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Abstract. We present a continuous and convex formulation for Finsler
active contours using seed regions or utilizing a regional bias term. The
utilization of general Finsler metrics instead of Riemannian metrics al-
lows the segmentation boundary to favor appropriate locations (e.g. with
strong image discontinuities) and suitable directions (e.g. aligned with
dark to bright image gradients). Strong edges are not required every-
where along the desired segmentation boundary due to incorporation
of a regional bias. The resulting optimization procedure is simple and
efficient, and leads to binary segmentation results regardless of the un-
derlying continuous formulation. We demonstrate the proposed method
in several examples.

1 Introduction

Image segmentation is one of the fundamental tasks in low level vision. In order to
obtain general, efficient and globally optimal methods we focus on approaches
using only local image information and disregard methods e.g. incorporating
global foreground and background statistics leading to non-convex minimization
tasks. We can identify several local influcences determining the segmentation
boundary between the foreground object and the background:

1. A regional bias, which favors either the foreground or background at partic-
ular image locations. The regional bias can be arbitrarily computed, and is
understood as the log-likelihood ratio between the object and background
probabilities.

2. A regularization force preferring smooth segmentation boundaries. We fo-
cus on regularizing the length (or area) of the segmentation boundary as
induced by the underlying metric. This metric can be purely Euclidean or
Riemannian with weights induced e.g. by strong image discontinuities.

3. A strong orientation force based on the total flux through the segmentation
boundary favoring particular local orientations. By the divergence theorem
(or by identifying the adjoint operator in the discrete setting) the flux term
essentially modifies the regional bias locally by appropriate raising and de-
creasing the likelihood ratios. We denote the flux term as a strong force,
since it is (as regional bias) always active in the energy functional regardless
of the obtained segmentation boundary.

4. A weaker orientation force based on asymmetric Finsler metrics also favoring
particular orientations but without modifying the regional bias. This term
is only in effect at the segmentation boundary and does not contribute to
the overall energy otherwise.
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The synthetic example shown in Figure 1 illustrates the differences between the
strong (flux-based) and the weaker (Finsler metric) orientation forces. Consider
the input image shown in Figure 1(a): assume that the center region of the image
is known to be inside the object and the image borders belong to the background
(regional bias), and that the segmentation boundary between the objects inte-
rior and the background needs to coincide with a bright-to-dark transition in the
image. Thus, the middle circle is the desired foreground boundary. A weighted
Riemannian metric (which is always centrally symmetric) based on the strength
of image edges generally favors the smallest segmentation result (Figure 1(b)).
Adding the flux energy with weight γ either gives the Riemannian result, if γ is
very small, the intended result for the right choice of γ, or leads to unintended
segmentation results also showing spurious foreground pixels for large γ (due to
the strong influence of the flux term on the regional bias, Figure 1(c–e)). Using
a Finsler metric with weights as described in Section 3 yields the desired seg-
mentation result (Figure 1(f)). Spurious foreground regions are never generated
by Finsler metrics in locations without an appropriate regional bias.

(a) Input (b) GAC (c) γ =1/100 (d) γ = 1/10 (e) γ = 1 (f) Finsler

Fig. 1. Input image (a), Riemannian metric (GAC) segmentation result (b), flux-based
segmentations with increasing weights for the flux term: γ = 1/100 (c), γ = 1/10 (d),
and γ = 1 (e); and segmentation result using Finsler metrics (f).

2 Background

Segmentation boundaries generally coincide with strong edges in the source im-
age, and a suitable weighting of the boundary term based on image gradient
magnitudes leads to geodesic active contours (GAC) [1] and surfaces [2] opti-
mizing a energy functional of the form

E(S) =
∫

S

w(S)dS, (1)

where S represents the contour/surface with appropriate parametrization. In
order to avoid the trivial solution with vanishing S, suitable endpoint or seed
region constraints are required if a globally optimal solution is sought. A common
choice for the weight function w is

w =
1

1 + α‖∇Iσ‖p
+ ε, (2)
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where Iσ is a denoised (smoothed) version of the input image I, p is a shape
parameter (usually p = 1 or p = 2), and α, ε > 0. If seed regions definitely
belonging to the foreground and the background are known, then minimizing
Eq. 1 corresponds to separating the seed regions with minimal boundary costs.
Globally optimal minimizers for this segmentation task can be found using com-
binatorial methods [3] and a continuous formulation [4]. The energy in Eq. 1
only attracts the segmentation boundary to favor locations e.g. with large image
gradients, but does not lead to preferred local boundary orientations. Such pref-
erence of particular directions can be achieved by using a flux-based term [5, 6],
or by utilization of a position and direction dependent weighting function. Uti-
lizing Finsler metrics for tractography is proposed in [7, 8], where the isotropic
weighting function w(·) in Eq. 1 is replaced by w(S,N (S)) (with N (S) denoting
the normal direction to the curve S):

E(S) =
∫

S

w(S,N (S)))dS. (3)

Since the desired result is a curve in higher dimensions, a dynamic programming
approach is employed to determine the minimizer of Eq. 3 (subject to endpoint
constraints). The weight function w is not required to be a convex function, but
the solution procedure implicitly convexifies w. Our proposed method (Section 3)
can be understood as a globally optimal approach for Finsler active contour
segmentation with (optional) region-based terms.

Kolmogorov and Boykov [9] present a globally optimal Finsler active con-
tour approach based on graph cut construction. Finsler metrics are discretized
and approximated by a symmetric (Riemannian) part and an anti-symmetric,
flux-based term. The latter term poses a problem (possibly leading to spurios
foreground objects) if region-based likelihoods are added to the energy (recall
Figure 1(e)).

The two-phase Chan-Vese energy (also known as active contours without
edges) [10] combines regional foreground and background likelihoods with bound-
ary regularization,

E(A, ρF , ρB) = Per(∂A) +
∫

A

ρF dx +
∫

Ω\A

ρB dx (4)

= Per(∂A) +
∫

Ω

ρ(x)1Adx + const (5)

where A is a subset of Ω, Per(∂A) is the length of the boundary of A, and ρF and
ρB are the negative foreground and background log-likelihoods given at every
x ∈ Ω. ρ := ρF −ρB is the log-likelihood ratio. Remarkably, this model does not
strongly rely on distinctive image edges to attract the segmentation boundary.
The particular choice of ρF = (f − c1)2 and ρB = (f − c2)2 for a given source
image f and unknown values c1, c2 yields the classic Chan-Vese energy,

E(A, c1, c2) = Per(∂A) + λ

∫
A

(c1 − f(x))2 dx + λ

∫
Ω\A

(c2 − f(x))2 dx. (6)
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In the following we fix the log-likelihood ratios ρ in advance and optimize only
over the set A. Local minimizers of Eq. 5 can be determined e.g. by the level set
approach [10]. Chan et al [11] propose to determine the optimal set A indirectly
through u = 1A:

E(u) =
∫

Ω

(
‖∇u‖+ ρ(x)u

)
dx. (7)

In [11] it is shown that the constraint u ∈ {0, 1} can be replaced by its LP-
relaxation, u ∈ [0, 1], resulting in a convex minimization problem (for fixed
ρ). A globally optimal binary solution can be obtained by thresholding any
minimizer of Eq. 7 subject to u ∈ [0, 1]. Bresson et al. [12] extend this result to
the case of weighted total variation to favor segmentation boundaries at image
discontinuities where existent. An alternating minimization scheme is proposed,
which is based on the relaxation of Eq. 7,

E(u, v) =
∫

Ω

(
‖∇u‖+

1
2θ

(u− v)2 + ρu
)
dx (8)

subject to v ∈ [0, 1]. This energy is optimized by alternating steps: update u using
Chambolle’s dual approach for the ROF energy [13], and point-wise minimization
for v. Our solution procedure does not rely on such convex relaxations.

3 Convex Formulation of Finsler Active Contours

In this section we replace the scalar weights in Eq. 7 by position and direction
dependent weighting functions. The goal is to use a formulation incorporating
region terms (i.e. forces favoring either foreground or background at particular
positions) and boundary terms (forces attracting the segmentation boundary at
certain positions with particular orientations). More formally, let (φx)x∈Ω be a
family of positively 1-homogeneous functions and ρ : Ω → R a data cost function.
We search for the minimizer of

E(u) =
∫

Ω

φx(∇u) + ρu dx subject to u ∈ [0, 1], (9)

Common choices for φx are ‖ · ‖ (total variation) and w(x)‖ · ‖ (weighted TV).
But φ can be more complex, e.g. an anisotropic version of total variation [14].
Since every φx is positively 1-homogeneous, we can write φx(ξ) = ‖ξ‖φx( ξ

‖ξ‖ ).
Figure 2(a) and (b) illustrate potential shapes Wφ induced by φ. These shapes
are also denoted as Wulff shapes [14]. If Ω is bounded, then the set of functions
{u : Ω → [0, 1]} is also bounded, and a global minimum is attained for the
convex and continuous functional E(u).

Prominent choices for ρ(·) are ρ(x) = λ
(
(c1 − f(x))2 − (c2 − f(x))2

)
for the

Chan-Vese energy Eq. 6, and ρ(x) = λ if f(x) = 0 and ρ(x) = −λ for f(x) = 1
corresponding to the TV-L1 energy with a binary input image, i.e.

E(u; f) =
∫

Ω

‖∇u‖+ λ|u− f | dx subject to u ∈ [0, 1], (10)
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(a) (b) (c)

Fig. 2. General Wulff shape (a), the utilized shape for segmentation (b), and its align-
ment with image gradients (c).

with f : Ω → {0, 1} (see [15]). Allowing ρ to be an extended function ρ : Ω →
R∪{−∞,+∞} also enables the incorporation of strict constraints u(S) = 1 and
u(T ) = 0 for source and sink regions S, T ⊆ Ω. If ρ is zero in Ω \ (S ∪ T ), we
arrive at a convex formulation of Finsler active contours (Eq. 3).

Without the regularization term, an optimal solution is simply given by u =
1{x:ρ(x)<0}. The essentially binary nature of solution of Eq. 9 was already shown
for the unweighted total variation [11] and weighted TV [12] (by rewriting the
total variation in terms of the level sets of u). We give an alternative proof based
on strong duality in convex analysis that directly extends to general families of
convex, positively 1-homogeneous functions φx:

Theorem 1 Let φ be a positively 1-homogeneous function, and ρ : Ω → R.
Then any global minimizer of Eq. 9 can be converted into a purely binary global
minimizer by thresholding with an arbitray value θ ∈ (0, 1).

Proof: Assume u∗ : Ω → [0, 1] is a minimizer of Eq. 9. The corresponding
thresholded binary function û is given by

û(x) =
{

1 if u∗(x) ≥ θ
0 otherwise.

First note, that ∇û 6= 0 only at the θ-level set, where it has the same direction
as ∇u∗. Thus, we can write ∇û = c∇u∗ (point-wise) for c ≥ 0.

The dual energy of Eq. 9 is given by (we omit the straightforward calculation
to due lack of space)

E∗(p) =
∫

Ω

min(0,div p + ρ) dx, (11)

which is maximized with respect to a vector field p subject to −p ∈ Wφx . Wφx

is the convex Wulff shape induced by φx. By inserting the respective constraints
on u and p using the δ function, the primal and dual energies Eq. 9 and Eq. 11
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can be stated as

E(u) =
∫

Ω

φ(∇u) + ρu + δ[0,1](u) dx (12)

E∗(p) =
∫

Ω

min(0,div p + ρ)− δWφ
(−p) dx, (13)

where we also drop the explicit dependence on x for φ. We employ the KKT
conditions to show the optimality of û [16]. Let p∗ be the corresponding dual
solution for u∗. The KKT conditions for our particular minimization task are
given by

∇u∗ ∈ ∂

∫
δWφ

(−p∗)dx and −div p∗ ∈ ∂

∫
ρu∗ + δ[0,1](u∗)dx. (14)

The terms under the integral are independent, hence the KKT conditions can
be applied point-wise. Therefore, (u∗,p∗) are minimizers of E(u) (Eq. 9) and
the corresponding dual energy if and only if

∇u∗ ∈ ∂
(
δWφ

(−p∗)
)

and −div p∗ ∈ ∂
(
ρu∗ + δ[0,1](u∗)

)
. (15)

First, we show ∇û ∈ ∂
(
δWφ

(−p∗)
)
. The definition of the subgradient reads as

δWφ
(−p∗) + (∇û)T (p− p∗) ≤ δWφ

(−p).

Since p∗ is feasible and the inequality is trivially true for every −p /∈ Wφ, we
can assume −p∗ and −p are in Wφ, i.e. δWφ

(−p∗) = 0 and δWφ
(−p) = 0. But

(∇û)T (p− p∗) = c(∇u∗)T (p− p∗) ≤ 0, (16)

since c ≥ 0 by construction. Hence, ∇û is also a subgradient of δWφ
(−p∗).

Next, we prove −div p∗ ∈ ∂
(
ρû + δ[0,1](û)

)
. If u∗ is already either 0 or 1, then

û = u∗ and there is nothing to show. If u∗ is in the open interval (0, 1), then
∂δ[0,1](u∗) is 0, since δ[0,1](·) is constant in [0, 1]. Further, the mapping u 7→ ρu is
smooth, and the the gradient is the only subgradient, i.e. −div p∗ ∈ {∂(ρu∗)} =
{ρ}. In order to prove that −div p∗ is a subgradient of u 7→ ρû + δ[0,1](û) we
have to show that

ρû + δ[0,1](û)− (div p∗)(u− û) ≤ ρu + δ[0,1](u) (17)

for every u. But

ρû + δ[0,1](û)− (div p∗)(u− û)
= ρû− (div p∗)(u− û) [δ[0,1](û) = 0]
= ρû + ρ(u− û) [−div p∗ = ρ]
= ρu ≤ ρu + δ[0,1](u), (18)

Hence, −div p∗ is a subgradient of ρû + δ[0,1](û), thus (û,p∗) also satisfies the
KKT conditions and û is therefore a global minimizer. �
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In finite settings where Ω is represented by a discrete grid, simple thresh-
olding also modifies the level lines, i.e. we have only ∇(û) ≈ c∇u∗. Thus, pure
thresholding in the discrete setting yields to (slightly) inferior energies for û.

By utilization of φ(∇u) = maxp∈Wφ
(−pT∇u), where Wφ is the convex Wulff

shape induced by φ, we rewrite the energy Eq. 9 in a primal-dual setting (omit-
ting the explicit dependence on x):

E(u) =
∫

Ω

max
p∈Wφ

(−pT∇u) + ρu dx subject to u ∈ [0, 1], (19)

and the respective gradient descent (in u) and ascent (for p) equations are

∂u

∂t
= −div p− ρ s.t. u ∈ [0, 1]

∂p
∂t

= −∇u s.t. −p ∈ Wφ (20)

for the artificial time parameter t. Enforcing the constraints on u and p is simply
done by clamping u(x) to [0, 1], and reprojecting p(x) onto the feasible set Wφx .
Standard stability arguments establish the maximal stable timestep τ < 1/

√
K,

where K is the dimension of Ω (i.e. 2 for images). These equations have a similar
structure as the continuous maximal flow equations [4], but differ substantially
from the solution procedure proposed in [12] for direction independent (isotropic)
functions φx based on Eq. 8.

There is a wide range of possibilities how to design φx (or the respective
Wulff shape Wφx). The Wulff shape depicted in Figure 2(b), composed by a
half-circle (with radius 1) and a circular segment (with height w), naturally
combines gradient direction with gradient magnitude. The orientation of the
shape is aligned with ∇I (Figure 2(c)), and the respective height w(x) is given
by Eq. 2 with p = 1. Homogenous regions (‖∇I(x)‖ = 0, i.e. w(x) = 1) lead
to direction independent perimeter regularization, and strong edges (w(x) � 1)
result in low cost if the boundary is locally aligned with the image discontinuity.
The situation depicted in Figure 2(c) corresponds to u = 1 representing the
foreground, and the shaded region indicating darker image values. This particular
shape also allows very simple reprojection operations for p after the gradient
ascent update Eq. 20.

4 Results

4.1 Histology Segmentation

The prototypical example for Finsler active contours is the segmentation of thick-
walled anatomical structures like blood vessels in histology slides, see Figure 3.
Given foreground seeds inside the lumen of the artery, geodesic active contours
(i.e. with isotropic weighting of the contour length) generally return the inner
wall of the artery as segmentation result (Figure 3(a)). Incorporating knowledge
on the expected intensity gradient (going from dark to bright) using the proposed
asymmetric Finsler metric as depicted in Figure 2(c) aligns the segmentation
boundary with the exterior wall of the vessel, see Figure 3(b).
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(a) Geodesic active contour (b) Finsler active contour

Fig. 3. Result of vessel segmentation in histology slides using geodesic active contours
(a) and Finsler active contours (b). [Best viewed in color. Image data courtesy of Prof.
David King, http://www.siumed.edu/∼dking2/crr/.]

4.2 Bone Segmentation

We apply the proposed method on a bone segmentation task given MR images
of the knee joint. Cortical bone appears black in both T1 and T2 weighted
MR images, whereas muscles and tissues appear bright. Hence, a proper bone
segmentation boundary runs through a dark-to-bright intensity transition. Con-
sequently, the correct segmentation boundary is often not solely induced by the
strongest edge in T1 and T2 weighted images. In order to obtain the regional bias
ρ, we compute the likelihoods p(IT1 , IT2 |bone) and p(IT1 , IT2 |background) for the
Bayesian classifier based on a non-parametric estimation of the joint histogram
of T1 and T2 intensities for foreground (bone) and background (everything else).
Prior to the computation of the histograms, we mask out the image background
followed by MR bias field correction using the MNI’s N3 algorithm [17]. The
data samples for kernel density estimation to derive the respective probabilities
are obtained by a user-guided segmentation of one test-case.

Figure 4 shows the segmentation results using the isotropic Riemannian met-
ric (GAC) approach (b) and the proposed Finsler metric method (c). Both inten-
sity gradients in the T1 and T2 images are used to obtain the weighting function
(Eq. 2) with α = 20. The only difference in the settings between the Riemannian
and the Finsler approach is the utilization of direction dependent weighting φx

as induced by the shape depicted in Figure 2(c). Note the “eroded” bone seg-
mentation result returned by standard geodesic active contours in Figure 4(b).

4.3 Run-Time Performance for the Chan-Vese Model

The proposed procedure (Eq. 20) is in practice also more efficient than the
convex relaxation approach, Eq. 8. We compared the run-time performance of
the primal-dual scheme Eq. 20 with the performance of the relaxation approach
Eq. 8 proposed in [12] for the standard Chan-Vese model (Eq. 6). Figure 5
displays the 256 × 256 input image, the segmentation result using black and
white for c1 and c2, respectively, and the corresponding primal and dual energies.
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(a) Regional bias (b) GAC (c) Finsler

Fig. 4. Regional bias—dark regions indicate likely bone structure (a). T2 image and
overlaid bone segmentation results using Riemannian metrics (b) and Finsler metrics
(c). [Best viewed in color. Image data courtesy of Duke Image Analysis Laboratory
(http://dial.mc.duke.edu). ]

The data weight λ is set to 4. The run-time for one iteration is very similar in
both methods, hence we display the evolution of primal and dual energies with
respect to the iteration number. With GPU acceleration, real-time performance
even for the iterated approach successively updating the means c1 and c2 can be
obtained.

(a) Input image (b) c1 = 0 and c2 = 1 (c) Energies

Fig. 5. (a) input image; (b) segmentation result with c1 = 0 and c2 = 1; (c) primal
and dual energies (with respect to the iteration number) of the proposed method (solid
lines) and the relaxation approach [12] (dashed lines).

5 Conclusion

We developed a continuous and convex formulation for binary segmentation
tasks incorporating a regional term and a position and orientation dependent
prior for the segmentation boundary represented by Finsler metrics. Finsler ac-
tive contours provide an alternative approach to incorporate image-based priors
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on the location and orientation of the segmentation boundary. The continuous
relaxation yields an efficient solution method highly suitable for data-parallel
implementations. Nevertheless, global optimal binary segmentation results are
obtained in the continuous framework.

Future work will address extending the class of energies that can be opti-
mized in the convex and continuous framework. For instance, the continuous
formulation for length ratio minimization given in [18] can be easily extended to
Finsler metrics.
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