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Abstract

Registration plays an important role in group analysis of di�usion-weighted imag-

ing (DWI) data. It can be used to build a reference anatomy for investigating struc-

tural variation or tracking changes in white matter. Unlike traditional scalar image

registration where spatial alignment is the only focus, registration of DWI data

requires both spatial alignment of structures and reorientation of local signal pro-

�les. As such, DWI registration is muchmore complex and challenging than scalar

image registration. Although a variety of algorithms has been proposed to tackle

the problem, most of them are restricted by the di�usion model used for regis-

tration, making it di�cult to �t to the registered data a di�erent model. In this

paper we describe a method that allows any di�usion model to be �tted a�er reg-

istration for subsequent multifaceted analysis.�is is achieved by directly aligning

DWI data using a large deformation di�eomorphic registration framework. Our

algorithm seeks the optimal coordinate mapping by simultaneously considering

structural alignment, local signal pro�le reorientation, and deformation regular-

∗Corresponding author.
Email address: ptyap@med.unc.edu (Pew-�ian Yap)

Preprint submitted to Medical Image Analysis July 14, 2014



ization. Our algorithm also incorporates a multi-kernel strategy to concurrently

register anatomical structures at di�erent scales. We demonstrate the e�cacy of

our approach using in vivo data and report detailed qualitative and quantitative

results in comparison with several di�erent registration strategies.

Keywords: di�eomorphism, di�usion-weighted imaging, image registration,

signal pro�le reorientation, explicit orientation optimization

1. Introduction

Di�usion-weighted imaging (DWI) iswidely used to non-invasively studywhite

matter microstructure and �ber tracts in the human brain. �e information pro-

vided byDWI is helpful for identifying pathological damages associated with brain

diseases (e.g., stroke [1], Alzheimer’s disease [2, 3, 4, 5], and schizophrenia [6]) and

brain changes associated with normal development [7].

To quantify white matter changes, a common space is required where images

of patients and healthy controls can be spatially normalized and compared. Image

registration is used to build such space and to spatially normalize the images by

warping them to the space.

Traditional scalar image registration techniques are not directly applicable to

di�usion-weighted images. Whendi�usion-weighted images corresponding to dif-

ferent di�usion gradient directions are put together, each voxel location encodes a

vector-valued signal pro�le that provides information on the segment of the �ber

bundle that traverses the voxel. As such, registration of di�usion-weighted im-

ages requires not only the spatial alignment of anatomical structures, as in scalar

image registration, but also the reorientation of signal pro�les with respect to the

surrounding anatomical structures, which is not considered in scalar image reg-

2



istration. DWI registration is thus much more complicated and challenging than

scalar image registration.

A common approach to registering di�usion-weighted images is to �t some dif-

fusion model to the images to estimate angular quantities, such as orientation dis-

tribution functions (ODFs), and then incorporate such information into a registra-

tion algorithm for structural alignment.�ere are a number of choices of di�usion

models as well as registration algorithms, leading to a variety of DWI registration

methods.

Early work uses the relatively simple di�usion tensor model [8, 9, 10, 11, 12, 13].

Alexander et al. [8] introduced the preservation of principal direction (PPD) algo-

rithm for the reorientation of di�usion tensors during image alignment. Instead of

PPD, Yeo et al. [10] used a �nite strain reorientation strategy [8] together with a dif-

feomorphic demons algorithm [14] for registration. Zhang et al. [13] broke down

the image into uniform regions and estimated an a�ne transformation for each

region by explicitly optimizing tensor orientation within that region. Cao et al.

[9] proposed a large deformation di�eomorphic metric mapping (LDDMM) algo-

rithm [15] to tackle large-deformation non-linear registration of directional vector

�elds.

However, the di�usion tensor model can only characterize one principal �ber

direction at each voxel and thus is unable to handle complex �ber con�gurations

such as crossings. It has been found that at least one third of voxels in white matter

have complex �ber con�gurations [16]. Obviously, failure to reorient the signal

pro�les in those voxels will lead to misalignments of microstructure.

To deal with crossing �bers, a number of researchers [17, 18, 19, 20, 21, 22, 23]

attempted to usemore complicated di�usionmodels. Geng et al. [17] alignedODFs
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represented by spherical harmonics (SHs) using an elastic registration algorithm.

Du et al. [18] integrated a similarity metric for the ODFs, which is de�ned in a

Riemannian manifold, into a variant of LDDMM algorithm [24]. Yap et al. [21]

extracted coarse-to-�ne features from the ODFs for hierarchically re�ned align-

ment. Instead of using ODFs, Hong et al. [19] performed registration with the help

of T2-weighted images and subsequently reoriented the �ber orientation distribu-

tion (FOD). Ra�elt et al. [20] registered DWI data by mapping the FODs through

a subject-template-symmetric di�eomorphic framework.

However, the aligned data generated by the above approaches are not in the

form of di�usion-weighted images.�e ability to produce di�usion-weighted im-

ages as �nal registration outcome is important for common-space analysis using

di�usion models without well-de�ned warping and reorientation methods.

To overcome this problem recent studies propose to register DWI data directly

in the Q-space [22, 23]. Dhollander et al. [22] tackled the problem by virtue of

an SH-based reorientation algorithm together with a di�eomorphic demons algo-

rithm [14]. In [23] we achieved a similar goal by using a set of di�usion basis func-

tions (DBFs) [25] and a geodesic shooting algorithm simpli�ed reported in [26].

Bothmethods regard spatial alignment and local signal pro�le reorientation as two

separate components, and perform optimization by alternating between (i) com-

puting the spatial mapping without considering reorientation, and (ii) reorienting

the data using the resulting mapping. Although this strategy is simple, it ignores

the crucial role reorientation plays in correspondence establishment.

As shown in [10], a better but more complicated strategy is to integrate the

two components into a single cost function and explicitly take into account reori-

entation during registration. In this paper we describe a method that is able to
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register DWI data in the Q-space in a single framework where image matching,

data reorientation, and deformation regularization are considered simultaneously.

Part of this work has been reported in our recently published conference paper

[27]. Herein, we provide additional derivations, implementation details, and ex-

perimental results that are not available in the conference version. Compared with

[27], the currentwork uses amore general symmetric tensormodel, instead ofWat-

son distribution, as the DBFs [25]. In addition, the cost function is reformulated

such that the solution satis�es the Euler-Lagrange equation.

2. Outline of the Approach

Our method consists of two components: (1) DWI data reorientation (Section

3) and (2) an LDDMM-based registration algorithm (Section 4).�e �rst compo-

nent achieves reorientation in theQ-spacewhile the second one provides a registra-

tion framework where alignment and reorientation are considered simultaneously.

�e �rst component is realized based on the work of Yap and Shen [25], where

reorientation is achieved by three steps: (i) decomposing the di�usion signal pro�le

into a set of weighted DBFs; (ii) reorienting each DBF independently using a local

transformation; (iii) recomposing the reorientedDBFs to obtain the desired pro�le.

Compared with the SH-based reorientation scheme as used in [22], this strategy

avoids the computational complexity of SHs as well as the loss of sharp directional

information when themaximum order of the SH basis functions is insu�cient (see

[25] for detailed discussion).

�e second component involves the LDDMM algorithm [15]. Based on the

spatial mapping estimated by the LDDMM algorithm, a Jacobian matrix can be

computed at each voxel location and used for DBF reorientation. �e interaction
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between the two components is mathematically expressed as a single cost function

(Section 4) and, during optimization, spatial alignment and local reorientation are

considered simultaneously.

To simultaneously register anatomical structures at di�erent scales we use a

multi-kernel strategy [28].�is is to introduce a natural multi-resolution property

to our registration algorithm and to provide an intuitive way of parameter tuning

based on the desired scales that should be captured by the registration. Details are

given in Section 5.1.

�is work has three major contributions. First, we propose a non-rigid reg-

istration algorithm for direct registration of DWI data. �is allows any di�usion

model to be �tted to the aligned data for subsequent multifaceted analysis. Second,

we incorporated spatial alignment and local reorientation into a single cost func-

tion. In contrast to [22] and [29], our method does not rely on multi-shell data,

which require long acquisition time. Last but not least, we derive the gradient of

the cost function and describe in detail the numerical implementation.

3. Reorientation of DWI Data

Wenowbrie�y review themajor concepts involved in reorientation usingDBFs

[25].

3.1. Decomposition of Signal Pro�le

Let S(qi) be the di�usion signal measured in direction qi (i = 1, . . . ,M). It can

be represented by a set of N DBFs:

S(qi) = w0 f0 +
N
∑
j=1

w j f (qi ∣λ1, λ2, µ j),
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where f (qi ∣λ1, λ2, µ j) is the j-th DBF, w j is the associated weight, and f0 is a con-

stant component representing isotropic di�usion. Speci�cally, the j-th DBF is de-

�ned by

f (qi ∣λ1, λ2, µ j) = exp(−bqTi D jqi), (1)

where b is the di�usion weighting and D j = (λ1 − λ2)µ jµTj + λ2I is a symmetric

di�usion tensor. λ1 and λ2 control the shape of the tensor, {µ j} is a pre-de�ned set

of tensor principal directions and I is an identity matrix representing an isotropic

tensor. We generated {µ j} via spherical tessellation by subdividing the faces of an

icosahedron.

If λ1 ≫ λ2, D j can be approximated by λ1µ jµTj .�en, we have

f (qi ∣λ1, λ2, µ j) ≈ exp (−bλ1 (µTj qi)
2
) ,

which is essentially the p.d.f. of theWatson distribution [30].�is simpli�edmodel

has been used in our previous work [23, 27]. In this work we use the more general

model (1).

Let S be the signal vector, thenwehave S = Fw, where S = [S(q1), S(q2), . . . , S(qM)]T,

w = [w0,w1, . . . ,wN]
T, and

F =

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

f0 f (q1∣λ1, λ2, µ1) ⋯ f (q1∣λ1, λ2, µN)

⋮ ⋮ ⋱ ⋮

f0 f (qM ∣λ1, λ2, µ1) ⋯ f (qM ∣λ1, λ2, µN)

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

.

Since typically,M < N+1, this is a set of under-determined linear equations, which

can be solved by an L1-regularized least-squares solver with a non-negative con-

straint (see [25] for details).
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3.2. Reorientation of Signal Pro�le

At each voxel, a local a�ne transformation A is used to reorient the directions

of the DBFs, i.e. µ′j = Aµ j/∥Aµ j∥. A is estimated locally from a typically non-linear

mapping and hence varies spatially. �e reoriented DBF matrix, F ′, is calculated

based on µ′j as follows

F ′ =

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

f0 f (q1∣λ1, λ2,
Aµ1

∥Aµ1∥
) ⋯ f (q1∣λ1, λ2,

AµN

∥AµN∥
)

⋮ ⋮ ⋱ ⋮

f0 f (qM∣λ1, λ2,
Aµ1

∥Aµ1∥
) ⋯ f (qM∣λ1, λ2,

AµN

∥AµN∥
)

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

.

�e orientation-recti�ed signal pro�le is then computed as S′ = F ′w. Note that the

isotropic component is not reoriented.

4. LDDMM-based DWI Registration

LDDMM techniques [15, 31, 32, 26] are designed for di�eomorphic registration

when the object of interest undergoes large shape variation. Initially formulated

for scalar image registration [15], it was later extended for registering vector �elds

[33]. In this work, we further extend it for DWI registration.

Let I0 be the source image and I1 be the target image.�e goal of the LDDMM

algorithm is to minimize the following cost function

E(v) = 1
2 ∫

1

0
∣∣vt ∣∣2V dt +

1
σ 2

∣∣I0 ○ ϕ1,0 − I1∣∣2L2 , (2)

where vt is a time-dependent velocity �eld that needs to be estimated, σ > 0 is a

regularization constant, and ϕs,t is a mapping induced by vt , transforming a voxel

from its position at time s to its position at time t (e.g., ϕ1,0(x) transforms a voxel

at position x at time 1 to its position y = ϕ1,0(x) at time 0). ∣∣vt ∣∣2V = ⟨L†Lvt , vt⟩L2 ,
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where V is a Hilbert space in which the velocity �eld resides, i.e. v ∈ L2([0, 1],V)

and L is a proper di�erential operator which, when appropriately chosen, guaran-

tees a di�eomorphic solution [15]. Instead of realizing L directly, di�eomorphism

can be achieved by de�ning a smoothing kernel K = (L†L)−1. Here we use a multi-

Gaussian kernel scheme [28] for simultaneous multi-scale registration.

Since our focus is on DWI registration, we further assume that I is a vector-

valued image representing di�usion signal vector S at each position x, i.e. I(x) ≡

S(x). We denote the i-th element of I(x) as I i(x). We de�ne the action of a map-

ping ϕ on I as

I ○ ϕ = FϕW ○ ϕ, (3)

where W is a vector-valued weight image associated with I, containing a sparse

weight vector w at each x, i.e.W(x) ≡ w(x), and Fϕ(x) is a matrix-valued image

containing the reoriented DBFs, with the voxel at x given by

Fϕ(x) =

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

f0 f (q1∣λ1, λ2,
(Dϕ(x))−1µ1

∥(Dϕ(x))−1µ1∥
) ⋯ f (q1∣λ1, λ2,

(Dϕ(x))−1µN

∥(Dϕ(x))−1µN∥
)

⋮ ⋮ ⋱ ⋮

f0 f (qM∣λ1, λ2,
(Dϕ(x))−1µ1

∥(Dϕ(x))−1µ1∥
) ⋯ f (qM∣λ1, λ2,

(Dϕ(x))−1µN

∥(Dϕ(x))−1µN∥
)

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

,

where D⋅ is the Jacobian operator. From (3), we can see that ϕ spatially transforms

the sparse weights and reorients the DBFs via Fϕ(x).W is computed by �tting the

DBFs to the DWI data as described in Section 3.

To re�ect reorientation, we rewrite the cost function (2) as

E(v) = 1
2 ∫

1

0
∣∣vt ∣∣2V dt +

1
σ 2

∣∣Fϕ1,0W0 ○ ϕ1,0 − I1∣∣
2
L2 , (4)

where W0 is the weight image associated with I0. By computing the variation of
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E(v) w.r.t. v, the gradient of (4) can be obtained as

(∇vE)t = vt −
2
σ2

K
⎛

⎝ ∫Ω ∣Dϕv
t,1∣

M
∑
i
(I i0 ○ ϕv

t,0 − I i1 ○ ϕv
t,1)×

N
∑
j
w j ○ ϕv

t,0const(qi , µ̃ j) × (∇µ̃ j [
µ̃ j

∥µ̃ j∥
] (Dϕv

t,1D((Dϕv
t,0)

−1)) µ j)

T

qi dx
⎞

⎠

+
2
σ 2

DK
⎛

⎝ ∫Ω ∣Dϕv
t,1∣

M
∑
i
(I i0 ○ ϕv

t,0 − I i1 ○ ϕv
t,1)×

N
∑
j
w j ○ ϕv

t,0const(qi , µ̃ j) × (∇µ̃ j [
µ̃ j

∥µ̃ j∥
] (Dϕv

t,1(Dϕv
t,0)

−1) µ j)

T

qi dx
⎞

⎠
,

−
2
σ 2

K ( ∫Ω ∣Dϕv
t,1∣

M
∑
i
(I i0 ○ ϕv

t,0 − I i1 ○ ϕv
t,1)bTi D(W0 ○ ϕv

t,0) dx) , (5)

where

µ̃ j = (Dϕv
t,0)

−1µ j,

const(qi , µ̃ j) = exp
⎧⎪⎪
⎨
⎪⎪⎩

−b
⎡
⎢
⎢
⎢
⎢
⎣

(λ1 − λ2)
⎛

⎝
(

µ̃ j

∥µ̃ j∥
)

T

qi
⎞

⎠

2

+ λ2
⎤
⎥
⎥
⎥
⎥
⎦

⎫⎪⎪
⎬
⎪⎪⎭

⎛

⎝
−2b(λ1 − λ2)(

µ̃ j

∥µ̃ j∥
)

T

qi
⎞

⎠
,

bi = [ f0, bi1,⋯, biN]T ,

bi j = f (qi∣λ1, λ2,
µ̃ j

∥µ̃ j∥
) ,

Ω is a bounded domain in Rd and x ∈ Ω. �e detailed derivation is given in Ap-

pendix A.

Apart from vt , there are three other terms in (5). If no reorientation is involved,

the �rst two terms will vanish and it is easy to show that (5) is equivalent to the

gradient for scalar image registration as given in [15]. When reorientation is in

e�ect, the �rst two terms contribute to updating {vt} by usingmappings1 estimated

1�e mappings at each iteration are generated by integrating {vt} over time. See Section 5.2 for
details.
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in the preceding iterations to reorient the directions of the DBFs.�is reveals how

spatial alignment and reorientation interact with each other. In contrast, spatial

alignment and reorientation are regarded as two separate components in [22, 23].

5. Numerical Implementation Details

Wenow describe the numeric implementation details of our algorithm, includ-

ing multi-Gaussian kernel, mapping computation, and gradient descent optimiza-

tion.

5.1. Multi-Kernel Scheme

Instead of de�ning L, we follow the approach proposed by Risser et al. [28] to

de�ne a multi-Gaussian kernel K to achieve the desired smoothness. Speci�cally,

K is realized by a set of weighted Gaussian kernels

K =∑ alN (0, Σl),

where al is the weight of the l-th Gaussian kernel and Σl is a diagnal covariance

matrix de�ned by a scale factor σl , i.e. Σl = σl I, where I is an identity matrix.

To estimate al we need to perform a pre-registration step to estimate the max-

imum update of v at each position x, i.e. τl = max({∣∣δv∣∣ ∣ δv at ∀x ∈ Ω}), where

δv can be computed via (5) by setting ϕt,0 = ϕt,1 = id, where id is an identity map-

ping, vt = 0, and K = N (0, Σl). �en al is calculated as the reciprocal of τl and

normalized such that∑ al = 1.

5.2. Mapping Computation

Suppose the time interval is [0, 1], there are n time points {tp∣p = 1, 2, . . . , n}

evenly distributed in this interval, i.e. tp = p/n and the time point 0 is denoted by t0.
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To update the gradient using (5), we have to compute the forwardmappings {ϕtp ,1}

and backward mappings {ϕtp ,0} at each time point tp. �is can be obtained via a

backward integration by assuming that ϕtn ,1 = ϕt0 ,0 = id. Speci�cally, the forward

mapping ϕt,1 and backward mapping ϕt,0 can be computed by concatenating a set

of small mappings [26], i.e.

ϕtp ,1 = (id +
1
n
vtn−1−p) ○ ϕtp+1 ,1,

ϕtp ,0 = ϕtp−1 ,0 ○ (id −
1
n
vtp−1),

where {vtp} is a series of velocity �elds.

5.3. Gradient Descent

Oncewe have computed the gradient using (5), we can use any gradient descent

algorithm to solve (4). In this work we use line search for gradient descent. A

summary of the algorithm is given in Algorithm 1.

6. Experiments

DWI data were acquired from 11 adults using a Siemens 3T TIMTrioMR Scan-

ner with an EPI sequence. Di�usion gradients were applied in 120 non-collinear di-

rectionswith di�usionweighting b =2000 s/mm2.�e imagingmatrixwas 128×128

with a �eld of view of 256×256mm2. 80 contiguous slices with thickness of 2mm

covered the whole brain. A di�usion tensor model was �tted to the signal vector at

each voxel, leading to a �eld of di�usion tensors.�e eigenvalues corresponding to

the principal eigenvectors were then computed for each tensor. By using a region

of interest (ROI) de�ned at the corpus callosum, which is known to contain coher-

ent single-orientation �ber bundles, we computed λ1 by averaging the eigenvalues
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Algorithm 1 LDDMM-based DWI Registration
Input: I0, I1, {µ j}, {qi}, λ1, λ2, b, n, {σl} and {α} (step size)
Initialization: {vtp ∣vtp ← 0,∀p}
1: estimate kernel weights {al}
2: repeat
3: for each p do
4: ϕtp ,1 ← (id + 1

nvtn−1−p) ○ ϕtp+1 ,1
5: ϕtp ,0 ← ϕtp−1 ,0 ○ (id −

1
nvtp−1)

6: end for
7: compute current energy E using (4)
8: for each p do
9: compute gradient (∇vE)tp using (5)
10: end for
11: (E′, α)← LineSearch(E , {vtp}, {α}, {(∇vE)tp})
12: if E′ < E then
13: for each p do
14: vtp ← vtp − α(∇vE)tp
15: end for
16: end if
17: until E′ ⩾ E ∨ α = inf{α} ∨maximum number of iterations

18: function LineSearch(E , {vtp}, {α}, {(∇vE)tp})
19: for each α do
20: for each p do
21: v′tp ← vtp − α(∇vE)tp
22: end for
23: for each p do
24: ϕtp ,1 ← (id + 1

nv
′
tn−1−p) ○ ϕtp+1 ,1

25: ϕtp ,0 ← ϕtp−1 ,0 ○ (id −
1
nv

′
tp−1)

26: end for
27: compute current energy E′ using (4)
28: if E′ < E then
29: return E′, α
30: end if
31: end for
32: return E , inf{α}
33: end function
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corresponding to the �rst principal directions. We then computed λ2 as the mean

of the eigenvalues corresponding to the second and third principal eigenvectors.

We randomly chose an image as the target image and used the rest as source

images. For each image, we �t the DBFs, with 321 directions uniformly distributed

on a unit sphere, to estimate the associated weight image, which was then used to

obtain a reconstructed version of the image. A set of a�ne transformations was

estimated between the target image and each source image using their anisotropy

images computed from the reconstructed data. We then reconstructed each source

image again using the associated weight image by taking into account the a�ne

transformation (see (3)). �e resulting reconstructed source images were used

for both DWI and di�usion tensor imaging (DTI) registration. We compared our

method (Section 4), which we will refer to as LDDMM-DWI, with the following

registration strategies:

(1) Naı̈ve LDDMM-DWI [23]:�is is a registration scheme that iteratively (1)warps

and reorients the source and target images based on an estimated mapping;

(2) estimates a new mapping that further aligns the two resulting images via

a geodesic shooting algorithm; (3) concatenates the estimated mapping with

the one estimated in the previous iteration.�e source image is reconstructed

using the composite mapping together with an a�ne transformation, whereas

the target is reconstructed without any transformation. At each stage the re-

construction is done by using an increasing number of di�usion directions.

(2) DTI Registration: For each image we computed a DT image by �tting the dif-

fusion tensor model to the reconstructed data. We then registered each source

DT image to the target DT image using DTI-TK [13].
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A�ne DTI-TK Näıve LDDMM-DWI LDDMM-DWI

0 25

Figure 1: �e mean RMS error images (top) and the close-ups of regions marked by black circles

(bottom). Note that the images were not sliced for le�-right symmetry.

For LDDMM-DWI, we ran line search for 30 iterations. For naı̈ve LDDMM-DWI

[23], we performed the registration in 6 stages: 30 iterations in the �rst two stages,

20 in the middle stages, and 10 and 5 in the last two stages. In each stage, the

number of di�usion directions was 1, 6, 21, 81, 120, and 321, respectively.�e default

parameters provided on the DTI-TK website2 were used for DTI registration.

To quantify the comparison, we computed the voxel-wise root mean square

(RMS) error between the target image and each of source image, warped and re-

oriented using the estimated a�ne and non-linear mapping. Averaging the result-

ing RMS error images across subjects for each method leads to the mean images

shown in Fig. 1. For reference, we also show the mean RMS error image of source

2http://dti-tk.sourceforge.net/pmwiki/pmwiki.php
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Table 1: Statistics of the mean RMS error images given by various registration strategies.

Method Mean±s.d. Median 90%-ile p-value

A�ne 14.7±6.3 13.4 21.4 p < 10−6

DTI-TK 13.3±6.1 12.2 19.6 p < 0.01

Näıve LDDMM-DWI 12.9±5.4 11.9 18.3 p < 0.05

LDDMM-DWI 11.7±4.5 11.3 16.5 –

images warped and reoriented using a�ne transformations alone. For each mean

RMS error image we computed its statistics (i.e., mean, standard deviation, me-

dian, and the 90-th percentile) over all voxels and report the results in Table 1. For

each method, we also computed the mean intensity value of the RMS error image

associated with each subject and used these means to perform two-tailed student’s

t-tests using LDDMM-DWI as the baseline. �e results, given in the same table,

indicate that the performance di�erences are statistically signi�cant.

From Fig. 1, it is clear that LDDMM-DWI signi�cantly improves the alignment

of white matter structures, such as the internal capsule. A�ne registration and

näıve LDDMM-DWI do not take into account reorientation in the optimization

process and are hence less e�ective in white matter alignment. Although DTI-

TK explicitly considers reorientation during optimization, it can only handle one

principal �ber direction per voxel and thus ambiguity will occur where �ber con-

�guration is complex.�e quantitative results given in Table 1 show that LDDMM-

DWI outperforms the other methods and reduces overall mismatching error (e.g.,

smaller median).

To further demonstrate the e�cacy of LDDMM-DWI, we compared the sim-

ilarity of ODFs (for high-anisotropy voxels) computed from the target image and
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A�ne DTI-TK Näıve LDDMM-DWI LDDMM-DWI

0 0.6

Figure 2: �e mean sKL divergence images (top) and the close-ups of regions marked by yellow

circles (bottom). Note that the low-anisotropy regions were not masked out for display purpose.

each source image using the symmetrized Kullback-Leibler (sKL) divergence [34]

sKL(p1, p2) = ∫s∈S2 p1(s) log
p1(s)
p2(s)

ds + ∫s∈S2 p2(s) log
p2(s)
p1(s)

ds,

where p1 and p2 are the ODFs and s is a vector de�ned on the unit sphere S2.�e

mean sKL divergence images resulting from each method are given in Fig. 2 and

the statistics of the mean images are given in Table 2. Similarly, we can see that

LDDMM-DWI works much better than other registration methods and reduces

white matter misalignment.

Figure 3 shows the anisotropy images of the target image and the mean of the

aligned source images, from which we can see that LDDMM-DWI registers all

main structures reasonably well. ODFs computed from the target image and the

LDDMM-DWI mean image are shown in Fig. 4. It can be observed that the re-

sults produced by LDDMM-DWI are in close agreement at voxel level with the
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Table 2: Statistics of the mean sKL divergence images given by di�erent registration strategies.

Method Mean±s.d. Median 90%-ile p-value

A�ne 0.22±0.10 0.21 0.35 p < 0.01

DTI-TK 0.21±0.10 0.20 0.36 p ≈ 0.01

Näıve LDDMM-DWI 0.21±0.08 0.21 0.32 p < 0.05

LDDMM-DWI 0.19±0.09 0.19 0.31 –

target image.�is is important for applications such as white matter tractography

[35, 36], which is sensitive to errors in local �ber orientations.

7. Conclusion and Discussions

We have described a method for directly registering the DWI data under large

deformation. �is is achieved by incorporating a DWI data reorientation tech-

nique [25] into an LDDMM algorithm [15], optimizing spatial alignment and local

reorientation simultaneously. Unlike most of the existing methods, our approach

eventually results in a set of di�usion-weighted images, thus allowing the �tting

of any di�usion model for subsequent analysis. Experimental results indicate that

our method signi�cantly outperforms several other registration strategies as well

as themethod proposed in our earlier work [23], which does not explicitly consider

reorientation during optimization. In the future, to overcome the large computa-

tion cost of our method, general-purpose computing on graphics processing units

(GPGPU) can be employed to signi�cantly speed up the computation of the paral-

lelizable portion of the algorithm.
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Target Image Mean Image

Figure 3: Anisotropy images of the target image and themean of the align source images.�e ODFs

in regions marked by yellow rectangles are shown in Fig. 4.

Appendix A. Derivation of the Gradient of the Cost Function

To minimize the cost function (4), we consider a small perturbation of v ∈

L2([0, 1],V) along direction h ∈ L2([0, 1],V). �e variation of energy functional

E(v) w.r.t v can be obtained as

∂hE(v) ≡
d
dє

E(v + єh)∣
є=0

≡ ∫ 10 ⟨(∇vE)t , ht⟩V dt,

where ∂hE(v) is the Gâteaux derivative of E and ∇vE is the Fréchet derivative of

E.
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Target Image Mean Image

Figure 4: ODFs in the regions marked by yellow rectangles in Fig. 3.�e target anisotropy image is

used as the background.

�e variation of E1(v) = 1
2 ∫

1
0 ∣∣vt ∣∣2V dt can be obtained easily as follows

∂hE1(v) =
d
dє

(
1
2 ∫

1

0
∣∣vt ∣∣2V dt)∣

є=0
= ∫ 10 ⟨vt , ht⟩V dt. (A.1)
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Now focusing on the variation of E2(v) = 1
σ 2 ∣∣Fϕ1,0W0 ○ ϕ1,0 − I1∣∣

2
L2 , we have

∂hE2(v) =
d
dє

(
1

σ 2
∣∣Fϕv+єh1,0

W0 ○ ϕv+єh
1,0 − I1∣∣

2

L2
)∣

є=0

=
d
dє

( ∫Ω
1

σ 2
∣∣Fϕv+єh1,0

W0 ○ ϕv+єh
1,0 − I1∣∣

2
dy)∣

є=0

=
2
σ 2 ∫Ω ⟨I0 ○ ϕ1,0 − I1,

∂
∂є

Fϕv+єh1,0
∣
є=0

W0 ○ ϕv
1,0 + Fϕv1,0

∂
∂є

(W0 ○ ϕv+єh
1,0 )∣

є=0
⟩
L2
dy,

where Ω is a bounded domain in Rd and y ∈ Ω. ∂
∂єFϕv+єh1,0

∣
є=0
at y is given by

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

0 ∂
∂є

f (q1∣λ1, λ2,
(Dϕv+єh

1,0 )−1µ1
∥(Dϕv+єh

1,0 )−1µ1∥
)∣

є=0
⋯

∂
∂є

f (q1∣λ1, λ2,
(Dϕv+єh

1,0 )−1µN

∥(Dϕv+єh
1,0 )−1µN∥

)∣

є=0
⋮ ⋮ ⋱ ⋮

0 ∂
∂є

f (qM∣λ1, λ2,
(Dϕv+єh

1,0 )−1µ1
∥(Dϕv+єh

1,0 )−1µ1∥
)∣

є=0
⋯

∂
∂є

f (qM∣λ1, λ2,
(Dϕv+єh

1,0 )−1µN

∥(Dϕv+єh
1,0 )−1µN∥

)∣

є=0

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

.

Note that we drop y for simplicity, i.e. ϕv+єh
1,0 (y)→ ϕv+єh

1,0 .

�e di�erentiation of each non-zero element in the above matrix yields

∂
∂є

f (qi∣λ1, λ2,
(Dϕv+єh

1,0 )−1µ j

∥(Dϕv+єh
1,0 )−1µ j∥

)∣

є=0

= const(qi , µ̃ j) × (∇µ̃ j [
µ̃ j

∥µ̃ j∥
]
∂
∂є

(Dϕv+єh
1,0 )−1∣

є=0
µ j)

T

qi

= −const(qi , µ̃ j) × (∇µ̃ j [
µ̃ j

∥µ̃ j∥
] ((Dϕv

1,0)
−1 ∂
∂є

(Dϕv+єh
1,0 )∣

є=0
(Dϕv

1,0)
−1) µ j)

T

qi .

Note that now µ̃ j = (Dϕv
1,0)

−1µ j. According to the proof given in[15],

∂
∂є
ϕv+єh
1,0 ∣

є=0
= Dϕv

1,0 ∫ 01 (Dϕv
1,t)

−1ht ○ ϕv
1,t dt.

Hence, ∂
∂є (Dϕv+єh

1,0 )∣є=0 can be obtained by simply taking di�erentiation w.r.t y on

both sides of the above equation, i.e.

∂
∂є

(Dϕv+єh
1,0 )∣

є=0
= ∫ 01 (D2ϕv1,tϕ

v
t,0)⋅(ht○ϕv

1,t)(Dϕv
1,t)dt+ ∫ 01 (Dϕv1,tϕ

v
t,0)(Dϕv1,tht)Dϕv

1,t dt,
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where Dy⋅ is the value of D⋅ at y, D2⋅ is the Hessian operator, D2y⋅ is the value of

D2⋅ at y, giving a vector-valued matrix. For instance, Dϕv1,tϕ
v
t,0 ≡ Dϕv

t,0(ϕv
1,t(y))

represents the Jacobian Dϕv
t,0 at position ϕv

1,t(y).�en we have

(Dϕv
1,0)

−1 ∂
∂є

(Dϕv+єh
1,0 )∣

є=0
(Dϕv

1,0)
−1

= (Dϕv
1,0)

−1 [ ∫ 01 (D2ϕv1,tϕ
v
t,0) ⋅ (ht ○ ϕv

1,t)(Dϕv
1,t)dt + ∫ 01 (Dϕv1,tϕ

v
t,0)(Dϕv1,tht)Dϕv

1,t dt] (Dϕv
1,0)

−1.

We now deal with the two terms in the above equation one by one:

(Dϕv
1,0)

−1 [ ∫ 01 (D2ϕv1,tϕ
v
t,0) ⋅ (ht ○ ϕv

1,t)(Dϕv
1,t)dt] (Dϕv

1,0)
−1

= ∫ 01 (Dϕv
1,0)

−1(D2ϕv1,tϕ
v
t,0) ⋅ (ht ○ ϕv

1,t)(Dϕv
1,t)(Dϕv

1,0)
−1 dt

= ∫ 01 (Dϕv
1,t)

−1(Dϕv1,tϕ
v
t,0)

−1(D2ϕv1,tϕ
v
t,0) ⋅ (ht ○ ϕv

1,t)(Dϕv1,tϕ
v
t,0)

−1 dt

= ∫ 10 (Dϕv
1,t)

−1D((Dϕv1,tϕ
v
t,0)

−1) ⋅ (ht ○ ϕv
1,t)dt

= ∫ 10 Dϕv1,tϕ
v
t,1D((Dϕv1,tϕ

v
t,0)

−1) ⋅ (ht ○ ϕv
1,t)dt,

and

(Dϕv
1,0)

−1 [ ∫ 01 (Dϕv1,tϕ
v
t,0)(Dϕv1,tht)Dϕv

1,t dt] (Dϕv
1,0)

−1

= ∫ 01 (Dϕv
1,0)

−1(Dϕv1,tϕ
v
t,0)(Dϕv1,tht)Dϕv

1,t(Dϕv
1,0)

−1 dt

= − ∫ 10 (Dϕv
1,t)

−1(Dϕv1,tht)(Dϕv1,tϕ
v
t,0)

−1 dt

= − ∫ 10 Dϕv1,tϕ
v
t,1(Dϕv1,tht)(Dϕv1,tϕ

v
t,0)

−1 dt,

where we have used Dϕv
1,0 = Dϕv1,tϕ

v
t,0Dϕv

1,t and Dϕv1,tϕ
v
t,1Dϕv

1,t = I for simpli�cation.

Hence, we have

(Dϕv
1,0)

−1 ∂
∂є

(Dϕv+єh
1,0 )∣

є=0
(Dϕv

1,0)
−1

= ∫ 10 Dϕv1,tϕ
v
t,1D((Dϕv1,tϕ

v
t,0)

−1) ⋅ (ht ○ ϕv
1,t)dt − ∫ 10 Dϕv1,tϕ

v
t,1(Dϕv1,tht)(Dϕv1,tϕ

v
t,0)

−1 dt.
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Also, we have

∂
∂є

(W0 ○ ϕv+єh
1,0 )∣

є=0
= DW0 ○ ϕv

1,0
∂
∂є
ϕv+єh
1,0 ∣

є=0

= DW0 ○ ϕv
1,0 (−Dϕv

1,0 ∫ 10 (Dϕv
1,t)

−1ht ○ ϕv
1,t dt)

= − ∫ 10 D(W0 ○ ϕv
1,0)(Dϕv

1,t)
−1ht ○ ϕv

1,t dt.

Nowwe are ready to computeG = ∂
∂єFϕv+єh1,0

∣
є=0

W0○ϕv
1,0+Fϕv1,0

∂
∂є (W0 ○ ϕv+єh

1,0 )∣є=0,

where G is a vector-valued image and the i-th element of its voxel at y is given by

G i(y). We have

G(y) =

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

0 a11 a12 ⋯ a1N
0 a21 a22 ⋯ a2N
⋮ ⋮ ⋱ ⋮

0 aM1 aM2 ⋯ aMN

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

w0
w1
⋮

wN

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

○ ϕv
1,0+

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

f0 b11 b12 ⋯ b1N
f0 b21 b22 ⋯ b2N
⋮ ⋮ ⋱ ⋮

f0 bM1 bM2 ⋯ bMN

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

(− ∫ 10 D(W0 ○ ϕv
1,0)(Dϕv

1,t)
−1ht ○ ϕv

1,t dt) ,

where

ai j = − ∫ 10 const(qi , µ̃ j) × (∇µ̃ j [
µ̃ j

∥µ̃ j∥
] (Dϕv1,tϕ

v
t,1D((Dϕv1,tϕ

v
t,0)

−1) ⋅ (ht ○ ϕv
1,t)) µ j)

T

qi dt

+ ∫ 10 const(qi , µ̃ j) × (∇µ̃ j [
µ̃ j

∥µ̃ j∥
] (Dϕv1,tϕ

v
t,1(Dϕv1,tht)(Dϕv1,tϕ

v
t,0)

−1) µ j)

T

qi dt,

bi j = f (qi∣λ1, λ2,
(Dϕv1,0)−1µ j
∥(Dϕv1,0)−1µ j∥) and [w0, . . . ,wN]

T is the sparse weights ofW0 at po-
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sition y. Let bi = [ f0, bi1,⋯, biN]T, we can then compute G i(y) as

G i(y) =
N
∑
j
ai jw j ○ ϕv

1,0 − ∫ 10 bTi D(W0 ○ ϕv
1,0)(Dϕv

1,t)
−1ht ○ ϕv

1,t dt

= − ∫ 10
N
∑
j
w j ○ ϕv

1,0const(qi , µ̃ j) × (∇µ̃ j [
µ̃ j

∥µ̃ j∥
] (Dϕv1,tϕ

v
t,1D((Dϕv1,tϕ

v
t,0)

−1) ⋅ (ht ○ ϕv
1,t)) µ j)

T

qi dt

+ ∫ 10
N
∑
j
w j ○ ϕv

1,0const(qi , µ̃ j) × (∇µ̃ j [
µ̃ j

∥µ̃ j∥
] (Dϕv1,tϕ

v
t,1(Dϕv1,tht)(Dϕv1,tϕ

v
t,0)

−1) µ j)

T

qi dt

− ∫ 10 bTi D(W0 ○ ϕv
1,0)(Dϕv

1,t)
−1ht ○ ϕv

1,t dt.

Now we can rewrite ∂hE2(v) as

∂hE2(v) =
2
σ2 ∫Ω ⟨I0 ○ ϕ1,0 − I1, G⟩L2 dy =

2
σ 2 ∫Ω

M
∑
i
(I i0 ○ ϕ1,0 − I i1)G i dy.

Let ϕv
1,t(y) = x, then y = ϕv

t,1(x) and dy = ∣Dϕv
t,1(x)∣dx. By changing the variable,

we have

∂hE2(v) = −
2
σ2 ∫

1

0 ∫Ω ∣Dϕv
t,1∣

M
∑
i
(I i0 ○ ϕv

t,0 − I i1 ○ ϕv
t,1)×

N
∑
j
w j ○ ϕv

t,0const(qi , µ̃ j) × (∇µ̃ j [
µ̃ j

∥µ̃ j∥
] (Dϕv

t,1D((Dϕv
t,0)

−1) ⋅ ht) µ j)

T

qi dx dt

+
2
σ 2 ∫

1

0 ∫Ω ∣Dϕv
t,1∣

M
∑
i
(I i0 ○ ϕv

t,0 − I i1 ○ ϕv
t,1)×

N
∑
j
w j ○ ϕv

t,0const(qi , µ̃ j) × (∇µ̃ j [
µ̃ j

∥µ̃ j∥
] (Dϕv

t,1Dht(Dϕv
t,0)

−1) µ j)

T

qi dx dt

−
2
σ 2 ∫

1

0 ∫Ω ∣Dϕv
t,1∣

M
∑
i
(I i0 ○ ϕv

t,0 − I i1 ○ ϕv
t,1)bTi D(W0 ○ ϕv

t,0)ht dx dt,

where now µ̃ j = (Dϕv
t,0)

−1µ j. As v , h ∈ V , we have the following two equations (see

[33] for details on the property of the reproducing kernel Hilbert space)

⟨v , h⟩L2 = ⟨Kv , h⟩V ,

⟨v , Dh⟩L2 = ⟨DKv , h⟩V .
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Hence, the variation of E2(v) is given by

∂hE2(v) = −
2
σ2 ∫

1

0
⟨K

⎛

⎝ ∫Ω ∣Dϕv
t,1∣

M
∑
i
(I i0 ○ ϕv

t,0 − I i1 ○ ϕv
t,1)×

N
∑
j
w j ○ ϕv

t,0const(qi , µ̃ j) × (∇µ̃ j [
µ̃ j

∥µ̃ j∥
] (Dϕv

t,1D((Dϕv
t,0)

−1)) µ j)

T

qi dx
⎞

⎠
, ht⟩

V

dt

+
2
σ 2 ∫

1

0
⟨DK

⎛

⎝ ∫Ω ∣Dϕv
t,1∣

M
∑
i
(I i0 ○ ϕv

t,0 − I i1 ○ ϕv
t,1)×

N
∑
j
w j ○ ϕv

t,0const(qi , µ̃ j) × (∇µ̃ j [
µ̃ j

∥µ̃ j∥
] (Dϕv

t,1(Dϕv
t,0)

−1) µ j)

T

qi dx
⎞

⎠
, ht⟩

V

dt

−
2
σ 2 ∫

1

0
⟨K ( ∫Ω ∣Dϕv

t,1∣
M
∑
i
(I i0 ○ ϕv

t,0 − I i1 ○ ϕv
t,1)bTi D(W0 ○ ϕv

t,0) dx) , ht⟩
V
dt.

(A.2)

Since h is arbitrary in L2([0, 1],V), we obtain the gradient as given in (5) by com-

bining results (A.1) and (A.2).
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