
  Programming Assignment 2 

COMP 520 – PA2 1 February 8, 2022 

COMP 520:  Compiler Project 
PA2 – Abstract Syntax Tree Construction 

 
 
Assigned: Tue Feb 8 
Due:  Sun Feb 27, 11:59 PM 
 
The second milestone in the compiler project is to create an abstract syntax tree (AST) for syntactically 
valid miniJava programs.  You will need to add code to your parser to construct the miniJava AST using a 
set of AST classes outlined in this document and available as a package on our course website.  You will 
also need to make a couple of small changes to the miniJava grammar and modify the grammar to build 
the correct AST reflecting Java operator precedence rules. 

1. Operator precedence in expressions 
The evaluation order of Java expressions is specified using parentheses and by standard operator 
precedence rules from arithmetic and predicate logic.  The following table lists the precedence order of 
the miniJava operators from lowest to highest.  

class operator(s) 
disjunction || 

conjunction && 

equality ==, != 
relational <=, <, >, >= 
additive +, - 
multiplicative *, / 
unary -, ! 

Binary operators are left associative and reflect precedence, so that 1-2+3 means (1-2)+3, and 
1+3*4/2 means 1+((3*4)/2).  Unary operators are right associative.  The challenge in this part of the 
assignment is to construct a stratified grammar (Lecture 07) reflecting the precedence shown above as 
well as accommodating explicit precedence specified using parentheses.  Your grammar can be used to 
build the correct AST in the course of parsing. 

2. Abstract syntax tree classes 
The set of classes needed to build miniJava ASTs are provided in the AbstractSyntaxTrees package 
available through the course website.  Components of the AST “grammar” are organized by the class 
hierarchy shown on the last page (right side).  Abstract classes (shown with an “A” superscript next to the 
class icon) represent nonterminals of the AST grammar, such as Statement. 
 
The rule for Statement below shows the particular kinds of statements that may be created in an AST; 
each corresponds to a concrete AST class shown on the right.  For example, a WhileStmt is a specific kind 
of Statement, and consists of an Expression (the condition controlling execution of the loop) and a 
Statement (the body of the loop).    
 



  Programming Assignment 2 

COMP 520 – PA2 2 February 8, 2022 

Statement ::= 
  Statement* BlockStmt 
 | VarDecl Expression VarDeclStmt 
 | Reference Expression AssignStmt 
 | Reference Expression Expression IxAssignStmt 
 | Reference Expression* CallStmt 
 | Expression? ReturnStmt 
 | Expression Statement  Statement? IfStmt 
 | Expression Statement WhileStmt 
 
If we look inside the AST class WhileStmt we find the following: 
 
public class WhileStmt extends Statement { 
{ 
    public WhileStmt(Expression e, Statement s, SourcePosition posn){ 
        super(posn); 
        cond = e; 
        body = s; 
    } 
 
    public Expression cond; 
    public Statement body; 
} 

The constructor creates a WhileStmt node, and its two fields provide access to the AST subtrees of the 
node (the expression cond controlling the loop repetition, and the statement body to be executed in each 
repetition).  Note the nomenclature, each kind of Statement has a particular name suggesting its kind (e.g. 
“While”) that is joined to “Stmt” to show the nonterminal from which it derives.  
 
Consult the documentation, source files, and AST constructed for the sample program to make sure you 
understand the contents and structure of the AST classes.  Some auxiliary classes are included to provide 
a convenient way to create lists of nonterminals such as the StatementList in the BlockStmt.  The “start 
symbol” of the AST grammar is Package.  All of these are shown in the type hierarchy on the last page. 
 
  



  Programming Assignment 2 

COMP 520 – PA2 3 February 8, 2022 

4. The AST Visitor  
The AbstractSyntaxTrees package defines a Visitor interface that can be implemented to create 
AST traversals.  Contextual analysis and code generation will be structured as AST traversals.  
ASTDisplay is an AST traversal implemented in the AbstractSyntaxTrees package to print a textual 
representation of an AST (or any AST subtree).  Use this facility to inspect the ASTs you generate.   
 
The text representation is created by a depth-first traversal of the AST.  A node is displayed as its class 
name on a single line.  The attributes and children of the node are shown in subsequent lines, indented 
two spaces to the right.  Since the traversal is depth-first, the entire representation of the left subtree will 
be shown before starting the representation of the right subtree.  For example, the Statement below has 
the AST shown on the right with text representation of the AST on the left.  Note that near the leaves the 
text representation is compacted somewhat to improve readability. 
 

while (true) x = this + 1; 
 
 
WhileStmt  
  LiteralExpr  
    "true" BooleanLiteral  
  AssignStmt  
    IdRef  
      "x" Identifier 
    BinaryExpr  
      "+" Operator 
        RefExpr  
          ThisRef  
        LiteralExpr  
          "1" IntLiteral  
 
 
 
ASTDisplay can also list the source positions for each AST node if you enable the capability within 
ASTDisplay and provide an appropriate toString() method for SourcePosition.  For these values 
to be meaningful, you need to correctly set the source position for every AST node in the parser.  It is 
useful for every AST node to have an associated source position (really an interval in the source text) that 
can be used for error reporting in later stages.  At this stage it is not required and will, by default, not be 
displayed in the AST.  However to create an AST you will have to provide at least a null SourcePosition 
for each node. 

5. Programming Assignment 
For PA2 your Compiler mainclass should determine if the input source file constitutes a syntactically 
valid miniJava program as defined by PA1 and definitions above.  If so, it should display the constructed 
AST using the showTree method in the ASTDisplay class, and terminate via System.exit(0). (Note:  
in your submission, disable the display of source position).  If the input source file is not syntactically valid 
miniJava, you should write a diagnostic error message and terminate via System.exit(4).  You may 
output any additional information you wish, but do not alter any aspect of the AbstractSyntaxTrees 
package for the PA2 submission.  Submission testing will check that valid miniJava programs construct the 
correct AST. The type hierarchy for the AST classes is shown on the next page, as well as the ASTDisplay 
for a small sample miniJava program.  

WhileStmt

AssignStmt

BinaryExpr

Operator

“+”

LiteralExpr

BooleanLiteral

“true”

RefExpr

ThisRef

LiteralExpr

IntLiteral

“1”

IdRef

Identifier

“x”



  Programming Assignment 2 

COMP 520 – PA2 4 February 8, 2022 

 
 
 
 
======= AST Display =========================  
Package 
  ClassDeclList [1]  
  . ClassDecl 
  .   "PA2" Identifier 
  .   FieldDeclList [1] 
  .   . (public) FieldDecl 
  .   .   BOOLEAN BaseType 
  .   .   "c" Identifier 
  .   MethodDeclList [1]  
  .   . (public static) MethodDecl 
  .   .   VOID BaseType 
  .   .   "main" Identifier 
  .   .   ParameterDeclList [1] 
  .   .   . ParameterDecl 
  .   .   .   ArrayType 
  .   .   .     ClassType 
  .   .   .       "String" Identifier 
  .   .   .   "args" Identifier 
  .   .   StmtList [3] 
  .   .   . VarDeclStmt 
  .   .   .   VarDecl 
  .   .   .     INT BaseType 
  .   .   .     "x" Identifier 
  .   .   .   LiteralExpr 
  .   .   .     "3" IntLiteral 
  .   .   . IfStmt 
  .   .   .   BinaryExpr 
  .   .   .     ">" Operator 
  .   .   .       RefExpr 
  .   .   .         QualifiedRef 
  .   .   .           "x" Identifier 
  .   .   .       LiteralExpr 
  .   .   .         "1" IntLiteral 
  .   .   .   AssignStmt 
  .   .   .     QualifiedRef 
  .   .   .       "x" Identifier 
  .   .   .     BinaryExpr 
  .   .   .       "+" Operator 
  .   .   .         LiteralExpr 
  .   .   .           "1" IntLiteral 
  .   .   .         BinaryExpr 
  .   .   .           "*" Operator 
  .   .   .             LiteralExpr 
  .   .   .               "2" IntLiteral 
  .   .   .             RefExpr 
  .   .   .               QualifiedRef 
  .   .   .                 "x" Identifier 
  .   .   . CallStmt 
  .   .   .   QualifiedRef 
  .   .   .     "System" Identifier 
  .   .   .     ."out" Identifier 
  .   .   .     ."println" Identifier 
  .   .   .   ExprList [1] 
  .   .   .   . RefExpr 
  .   .   .   .   QualifiedRef 
  .   .   .   .     "x" Identifier 
============================================= 
 

 

 

// simple PA2 example 
class PA2sample { 
 
    public boolean c; 
   
    public static void main(String[] args){ 
        if (true) 
            this.b[3] = 1 + 2 * x; 
    } 
} 
 
 
======= AST Display ========================= 
Package 
  ClassDeclList [1] 
  . ClassDecl 
  .   "PA2sample" classname 
  .   FieldDeclList [1] 
  .   . (public) FieldDecl 
  .   .   BOOLEAN BaseType 
  .   .   "c" fieldname 
  .   MethodDeclList [1] 
  .   . (public static) MethodDecl 
  .   .   VOID BaseType 
  .   .   "main" methodname 
  .   .   ParameterDeclList [1] 
  .   .   . ParameterDecl 
  .   .   .   ArrayType 
  .   .   .     ClassType 
  .   .   .       "String" Identifier 
  .   .   .   "args"parametername  
  .   .   StmtList [1] 
  .   .   . IfStmt 
  .   .   .   LiteralExpr 
  .   .   .     "true" BooleanLiteral 
  .   .   .   IxAssignStmt 
  .   .   .     QualRef 
  .   .   .       "b" Identifier 
  .   .   .       ThisRef 
  .   .   .     LiteralExpr 
  .   .   .       "3" IntLiteral 
  .   .   .     BinaryExpr 
  .   .   .       "+" Operator 
  .   .   .         LiteralExpr 
  .   .   .           "1" IntLiteral 
  .   .   .         BinaryExpr 
  .   .   .           "*" Operator 
  .   .   .             LiteralExpr 
  .   .   .               "2" IntLiteral 
  .   .   .             RefExpr 
  .   .   .               IdRef 
  .   .   .                 "x" Identifier 
=============================================

Example miniJava program and AST AbstractSyntaxTrees 
class hierarchy 


	COMP 520:  Compiler Project
	PA2 – Abstract Syntax Tree Construction


