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Abstract

This work presents a real-time, data-parallel approach for global label assignment on
regular grids. The labels are selected according to a Markov random field energy with a Potts
prior term for binary interactions. We apply the proposed method to accelerate the clean-
up step of a real-time dense stereo method based on plane sweeping with multiple sweeping
directions, where the label set directly corresponds to the employed directions. In this setting
the Potts smoothness model is suitable, since the set of labels does not possess an intrinsic
metric or total order. The observed run-times are approximately 30 times faster than the
ones obtained by graph cut approaches.

1 Introduction

The best results in stereo have come from global methods, however, these methods are still too
computationally demanding in order to be used in real-time applications or other applications
where processing time is a critical resource. Gallup et al. [11] present a real-time stereo method
which uses plane-sweeping and local matching to quickly produce depthmaps for three surface-
aligned sweeping directions. The final depthmap is a per-pixel selection from the three candidate
depths, which is solved with regularization using a global energy. Although the problem involves
only three labels (namely the employed sweeping direction), optimization using graph cuts still
takes several seconds, making the final step unsuitable for real time. Thus, the authors recommend
a local best cost selection scheme for real-time applications.

In this paper we present a real-time solution to the global labeling problem. By relaxing the
energy to the continuous case, our method can compute the true global minimum, and since the
computation is highly data-parallel, the solution can be computed efficiently using graphics hard-
ware. The relationship between the Potts discontinuity model and total variation regularization
enables the continuous formulation of the global labeling task.

We have applied our method to the three-label problem proposed for depth map clean-up
in [11], with slight modifications to the energy formulation to facilitate efficient, data-parallel
minimization. Despite these modifications, our results are comparable in quality to those presented
in previous work, and the computation is orders of magnitude faster. Thus, our work enables higher
quality global labeling results to be computed in real-time, which was not possible before. The
core of our approach is not restricted to dense stereo computation, and can be applied on a varierty
of labeling problems.

The combination of plane sweep stereo using multiple directions with global label assignment
is interesting for the following reasons: (a) it allows the refinement and clean-up of the depth maps
without the huge computational costs that come with other global stereo approaches. (b) Since
the label set corresponds to dominant facade directions in urban scenes, the refined labels can be
used to assist a subsequent semantic analysis of the captured geometry.

1



(a) Reference image (b) Best cost labels

(c) Graph cut result (from [11]) (d) Proposed method

Figure 1: Plane sweep with multiple directions results. (a) shows the reference image used to
compute the best matching costs for multiple sweep directions. (b) shows the labels (represented
by the three color channels) corresponding to the directions with the lowest matching costs. (c)
depicts the cleaner label assignment using graph cuts as proposed in [11] (with enhanced colors,
≈ 2s runtime); and (d) displays our result, that is visually most similar to (c) (λ = 60, 58ms
runtime). This figure is best viewed in color.

2 Related Work

In this section we focus on previous work related to global label assignment. We refer to [21, 5]
for an overview and evaluation of stereo methods.

Binary labeling problems incorporating a matching cost term and a spatial smoothness prior
can be solved using network flow approaches [14]. Since the primary tool is the construction of
an appropriate directed graph and determining the minimum cut, a whole class of methods based
on this principle is usually referred as graph cut methods. Label assignment with more than two
labels can be approximately addressed by a sequence of binary labeling methods, e.g. α-expansion
and α-β-swaps [3]. A lot of work has been done recently to address some shortcomings of graph
cuts for multi label problems (e.g. [16, 13, 15]). Exact solutions for labeling problems with linear
discontinuity costs [2] and convex pairwise interactions [12] can be obtained by suitable graph
constructions.

Graph cut based approaches are mostly sequential algorithms, and all attempts to accelerate
these methods by highly parallel computations, in particular on GPUs, have had limited success
so far. Another method to optimize Markov random fields is loopy belief propagation based on
message passing [10, 22, 9]. The updates executed in message passing methods can be performed in
parallel and are therefore highly suitable for GPU implementation. The major problem with loopy
belief propagation is, that inference (i.e. optimal label assignment) is only exact for tree graphs,
where the message passing algorithm is an extension of dynamic programming. Belief propagation
in loopy graphs (e.g. image grids with 4-neighborhoods) is only a heuristic optimization procedure.
Although loopy belief propagation often works well in practice, divergent and oscillating behaviour
may be observed.
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Consequently, continuous methods for global labeling problems, that provide at least global
optimal results for convex constraints replacing non-convex ones, are appealing for an accelerated
GPU implementation. In [19] a variational method is proposed to find the global optimum of
labeling problems with total variation (TV) regularization (in particular for dense depth estimation
from stereo images). This approach is only applicable if the set of labels has a natural distance
metric, since the employed TV regularization is equivalent to a linear discontinuity cost model
for the label values. In our application the set of labels (major sweep directions) have no natural
metric, and a different solution is required. In the following we derive a continuous method for
global labeling with the Potts discontinuity model.

3 Global Label Assignment and the Potts Model

In this section we propose a novel label assignment approach based on continuous energy mini-
mization. Typically, global label assignment maps pixel locations to labels, Λ : Ω → L, and it is
formulated as a energy minimization problem. Here, Ω denotes the typically rectangular image
domain, and L = {1, . . . , L} is the set of labels. The underlying energy functional accumulates
the data cost for selecting label l at pixel x, D(x, l), and a spatial smoothness cost to regularize
the resulting assignment. Thus, the goal is to find the minimizer of

E(Λ) = λ

∫
Ω

D(x,Λ(x)) dx + V (Λ), (1)

where λ controls the importance of the data fidelity on the overall energy. For many computer
vision problems typical choices for V (Λ) are the homogeneous regularization, V (Λ) =

∫
Ω
‖∇Λ‖2 dx,

and the total variation, V (Λ) =
∫
Ω
‖∇Λ‖ dx. Since in our application the labels representing plane

directions have no natural order, these gradient based regularization terms are not applicable.
If we focus on the data energy

∫
Ω

D
(
x,Λ(x)

)
dx and ignore the smoothness cost for now,

determining the optimal data energy is just a point-wise minimization problem,

min
l∈L

cx,l, (2)

where we substitute cx,l = D(x, l). By interpreting the optimization task above as a (rather
trivial) linear program, we can analyze its dual problem:

min
ux,l

∑
l∈L

cx,lux,l s.t. (3)

ux,l ≥ 0∑
l∈L

ux,l = 1.

The interpretation of the unknowns ux,l is, that ux,l ∈ [0, 1] is the continuous version of the
indicator function χ(Λ(x) = l). Although ux,l is not enforced to be binary by the constraints, the
dual linear program will result in a unique binary solution if all data costs are distinct for a pixel,
i.e. cx,l 6= cx,l′ for l 6= l′. Otherwise a set of equally optimal assignments for ux,l is obtained, but
an optimal binary solution u∗x,l can be determined by setting exactly one non-zero ux,l to 1, and
all other variables to 0.

In the following we will use the notation ul for the indicator function of label l, i.e. ul(x) = ux,l.
Further, let ux denote the vector (ux,1, . . . , ux,L) at location x, i.e. ux(l) = ux,l. Thus, ul is a
particular slice of the volume Ω×L → R, and ux is a specific column in the label direction. These
notations are also used for other mappings with domain Ω× L.

The Potts Model The Potts model for smoothness priors is appropriate if the numeric value
of a label has no particar meaningful interpretation, e.g. when labels have a purely symbolic
character. In the Potts model the smoothness cost is zero, if neighboring locations are assigned

3



with the same label. Otherwise a constant penalty (independent of the actual values of the labels)
is added to the overall energy. More formally,

PΛ(x) =

{
0 if ‖∇Λ(x)‖ = 0
1 otherwise,

(4)

where we assign a unit cost for discontinuities. Note, that ∇Λ is understood on a discrete grid,
i.e. as finite differences. Further, we can employ the L2 (Euclidean), L∞ (maximum norm) or the
L1 norm for ‖∇Λ‖ (resulting in different preferred orientations induced by the regularization).

In the following, we denote the spatial gradient of u by ∇xu, i.e. for 2-dimensional image
domains we have ∇xu = (∂u/∂x, ∂u/∂y)T . We can rewrite the accumulated Potts discontinuity
cost

∫
Ω

PΛdx in terms of u:

Proposition 1 If ux,l ∈ {0, 1} is the binary indicator function, ux,l = χ(Λ(x) = l), then∫
Ω

PΛdx =
1
2

∑
l

∫
Ω

‖∇xul‖dx. (5)

(Recall that ul(x) = ux,l.)

Proof: By the coarea formula for functions of bounded variation it is known that (for l ∈ L)∫
Ω

‖∇xul‖dx = Per(∂Ul), (6)

where Ul = {x ∈ Ω : ux,l = 1} is the set induced by the indicator function ul. Note that ∂Ul is
exactly the set of jumps involving label l. Since for every x ∈ Ω exactly one ux,l is set (i.e. has
value 1), every discontinuity in the label assignment (e.g. switching from l to l′) contributes to two
such perimeters — namely Per(∂Ul) and Per(∂Ul′). Hence the right hand side of Eq. 5 is twice
the number of discontinuities of Λ, i.e. 2×

∫
PΛdx. �

A Continuous Formulation The results from the previous paragraphs can be combined to
obtain a continuous formulation for the labeling problem with relaxed constraints. Merging the
linear program in Eq. 3 with the relation from Proposition 1 leads to the following energy to
minimize over u:

E1(u) =
∫

Ω

(∑
l

‖∇xul‖+ λ
∑

l

cx,lux,l

)
dx, (7)

with the constraints ux,l ≥ 0 and
∑

l ux,l = 1. Since Eq. 7 is difficult to optimize directly, we
decouple the regularization and data term by introducing an additional function v linked to u by
a quadratic approximation force [1, 4]:

E2(u; v) =
∫

Ω

(∑
l

‖∇xul‖

+
∑

l

1
2θ

(ux,l − vx,l)2 (8)

+ λ
∑

l

cx,lvx,l

)
dx,

subject to vx,l ≥ 0 and
∑

l vx,l = 1. θ is a parameter that controls the influence of the squared
distance between u and v in Eq. 8. This technique of “quadratic relaxation” allows the combination
of TV-based smoothness costs with arbitrary data terms, and the utilization of well-established
and efficient methods for TV-regularization. If θ is set to a very small number, then u and v
are very close respective approximations, but the speed of convergence is substatially reduced.
Typical choices for θ are 1/10 and 1/20. Now the (convex) optimization task can be solved by
alternating steps minimizing either u for constant v or vice versa.
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Optimizing E2 with respect to u We can omit the constant data fidelity term depending
only on v in 8. Thus, the task is to solve

min
u

∫
Ω

(∑
l

‖∇xul‖

+
∑

l

1
2θ

(ux,l − vx,l)2
)

dx. (9)

This decomposes into L independent image denoising problems (for l ∈ L):

EROF
l = min

ul

∫
Ω

(
‖∇xul‖

+
1
2θ

(ux,l − vx,l)2
)

dx, (10)

which is known as the Rudin-Osher-Fatemi (ROF) model [20] and can be solved efficiently by
a gradient descent procedure [6, 7]. Here we only briefly sketch the procedure proposed in [7]:
‖∇xul‖ can be rewritten as maxpl:‖pl‖≤1〈pl,∇xul〉, thereby introducing the dual vector-valued
function pl, which essentially removes the non-linearity induced by ‖∇xul‖. Eq. 10 reads then as

min
ul

max
‖pl‖≤1

∫
Ω

(
〈pl,∇xul〉+

1
2θ

(ux,l − vx,l)2
)

dx. (11)

Computing the functional derivatives of Eq. 11 with respect to the unknowns ul and pl yields the
following gradient descent/reprojection equations for pl:

p̃
(t+1)
l = p

(t)
l + τ∇xul

p
(t+1)
l = πB(p̃(t+1)

l ), (12)

where τ < θ/4 is the timestep, and πB(·) denotes the projection into the unit ball B = {x : ‖x‖ ≤
1}. The corresponding values of ul can be determined by

ux,l = vx,l + θ
(
∇ · pl(x)

)
. (13)

It turns out that the finite difference implementation of ∇ul and ∇ · pl must be dual (in the sense
of linear operators), e.g. if ∇ul is approximated by forward differences, ∇·pl is based on backward
differences.

We did not specify the exact norm ‖ · ‖ appearing in the equations above. The Euclidean
norm ‖ · ‖2 does not prefer certain directions and is the appropriate choice for many applications.
We observed, that the L1 norm, ‖x‖1 =

∑
|xi|, applied on ∇ul gives visually more appealing

results. Note that using ‖∇ul‖1 results in preference of horizontal and vertical directions along
the discontinuities. Further, ‖∇ul‖1 translates to using the maximum norm on the dual variables
pl, since

‖y‖1 = max
‖p‖∞≤1

〈p, y〉 (14)

for every y ∈ Rn. Further, the unit ball B = {x : ‖x‖∞ ≤ 1} is just the unit square, and πB(p̃l)
is obtained by clamping the components of p̃l to the range [−1, 1].

Optimizing E2 with respect to v This task decouples into separate subproblems for every
pixel x, since the vx,l do not spatially interact with neighboring values. Hence, we are facing the
following (data-parallel) minimization problems for every position x:

min
vx,l

∑
l

(
1
2θ

(ux,l − vx,l)2 + λcx,lvx,l

)
s.t.∑

l∈L

vx,l = 1, vx,l ≥ 0. (15)
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We can rewrite Eq. 15 to obtain the equivalent formulation:

min
vx,l

∑
l

(
(ux,l − λθcx,l)− vx,l

)2 s.t. (16)∑
l∈L

vx,l = 1, vx,l ≥ 0,

which means, that the vector vx = (vx,1, . . . , vx,L) is the closest point (in terms of the Euclidean
distance) to the vector ux − λθcx on the canonical simplex, i.e. the projection πS(·) on the unit
simplex. This problem is well-known in the literature, and a particular simple algorithm is an
active set method based on successive projections and corrections [17]: Since the set I of inactive

Algorithm 1 Update procedure to minimize E2 with respect to v

vx,l ← ux,l − λθcx,l, I = {1, . . . , L}
repeat
{Projection onto plane}
v̄ =

(∑
l∈I vx,l

)
/|I|

∀l ∈ I : vx,l ← vx,l − v̄ + 1/|I|
{Enforce inequality constraints}
I ← I \ {l : vx,l < 0}
∀l /∈ I : vx,l ← 0

until
∑

l vx,l = 1

inequality constraints (vx,l ≥ 0) is reduced by at least one element in every iteration (if the current
solution is still infeasible), the algorithm requires at most L iterations. Since the label set L is very
small in our application, we can manually unroll the loop to obtain coherent parallel execution on
GPUs (see Section 5).

Discussion The Potts model for discontinuities formulated in terms of assigned labels is not
convex, but our formulation in (Eqs. 7 and 8) based on soft indicator variables is. The constraints
of the original problem, ux,l ∈ {0, 1}, are not convex and are essentially replaced by the bounds
ux,l ∈ [0, 1], hence ux,l can attain fractional values. Exactly this modification makes the problem
convex and allows a global optimal solution to be determined efficiently. But this means, that
assigning labels according to Λ(x) = arg maxl ux,l does not necessarily return a global optimum
of the original discrete problem. In certain cases the relaxed continuous formulation provides a
global optimum for the discrete problem, e.g. TV -L1 denoising of binary input images results in
global optimal solutions after thresholding for allmost all threshold values [8, 18]. No such result
is known for minimizing Eq. 7, hence the obtained discrete label assignment will be a (usually
very strong) solution. In practice we observed that the assigned ux,l is binary for allmost all pixels
(after convergence). Note, that the iterated graph cut approach used in [11] only returns a strong
solution as well.

4 Application to Stereo with Multiple Sweeping Directions

Efficient solutions to the global labeling problem are of particular importance in large scale 3D
reconstruction from video. Due to the enormity of video data, processing time is a major concern.
Other applications such as mission planning, change detection, and robot navigation require results
in a timely fashion, if not immediately. Capturing even a small city from ground requires literally
millions of frames of video. For practical use, processing time must be comparable to the capture
time, thus real-time is an important goal. Note, that this requirement excludes many global or
semi-global approaches using the full disparity range as potential labels.

In that regard, Gallup et al. [11] present a real-time stereo tailored (but not limited) to broad
planar surfaces such as those found in urban environments. The fastest stereo methods are local,
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which compute matching in windows in the image. In urban scenes acquired from street-level,
ground surfaces such as streets and sidewalks, and facade surfaces between buildings, are often
viewed at steep angles and thus appear highly slanted in the image. Such surfaces pose a problem
for window-based matching: while the center pixel is in correspondence, other pixels in the window,
especially outer pixels, are not, which can lead to mismatches in the final result. Preferably the
window should be aligned to the surface in 3D, in which case the correct match will feature all
pixels in correspondence.

Performing local stereo with cost windows aligned with an exhaustive set of surface normals
is not feasible, hence only promising sweeping directions are retained. In urban environments the
ground surface normal and two orthogonal facade normals are dominant, therefore three directions
are sufficient for city modeling. The main sweep directions can be determined from vanishing points
or from sparse reconstructions obtained by visual odometry methods.

Once the surface normals are found, a local best-cost plane-sweep is performed for each di-
rection. This produces one depthmap for each sweeping direction. The final depthmap can be
obtained simply by selecting per-pixel the depth with minimal matching cost. However, matching
scores are often somewhat noisy, which leads to errors in the selection. Hence, regularization with
spatial smoothness priors is inevitable.

The minimization method presented in this paper can solve the labeling task orders of magni-
tude faster than graph-cuts (which require a few seconds), making the high quality method possible
in real-time. In [11] two types of smoothness penalties are proposed: compatibility between labels,
and smoothness between depths (”integrability cost“). We found that the integrability penalty
has a minor contribution to the results, and it is difficult to optimize efficiently.

Figure 1 shows that our formulation produces nearly identical results to those obtained using
the more complex graph cut formulation proposed in [11]. The run-time for the minimization
step is 58ms, and in addition to 30ms for the plane-sweeps, the overall processing rate is about
11 Hz. The observed runtime for the graph cut implementation on the same image data is 2s, i.e.
approximately 34 times slower.

5 Implementation

This section provides more details on our GPU-accelerated algorithm for the continuous formula-
tion of global label assignment. Although the CUDA programming paradigm is currently consid-
ered as the state-of-the art approach for efficient GPU programming, we still employ the OpenGL
API and Cg shading language for the following reasons: (a) it allows the implementation to be
executed on a substantially larger range of graphics hardware from different vendors and on older
GPU generations as well. Note that in contrast to the scalar G80 architecture from NVidia, the
current generation of GPUs from AMD/ATI still use vectorized processing units. In particular,
the shader-based specification of Algorithm 1 conveniently makes use of intrinsic vector operations.
(b) CUDA is usually only substantially faster than shader based methods if the proposed shared
memory programming model can be exploited, which is only the case to a limited extent for the
approach presented in this work.

Shader-based Implementation Since the number of required labels for our applications is very
small (three labels in our setting), we can represent the data cost volume cx,l, the soft indicator
functions ul and the respective dual variables pl by regular 2D textures with the respective number
of color channels. In practice, it is sufficient to represent ul and pl by 16-bit floating point
components, hence the required memory bandwidth can be reduced (which results in improved
runtimes). Since px is then comprised by 6 components (x and y components for every label l),
px can be represented by two textures. Updating px in a single pass requires the ability to render
into multiple targets. Alternatively, the two 16-bit components of px,l for a specific label can be
packed into one 32-bit floating point value on NVidia GPUs. Thus, the complete set of values for
px can be encoded in one multi-channel floating point texture.
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The alternating optimization step Eq. 12 (and Eq. 13) and Algorithm 1 corresponds directly
to a pair of shader programs, which are outlined in Eq. 17–20:

1a. vx ← πS

(
u(t)

x − λθcx

)
(17)

1b. u(t+1)
x ← vx + θ∇ · p(t)

x (18)

2a. p̃x ← p(t)
x +

τ

θ
∇u(t+1)

x (19)

2b. p(t+1)
x ← max

(
−1,min(1, p̃x)

)
, (20)

where the min and max operators in 2b. are understood as component-wise application on the
input vector. p̃x is a temporary variable local to the update step. The gradient and the divergence
are computed by finite differencing neighboring pixels.

The projection πS(·) on the canonical simplex is achieved by unrolling the loop in Algorithm 1.
Essentially, the following Cg source fragment is repeated L times:

cardI = (I.x + I.y + I.z);
v = v + (1.0 - dot(I, v)) / cardI;
I = (v < 0) ? half3(0) : I;
v = max(v, float3(0));

The binary vector I represents the set of inactive constraints. The first line moves v on the
respective plane by subtracting a modified mean over all non-zero elements. The second and third
line determine the active inequality constraints and forces v to be non-negative.

Coarse-to-fine Strategy Since incorporating a global smoothness prior allows pixels to com-
municate over the entire image, convergence to stable results can be slow. Figure 4 illustrates
an example, where the initally assigned labels are revised again (in the lower left corner of the
image). Figure 4(a) shows the obtained result after 300 iterations without a multi-scale approach,
and Figure 4(b) depicts the labeling after 1000 iterations. There is still no clear assignment in
the indicated region, although most of the image appears already converged. In order to acceler-
ate the procedure we employ a multi-scale approach similar to the one proposed in [9] (see also
Figure 2). The positive influence of a coarse-to-fine method on the convergence rate can be seen
in Figure 4(c), where 4 levels with half the resolution of the previous one are used. The obtained
result after 100 iterations on the base level is virtually identical to the fully converged result
(Figure 4(d)).

Level k+1Level k

Figure 2: Illustration of the multi-scale approach. A group of 2 × 2 pixels is merged in the next
level.

Some considerations about the data costs on coarser levels are required. Figure 5(a) shows
the result on the full resolution base level with λ = 50. In order to benefit from the multi-scale
approach, a suitable initialization from previous levels in the pyramid is required. Figure 5(b)
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shows the desired result at level 2 (quarter resolution), but neither averaging nor accumulation
of data costs from the finer resolution levels provide the intended result, if λ is fixed for all levels
(Figure 5(c) and (d)).

Assume for now that all pixels in a 2×2 block as indicated in Figure 2 have the same data cost
cx,l in level k, and we use the average cost in the next level k + 1. Then the overall contribution
of the data fidelity term,

∫ ∑
l cx,lux,l, to the combined energy E1 on level k + 1 is one quarter of

the data energy at level k. But the set of discontinuities contributing to the smoothness energy
is only reduced by a factor of two, since they are one-dimensional level curves. Hence, the correct
value of λ(k+1) at level k + 1 is 2λ(k), with λ(0) = λ, the given data weight.

6 Results

In this section we provide timing and visual results for our method. The utilized PC hardware
is equipped with a NVidia Geforce 8800 Ultra GPU and a 3 GHz CPU. Run-times are measured
under a Linux OS using current OpenGL drivers. One issue with GPU-based iterative methods is
the stopping criterion, since this usually involves an expensive reduction operation e.g. to compute
the current energy or the maximal update of the unknowns. We empirically found out that 150
iterations on each level using the coarse-to-fine approach yields to (visually) converged results.
The observed run-times for global label assignment are approximately 60ms for 512× 384 images,
and 45ms for 384× 288 pixels.

(a) Best cost labels (b) Global assignment

Figure 3: Local and global label assignment. (a) shows a lot of noise in the plane directions (labels)
selected by taking the minimal matching costs. (b) shows the much more consistent labeling result.
In terms of the dominant plane orientations the car in the foreground is a highly ambiguous object,
resulting in the non-uniform label assignment (which is less important for non-planar objects).

Figure 3 and Figure 6 illustrate the obtained labelings with local (best-cost) assignment and the
global approach. Incorporating a smoothness prior does not only result in cleaner label maps, but
reduces the noise in the 3D model as shown in Figure 6(c) and (d). The ability of global optimiza-
tion to reduce the noise in the final model is limited by early determining a small set of possible
depth values for every pixel. The refined labels provide a significantly improved segmentation of
the scene at low computational costs.

7 Conclusion

In this work we introduced a data-parallel approach to solve Markov random fields on regular grids
with a Potts smoothness prior. Using modern GPUs the observed performance is more than 30
times faster than a graph cut based approach. One suitable application demonstrated in this work
is the postprocessing and clean-up step for depth maps obtained by real-time stereo methods.
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In this work we restricted ourselves to a uniform weighting between data costs and smooth-
ness priors. Future work needs to explore the applicability of weighted TV-norms, that yield to
generalized Potts discontinuity models. Note that in this setting a slightly extended version of
Proposition 1 still holds. Additionally, incorporating the refined label assignment into a subsequent
semantinc analysis procedure for urban environments is left as future work.

Acknowledgments: We gratefully acknowledge support from NVidia Corporation.
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(a) Level 0, 300 iterations (b) Level 0, 1000 iterations (c) Level 4–0, 100 iterations (d) Converged result

(e) Level 0, 300 iterations (f) Level 0, 1000 iterations (g) Level 4–0, 100 itera-
tions

(h) Converged result

Figure 4: A coarse-to-fine approach speeds up convergence. Top row: ux,l obtained after the
specified number of iterations without (a–b) and with using multiple scales (c). (d) shows the
converged result after 5000 iterations. Bottom row: The obtained labels by selecting arg maxl ux,l

at every pixel. Although the labeling in (f) is similar to the final result (h), (b) indicates that the
ul still do not induce a clear decision in the lower left region. This figure is best viewed in color.

(a) Full resolution (b) Level 2, correct cost
scaling

(c) Level 2, cost averaging (d) Level 2, cost accumula-
tion

Figure 5: A coarse-to-fine approach requires the correct scaling of the cost values. (a) shows the
result on the full image resolution (512×384); (b) shows the result on quarter resolution (128×96)
with correct downsampling of the data term; in (c) the downscaled costs are the means of the
costs at the previous level, and yield to oversmoothed results; and in (d) the cost are added, which
leads to less regularized label assignments. This figure is best viewed in color.

(a) Best cost labels (b) Global assignment (c) Best cost 3D model (d) Model with global as-
signment

Figure 6: The Begijnhof sequence (courtesy of Marc Pollefeys). (a) and (b) show the best cost
and global labeling results, respectively. Global labeling almost perfectly results in a semantic
segmentation of the ground (green), fronto-parallel parts (blue) and orthogonal facades (red). (c)
and (d) depict the lit, but untextured facade in the left portion of the image without and with
global labeling. This figure is best viewed in color.
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