,m) = (dv, —adszm),

3:
4 : (i, ady,0m) = {ads,m, dm) = (—ad; v, 0m) = (dv, —ad;,om),

1 1
5;/ (61,6I;) dt:/ (=81, 61) dt + (51(1),01(1)),
0 0
5: (81, VIT6v) = (VISI, 6v),
5:(861,V6ITv) = (81, —div(vdl)),
6: (1, VoIT6v) = (VOII,é6v) = (81, —div(6vl)),



7: (00, Lov) = (L0, 6v).

Putting these transformations into Eq. 7 we have

o2E = (§mg, 2K 6mo) + 32<51(1), SI(1)) — (51(0), m(0)) + (51(1),6I(1)) +
N———— g
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/ ( (10, Sy + ad0m + ad’,m) + (Sm, —01ie) + (6m, adydm) + (6v, —adlsm) +
0
3

(0m, adgs,m) + (dv, —ad},dm) +
4
(61,61, + VI 60 + V&I v) + (81, —01,) + (6v, VISI) + (51, —div(vé])) +
5
(60, V6IT) + (81, —div(6v])) + (50,0m — Lév) + (5m, 58) + (v, L56>)dt
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Combining these terms, we get

— (5mo, 2K 5mo — 6 (0)) + (51(1), %51(1) + 1)+ (8)

(6m(1),dm(1))+
1
/ ((57%, omy + adom + ady,m)+
0
61,01, + VIT6v + VoI v)+
00, 6m — Lov)+

(
(
(6v, —adym — ads,0m + VISI + VoIT — L51}>
(61, =61, — div(dvl +véI))+

(

om, —om; + ads,™ + ad,om + 60 = O>)dt

Regarding everything inside the integration as optimality conditions, and ex-
tracting the boundary condition as dm(0) = dmg, 6I(0) = 0, dm(l) =
0, oI (1) = —%51 (1), we finally get our equation for computing Hessian-vector
product

V2Eémg = 2Kdmg — 6m(0) (9)
together with a tangent linear model (TLM)
dmy + ads,m + adlom =0, om(0) = dmg

81, + VoI Ty + VITov = 0, 8I(0) =0 (10)
om — Lév =0



and a tangent linear adjoint model (TLAM)

— 1 + ads,mn + ad, 0 + 69 =0,  din(1) =0
—81; — div(ovl +v5D) =0, §I(1) = —25I(1) (11)
—ad,m — adt,6m + V18T + V8IT — Lév = 0.

Note that the TLM and TLAM are actually the linearized versions of the forward
equations:
me +adim =0, m(0) =my,
I +VITv =0, 1(0)= I, (12)
m— Lv =0,

and the adjoint equations:

=0,
—I, —div(vl) =0, I(1)=—-2(I(1)~ 1), (13)
—adfm+VII - Lo=0

—my +ad,m+0=0, m(1)

for LDDMM shooting. Hence, a more direct derivation could simply be lineariz-
ing the forward model and the adjoint model instead of computing the sec-
ond variation. Furthermore, calculating d72(0) simply needs a forward-backward
sweep using the TLM and TLAM.

Appendix B Supplementary result

Fig. 1 shows the relative difference of both variance estimation and local covari-
ance matrix Frobenius norm estimation for the 2D heart case. Comparing to
other methods, our method has higher relative difference when using the first 70
eigenmodes. However, the smallest mean relative difference using 70 eigenmodes
is as large as 24.9% for variance estimation, and 23.5% for local covariance es-
timation. Thus, one cannot get a reliable estimation using such a small number
of eigenmodes. When the number of eigenmodes selected is larger than 70, our
method always achieves better accuracy. Furthermore, our method can achieve a
reasonably high accuracy much faster than other low-rank methods. For exam-
ple, while the pseudoinverse of the initial velocity Hessian needs 1000 eigenmodes
to achieve a 3.87% mean relative variance difference, our method only needs 237
eigenmodes to get the same accuracy.
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Local Covariance Matrix Frobenius Norm Estimation

10%%
10'%

10%%

mean of relative difference

-1

107 % '

10 102 10°
number of eigenmodes

——our method

——initial momentum Hessian, largest eigenmodes
initial momentum Hessian, smallest eigenmodes

----- initial velocity Hessian, largest eigenmodes

——initial velocity Hessian, smallest eigenmodes

Fig. 1: Relative low-rank approximaton differences for heart data.
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