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Abstract. We seek to compute a diffeomorphic map between a pair of diffusion-
weighted images under large deformation. Unlike existing techniques, our method
allows any diffusion model to be fitted after registration for subsequent multi-
faceted analysis. This is achieved by directly aligning the diffusion-weighted im-
ages using a large deformation diffeomorphic registration framework formulated
from an optimal control perspective. Our algorithm seeks the optimal coordinate
mapping by simultaneously considering structural alignment, local fiber reorien-
tation, and deformation regularization. Our algorithm also incorporates a multi-
kernel strategy to concurrently register anatomical structures of different scales.
We demonstrate the efficacy of our approach using in vivo data and report on
detailed qualitative and quantitative results in comparison with several different
registration strategies.

1 Introduction

Diffusion-weighted imaging (DWI) is widely used to noninvasively study tissue micro-
structures in the human brain. To compare DWI data across subjects or groups we have
to handle the alignment of macro-structures and the reorientation of micro-structures
simultaneously. Concurrent optimization of these two components is very challenging
but is required for accurate registration.

For registration of DWI data, a commonly used approach is to fit some diffusion
model to the DWI data to estimate relevant information such as orientation distribution
functions (ODFs), and then incorporate such information into a registration algorithm
for structural alignment. Early work uses the relatively simple diffusion tensor model
[3,14]. Recent studies [6,5,8,9,12,4,16] have moved forward by using more complicated
models that take into account complex fiber configurations such as crossings.

Geng et al. [6] aligned ODFs represented by spherical harmonics (SHs) using an
elastic registration algorithm. Du et al. [5] integrated a similarity metric for the ODFs,
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which is defined in a Riemannian manifold, into a large deformation diffeomorphic met-
ric mapping (LDDMM) algorithm [7]. Yap et al. [12] extracted coarse-to-fine features
from the ODFs for hierarchically refined alignment. Instead of using ODFs, Hong et al.
[8] performed registration with the help of T2-weighted images and then subsequently
reoriented the fiber orientation distribution (FOD). Raffelt et al. [9] registered DWI data
by mapping the FODs via a subject-template-symmetric diffeomorphic framework.

However, the aligned data generated by the above approaches are not in the form
of diffusion-weighted images. The ability to produce diffusion-weighted images as the
final registration outcome is important for common-space analysis using diffusion mod-
els that do not have warping and reorientation algorithms.

To overcome this problem recent studies propose to register DWI data directly in
the Q-space [4,16]. Dhollander et al. [4] tackled the problem by utilizing an SH-based
reorientation algorithm together with a diffeomorphic demons algorithm [11]. In [16]
we achieved a similar goal by using a set of fiber basis functions (FBFs) [13] and a
simplified shooting algorithm [1]. Both methods regard spatial alignment and local fiber
reorientation as two separate components, and perform optimization by repeating the
following two steps: (1) compute the map between the DWI data without considering
reorientation, and (2) reorient the data using the resulting map. Although this strategy is
simple, it ignores the crucial role reorientation plays in correspondence establishment.

In this paper we describe a method that is able to register diffusion-weighted images
in the Q-space. Our work distinguishes itself from [16] by concurrently achieving im-
age matching, data reorientation, and deformation regularization in a single framework.
To the best of our knowledge, this is the first work that integrates spatial alignment and
local reorientation into a single cost function to address the direct registration of DWI
data. In addition, our mathematical formulation reveals how reorientation affects reg-
istration, and such insight cannot be gained from [16]. Our work is also different from
[3] and [14], where reorientation is incorporated into the cost function to address the
registration of diffusion tensor models.

Below we first introduce the shooting algorithm used in this work. We then describe
the integration of diffusion data reorientation into the shooting algorithm in Sect. 3. We
demonstrate the efficacy of our algorithm in Sect. 4, and conclude our work in Sect. 5.

2 Geodesic Shooting

Let I0 be the source image and I1 be the target image. We would like to minimize

E(vt) =
1

2

∫ 1

0

||vt||2V dt+
1

σ2
||I0 ◦ φ1,0 − I1||2`2 ,

s.t. φ̇t,0 + (Dφt,0)vt = 0, φ0,0 = id,

(1)

where vt is a time-dependent velocity field to be solved, σ > 0 is a regularization
constant, φs,t is a map induced by vt, mapping a voxel from its position at time s to
its position at time t, and id is an identity map. ||vt||2V = 〈L†Lvt,vt〉`2 , where L is a
proper differential operator controlling the smoothness of vt, which, in turn, guarantees
a diffeomorphic solution [2]. Usually smoothing is achieved by convolving momentum
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L†Lvt with a kernel K = (L†L)−1. Here we use a multi-Gaussian kernel scheme
[10] to introduce a natural multi-resolution property to the solution. φ̇t,0 = ∂φt,0/∂t

and D· is the Jacobian operator. Note that φ̇t,0 + (Dφt,0)vt = 0 simply amounts to
transport equations for the individual coordinates of the map, which can be understood
as a natural consequence of diffeomorphism (see [2] for details). This is different from
[16], where transport equations for image intensity are used.

The minimization of (1) leads to the following optimality conditions:

φ̇t,0 + (Dφt,0)vt = 0,

L†Lvt + (Dφt,0)
Tλt = 0, (2)

−dλt/ dt− [div(λ1tvt),div(λ
2
tvt),div(λ

3
tvt)]

T = 0,

λ1 =
2

σ2
(DI0 ◦ φ1,0)T(I1 − I0 ◦ φ1,0), (3)

φ0,0 = id,

where λkt is the k-th element of λt. The minimization of (1) involves (i) converting it
to an unconstrained energy functional via Lagrange multipliers (e.g., introducing mul-
tiplier λt for the constraint φ̇t,0 + (Dφt,0)vt = 0); (ii) computing functional variation
w.r.t vt, φt,0 and the Lagrange multipliers; and (iii) obtaining the optimality conditions
by setting the variation to zero.

The gradient of (1) w.r.t vt is given by∇vtE = L†Lvt+(Dφt,0)
Tλt. As geodesic

shooting allows us to perform gradient descent only for t = 0 by leveraging conser-
vation of momentum [1], we can write an equivalent gradient as ∇v0E = L†Lv0 +
|Dφ0,1|λ1◦φ0,1. As (2) should hold at all times at convergence, we haveλ0 = −L†Lv0
at t = 0. Hence, the final gradient used is given by

∇λ0
E = λ0 − |Dφ0,1|λ1 ◦ φ0,1. (4)

Note that we perform gradient descent directly on λ0 by pulling the final adjoint λ1

back to t = 0. The pullback can be achieved by computing a forward map (from t = 0
to t = 1) on the fly during a backward integration. In this work we use line search for
gradient descent. Note that this is a simplification (inspired by Ashburner and Friston
[1]) to the actual gradient descent w.r.t. the initial condition which would require the
computation of a second-order adjoint system (see [1] for details).

3 Geodesic Shooting with Reorientation

We now briefly review the major concepts involved in reorientation using the FBFs [13]
and then describe how this can be integrated into the above shooting algorithm.

3.1 Reorientation of Diffusion-Weighted Data

Reorientation in Q-space can be achieved in three steps: (1) decompose the diffusion
signal profile into a set of weighted FBFs; (2) reorient each FBF independently using a
local transformation; (3) recompose the reoriented FBFs to obtain the desired profile.
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Let S(qi) be the diffusion signal measured in direction qi (i = 1, . . . ,M ). It can
be represented by a set of N FBFs, each of which being realized by a Waston distri-
bution function with mean direction µj : S(qi) = w0f0 +

∑N
j=1 w

jf(qi|µj , κ), where
f(qi|µj , κ) = C(κ) exp(κ(µT

j qi)
2) is a probability density function of the Watson

distribution, κ is a constant and is the concentration parameter, and C(κ) is a normal-
ization factor; wj is the weight associated with the j-th FBF; f0 ≡ C(0) is a constant
representing the isotropic diffusion component. LetS be the signal vector, then we have
S = Fw, where S = [S(q1), S(q2), . . . , S(qM )]T, w = [w0, w1, . . . , wN ]T and

F =

f0 f(q1|µ1, κ) · · · f(q1|µN , κ)
...

...
. . .

...
f0 f(qM |µ1, κ) · · · f(qM |µN , κ)

 .
Since typically, M < N + 1, this is a set of under-determined linear equations, which
can be solved by a L1 regularized least-squares solver with a non-negative constraint
(see [13] for details).

A local affine transformation A is used to reorient the directions of the FBFs, i.e.
µ′j = Aµj/‖Aµj‖. Usually A is estimated from the map resulting from registration.
A matrix of reoriented FBFs, F ′, is calculated based on µ′j and then used to obtain the
orientation-rectified profile S′ by S′ = F ′w. Note that the isotropic component is not
reoriented.

3.2 Integration with the Shooting Algorithm

Let I be a vector-valued image representing diffusion signal vector S at each position
x. We define the action of a map φ on I as I ◦ φ = FφW ◦ φ, where W is a weight
image associated with I and contains a sparse weight vector w at each x, and Fφ is a
reoriented FBF image, whose voxel at x is a matrix and is given by

Fφ(x) =


f0 f

(
q1

∣∣∣∣ (Dφ(x))−1µ1

‖(Dφ(x))−1µ1‖
, κ

)
· · · f

(
q1

∣∣∣∣ (Dφ(x))−1µN
‖(Dφ(x))−1µN‖

, κ

)
...

...
. . .

...

f0 f

(
qM

∣∣∣∣ (Dφ(x))−1µ1

‖(Dφ(x))−1µ1‖
, κ

)
· · · f

(
qM

∣∣∣∣ (Dφ(x))−1µN
‖(Dφ(x))−1µN‖

, κ

)
 .

To reflect reorientation we can now rewrite the cost function (1) as

E(vt) =
1

2

∫ 1

0

||vt||2V dt+
1

σ2

∣∣∣∣Fφ1,0
W0 ◦ φ1,0 − I1

∣∣∣∣2
`2
,

s.t. φ̇t,0 + (Dφt,0)vt = 0, φ0,0 = id,

(5)

where W0 is the weight image associated with I0. Similarly, we can obtain a set of
optimality conditions (deviation details omitted due to space limit). All conditions are
the same as given in Sect. 2 except for condition (3), which is now given by

λ1 =
2

σ2

〈I1 − I0 ◦ φ1,0, B1〉
〈I1 − I0 ◦ φ1,0, B2〉
〈I1 − I0 ◦ φ1,0, B3〉

 , (6)
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where B1, B2 and B3 are vector-valued images of the same size as I0 and I1. Let bk be
the voxel of Bk at position x. bk is a M × 1 vector and its i-th element is computed as
follows

bik = f0
∂w0

0

∂xk
◦ φ1,0(x)+

N∑
j=1

f

(
qi

∣∣∣∣ µ̃j‖µ̃j‖ , κ
)(

2κ

〈
µ̃j
‖µ̃j‖

, qi

〉
div(q̃kijµ̃j)w

j
0 ◦ φ1,0(x) +

∂wj0
∂xk

◦ φ1,0(x)

)
,

where xk is the k-th element of x, wj0 is the j-th element of the voxel of W0 at x, µ̃j =

(Dφ1,0(x))
−1µj and q̃kij is the k-th element of q̃ij =

(
∇µ̃j

[
µ̃j

‖µ̃j‖

]
(Dφ1,0(x))

−1
)T
qi.

Note that (6) reveals how spatial alignment and reorientation interact with each
other. The shooting process is used to obtain an initial map, which, together with data
reorientation, is used to compute λ1 using (6). The new λ1 is then pulled back to t = 0
as described in Sect. 2 to compute the gradient (4) for updating the map via shooting.
The whole process is repeated until convergence. Our work considers spatial alignment
and reorientation in a single cost function (5). Reorientation plays an active role in the
whole registration process. In contrast, spatial alignment and reorientation are regarded
as two separate components in [16], and their relationship is unclear.

4 Experiments

DWI data were acquired from 11 adults using a Siemens 3T TIM Trio MR Scanner with
an EPI sequence. Diffusion gradients were applied in 120 non-collinear directions with
diffusion weighting b = 2000 s/mm2. The imaging matrix was 128×128 with a field of
view of 256×256 mm2. 80 contiguous slices with thickness of 2 mm covered the whole
brain.

We randomly chose an image as the target image and used the rest as source im-
ages. For each image, we fit the FBFs, with 321 directions uniformly distributed on a
unit sphere, to estimate the associated weight image, which was then used to obtain a
reconstructed version of the image. A set of affine transformations was estimated be-
tween the target image and each source image using their anisotropy images computed
from the reconstructed data.

We used our method (Sect. 3.2) to register each source to the target using the es-
timated affine transformations. To show the advantage of our method, we compared it
with the following DWI registration strategies:

(1) Scalar Registration: For each reconstructed source, we warped its anisotropy im-
age using an affine transformation, and then aligned the warped image with the
anisotropy of the reconstructed target;

(2) Vector Registration: We reconstructed each source using an affine transformation.
Note that this is different from the above case where the source images were recon-
structed without any transformation. We registered each reconstructed source to the
same reconstructed target as used in the above case;
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Affine Scalar Vector Zhang et al. [16] Proposed method

0 50

Fig. 1. From top to bottom: the mean RMS error images and the close-ups of the regions marked
by yellow circles. Note that the images were not sliced to show left-right symmetry.

(3) Our early work [16]: This is an iterative registration scheme. Each stage consists
of three steps: (1) reconstructing the source and target images; (2) aligning the two
via a shooting algorithm; (3) concatenating the resulting map with the previous
one. The source is reconstructed using the composite map together with an affine
transformation, while the target is always reconstructed without any transformation.
At each stage the reconstruction is done by using an increasing number of diffusion
directions and a decreasing concentration κ.

In all three cases, the previously estimated affine transformations were used for warp-
ing or reconstruction, and the image alignment was done as described in Sect. 2. We ran
line search of 30 iterations for the proposed method, scalar registration and vector reg-
istration. For our early work [16] we used 5 stages and 30 iterations for the registration
in the first two stages, 20 for the middle stages and 10 for the final stage. The number
of diffusion directions was set to 1, 6, 21, 81 and 120 for each stage and κ gradually
decreased from 0. The spatial regularization was set to be the same for the proposed
work and [16].

To quantify the comparison we reconstructed each source using the associated affine
transformation and the resulting map. We used the same metric, root mean square
(RMS) error as in [16], to compute registration error. Averaging the resulting RMS
error images across subjects for each method leads to the mean images shown in Fig.
1. We also show the mean RMS error image of the source warped and reoriented using
affine transformation alone. For each mean RMS error image we computed its statistics
(e.g., mean, s.d.) over all voxels and report the results in Table 1a. We also computed
the mean intensity value for each RMS error image, and used the means across subjects
to perform a student’s t-test (two-tailed) between the proposed method and the other
methods. The results are given in Table 1b.

Table 1 clearly shows that affine transformation is insufficient for DWI registration.
The registration accuracy can be greatly improved with the help of non-rigid registra-
tion as indicated by the results from scalar and vector registration. Despite the improve-
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Table 1. A detailed quantitative comparison of different DWI registration strategies.

(a) (b)
Method Mean±s.d. Median 90%-ile
Affine 12.6±5.9 11.3 18.9
Scalar 11.5±5.7 10.4 17.2
Vector 10.7±4.7 9.9 15.4

Zhang et al. [16] 10.6±4.7 9.8 15.3
Proposed method 9.8±4.1 9.4 14.1

Method p-value
Affine p < 10-5

Scalar p < 10-4

Vector p < 10-4

Zhang et al. [16] p < 10-3

Proposed method –

Target Our method Target Our method

Fig. 2. Left two columns: anisotropy images. Right two columns: exemplar ODFs generated from
the region (marked by cyan rectangles) in the original target and averaged reconstructed source.

ments, both strategies, as well as our early work [16], do not take into account reori-
entation in registration. In contrast, our method yields significantly better registration
accuracy due to explicit reorientation in registration.

Figure 2 shows the anisotropy images of the target and averaged reconstructed
source. It shows that our method registers all main structures well and results in a crisp
mean anisotropy image. Results from other methods are not shown due to space limit.
The anisotropy image produced by affine registration is quite blurred due to structural
misalignment. Results from the other three non-rigid registration methods are visually
similar to the result shown for our method. Figure 2 also shows exemplar ODFs, which
indicate that the result produced by our method is in close agreement at voxel level with
the target image. This is important for applications such as white matter tractography,
which is sensitive to error in local fiber orientations.

We implemented our algorithm in C++ using the Insight Segmentation and Registra-
tion Toolkit1 (ITK). The typical running time2/memory consumption (for 30 iterations)
is 4.3 minutes/1GB for scalar registration and 4.2 hours/5GB for the proposed method.

5 Conclusion and Future Work

We have described a method for directly registering the DWI data under large defor-
mation. This is achieved by incorporating a DWI data reorientation technique into a
variant of geodesic shooting algorithm. Unlike most of existing methods, our approach

1 http://www.itk.org/
2 The timing is based on an iMac with an Intel R© CoreTM i5 processor (3.1 GHz).

http://www.itk.org/
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produces diffusion-weighted images as output, thus allowing the fitting of any diffu-
sion model for subsequent analysis. Experimental results indicate that our method sig-
nificantly outperforms several other DWI registration strategies. Future work includes
validation and comparison with other methods like DTI-TK [15] using a large dataset.
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