Lecture 12:
Divide and Conquer Algorithms

Study Chapter 7.1 - 7.4
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D1V1de and Conquer Algonthms

— Divide problem into sub-problems

— Conquer by solving sub-problems
recursively. If the sub-problems are small
enough, solve them in brute force fashion

— Combine the solutions of sub-problems into a
solution of the original problem
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Sortmg Problem Rev151ted

* Given: an unsorted array

51214 |7 (1|3 |26

e Goal: sort it
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ergesort D1V1de Step

Step 1 — D|V|de

512417 1|13 |2 |6

<5 2| |4 71 |1 3 2| |6

log(n) divisions to split an array of size n into single elements
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Mergesort Conquer Step

Q2471 3| (2| |6
O(n)

215 4 |7 1|3 2 |6

2 14|57 1121316

logn iterations, each iteration takes O(n) time. Total Time: O(n logn)
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Mergesort Merge

9/30/2014

2 arrays of size 1 can be easily merged to
form a sorted array of size 2

5 2 |—P» |2 |5

2 sorted arrays of size n and m can be
merged in O(n+m) time to form a sorted
array of size n+m
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9/30/2014

Mergesort Merge
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Merge Algonthm

Merge(a, b)

nl « size of array a
nZ2 « size of array b

dpjpg € ©
an2+](—oo
[ 1
S 1
for k< 1tonl+ n2
ifa < b
G <« a
[ [+]
else
G < b,
N a
return c
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MergeSort Example

Divide, e T
o S ~ .
20 | 4 7 6 1 3 9 5
N N S O\ O\
20 4 7 6 1 E o | |5 |
[ W ~ ~N 7 N
4 20 6 7 1 3 5 9
Conquer . — W —
< 4 6 7 20 1 3 5 9
\ /
1 3 4 5 6 7 9 20
N
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MergeSort Algorlthm

Merquort(d
n < size of array ¢
ifn=1

return c

left « list of first n/2 elements of ¢
right < list of last n-n/2 elements of ¢
sortedLeft < MergeSort(/efd
sortedRight < MergeSort(righ?
sortedList < Merge(sortedLeft,sortedRigh?d
10. return sortedList

1.
2.
3.
4.
5.
6.
/.
8.
9.
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MergeSort Runmng Tlme

C lee by a recurrence relaton
T(n) = 2T (5) +0(n)
T(1) =0(1)

with solution

T(n) =0(nlgn)

Now for a biological problem
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Ahgnments Requlre Quadra’uc Memory

Alignment Path

* Space complexity for
computing alignment path 4
for sequences of length n
and m is O(nm)

n <

* We keep a table of all scores
and backtracking references
in memory to reconstruct N

the path (backtracking)
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Computmg Alignment Score with

Alignment Score

However, the space
complexity of just computing
the score itself is only O(n)

For example, we only need n< [

1

the previous column to L
calculate the current column, [
and we can throw away that
previous column once we're

done using it
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Computing Alighment Score: Recycling Columns

Only two columns of scores are saved at any
given time

v||[® a2l ™ | 2 [elllw

v C eIV VARV A 4 1H\4

viliw VAR 2l | 4 VARVEIL 44

A4 I C e VARV A 4

v VAl VARVEIM
memory for column memory for column
1is used to 2 is used to
calculate column 3 calculate column 4
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D&C Sequence Ahgnment

Find the best scoring path L

. )
aligning two sequences '

Path(source, sink)
] if(source & sink are in consecutive columns)

2 output the longest path from source to sink

3 else

4. midd/e — vertex with largest score from source to sink
5

6

Path (source, midd/e)
Path(midd/e, sink)

The only problem left is how to find this “middle vertex”!
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Computmg the Ahgnment Path

Uz m We want to find the Iongest (i.e.
best) path from (0,0) to (n,m) as
it passes through column m/2

ForO<i<n

iNm/2

/ length(i)
Pretx® \ as the length of the longest path

— from (0,0) to (n,m) that passes
Suffx(i), through vertex (i, m/2)
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Crossmg the Midline

Prefix(i)

Define (mid,m/2) as the vertex where the longest path crosses
the middle column.

length(mid) = optimal length = max, ., length(i)
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Computing Prefix( )

s the len ch of the Iongest pathrom

(0,0) to (i,m/2)

Compute prefix(i) in the left half of the matrix

store prefix(i) column

<4< € ¢ ¢ | <
<

0 m/2 m
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Computmg Sufflx( )

. SuffIX(I) IS the Iength of the Iongest path from (1, m/2) to (n m)
 suffix(i) is the length of the longest path from (n,m) to (i,m/2)
with all edges reversed

« Compute suffix(i) in the right half of the “reversed” matrix

'y

store suffix(i) column

> | > >

0 m/i m
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Lenth(z) Preﬁx( ) + Suﬁ'zx

» Add prefix(i) and suffix(i) to compute length(i):
- length()=prefix() + suffix())

* You now have a middle vertex of the maximum
path (I,m/2) as maximum of length(i)

0

Clea o

Clea o

TN
middle point found

VALAL
“ O

Clea b

OCla|l a3 3q|3

m/2

O
}>/
O
O
O
m
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Fmdmg the M1ddle Pomt
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Fmdmg the M1ddle Pomt agam
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And Agam

0O m/8 m/4 3m/8 m/2 5m/8 3m/4 7m/8 m
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T1me = Area Flrst Pass

On first pass, the algorithm touches the
entire area

Area = n*m
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Tlme = Area Second Pass

On second pass, the algorithm covers only
1/2 of the area m/2

Area/2
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Tlme = Area Second Pass

On second pass, the algorithm covers only
1/2 of the area m/2

Area/2

Regardless of I's value!
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Tlme = Area Th1rd Pass

On third pass, onIy 1/4th is covered.

Area/4
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Geometric Reduction At Each Iteration

L+ Vst Vh o + (A <2
Runtime: O(Area) = O(nm) |

5t pass: 1/16

N
31 pass: 1/4 i

first pass: 1 4th pass: 1/8

2nd pass: 1/2

Total Space: O(n) for score computation, O(n+m) to store the optimal
alignment
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Can We Do Even Better7

* Align in Subquadratic Time?

* Dynamic Programming
takes O(nm) for global
alignment, which is
quadratic
assuming n ~ m

* Yes, using the
Four-Russians Speedup

9/30/2014 COMP 555 Bioalgorithms (Fall 2014) 29



Partltlomng Sequences into Blocks

. Partltlon the nxn gr1d into blocks of size t X t

* We are comparing two sequences, each of size n,
and each sequence is sectioned off into chunks,
each of length ¢

* Sequence u = u,...u, becomes

| uq. o uy | |t | oo | Ui Uy
and sequence v = v,...v, becomes

2P 72 R T o2 IR B O /2
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r N - B
. t 3
/_H
n < t{ > nft
L partition )
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Block Allgnment

. Block allgnment of sequences u and v:

1. An entire segment of length t in u is aligned
with an entire segment of length ¢ in v

2.An entire segment of length ¢ in is u is deleted
3.An entire segment of length ¢ in is v is deleted

* Block path: a path that traverses every ¢ x ¢
square through its corners
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Block Ahgnment Examples

valid invalid
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Block Alignment Problem

. Goal ' Fmd the longest block path through an ed1t
graph

* Input: Two sequences, u and v partitioned into
blocks of size t. This is equivalent to an n x n
edit graph partitioned into ¢ x t subgrids

* Qutput: The block alignment of u and v with the
maximum score (longest block path through the
edit graph)
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Constructmg Ahgnments within Blocks

. To solve compute ahgnment score ﬁ for each pair

of blocks | qyseq--- U | @NA |V 1ye147.- .U

J°t
* How many blocks are there per sequence?

(n/t) blocks of size ¢

* How many pairs of blocks for aligning the two
sequences?

(n/t) x (n/1)
* For each block pair, solve a mini-alignment problem
of size t x t, which requires t x t = O(#?) effort

e Total cost? 9\ improvement!
* O((n/ 1> £2) = Om?)
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Constructmg Ahgnments within Blocks

® Solve mini-alignment problems

Block pair represented by
each small square
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Block Ahgnment Dynamlc Programmmg

. Let s denotethe 0pt1ma1 block ahgnentscr
between the first i blocks of # and first j j blocks ot
v

| :
Opiock 1S the penalt
" Si-1j ~ Oblock f(;);of;sertin or
Si . = MaX I g Or'
J Sij1~ Oblock deleting an entire
4 segment of length t
+ /3.
I-1)-1 'B',J ) B is score of pair
\ ,

of blocks in row i
and column j.
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Block Allgnment Runtlme

* Indices i,j range from 0 to n/¢

* Running time of algorithm is

O([n/t]*[n/t1*O(B,))) = O(n*/ %)
* Computing all g ;requires solving (1/t)*(n/1)
mini block alignments, each of size (#*t)

* So computing all g, ;takes time
O((n?/ ) #2) = O(n?)
e [.0oks like a wash, but is it?
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Recall Our Bag of Trlcks

. A key 1n51ght of dynamlc programmmg was to reuse
repeated computations by storing them in a tableau

* Are there any repeated computations in Block
Alignments?

e Let’s check out some numbers...

— Lets assume n =m =4000 and t = 4
— n/t=1000, so there are 1,000,000 blocks

— How many possible blocks are there?

* Assume we are aligning DNA with DNA, so the sequences are over
an alphabet of {A,C,G,T}

* Possible sequences are 4t = 4* = 256,
* Possible alignments are 4! x 4 = 65536
— There are fewer possible alignments than blocks, thus we
must be frequently solving the same alignments!
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Four Ru551ans Techmque

. The trlck is in how to plck t relatlve ton

* choose t = log,(n)/4

* Instead of having (n/t)*(n/t) mini-alignments,
construct 4’ x 4’ mini-alignments for all pairs of ¢
nucleotide sequences, and put in a lookup table.

* However, size of lookup table is not really that
huge if ¢ is small.

 Choose t = (log,n)/4. Then
At x4t =\Inx\n=n

. . n n
which is much less than - X ~
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each sequence
has t nucleotides

9/30/2014

AAAAAA
AAAAAC
AAAAAG
AAAAAT
AAAACA

Lookup table “Score”

AAAAAA
AAAAAC
AAAAAG
AAAAAT
AAAACA

size 1s n, which is much smaller

' than (n/ty*(n/t) > repeats

Rather than precomputing this

table you could actually use a hash
table and compute it lazily

You can also order the sequences

(alphabetize them) to exploit the

symmetry, thus cutting the table-
size in half
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New Recurrence

. The new lookup table Score is mdexed by a palr
of t-nucleotide strings, so

-

Si 1:i - Oy
Si,j = max -1, block

A

Sij-1 ~ Oblock

S;.1j.1 + Score(i™ block of v, j™ block of u)

\
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Four Russians Speedup Runtlme

. Smce computmg the lookup table Score of size 1
takes O(n) time, the running time is dominated
by the (n/t)*(n/t) accesses to the lookup table

* Overall running time: O( [n2/#?] )

* Since t = (log, n)/4, substitute in:
— O( [n?/{log,n}?]) accesses to the lookup table

* How much time for each access?

— Total lookup table size is 4! x 4" = n so safe answer is
O(log,n) using some sort of binary tree

e Total time is therefore
— O( [n?/{log,n}?] - (log,n) ) = O(n?/log,n)
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So Far...

. We can d1V1de up the grld 1nt0 blocks and run
dynamic programming only on the corners of

these blocks

* In order to speed up the mini-alignment
calculations to under n?, we create a lookup table
of size n, which consists of all scores for all ¢-
nucleotide pairs

e Running time goes from quadratic, O(n?), to
subquadratic: O(n?/log n )
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Four Russians Speedup for LCS

. hkethe block partltloned graph te LCS pathl
is not restricted to pass through the vertices of
the blocks.

block alignment longest common subsequence
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Block Ahgnment vs. LCS

. In blck ahgnment we only care about the
corners of the blocks.

* In LCS, we care about all points on the edges of
the blocks, because those are points that the path
can traverse.

* Recall, each sequence is of length 1, each block is
of size t, so each sequence has (1/t) blocks.
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Block Ahgnment vs. LCS: Points Of Interest

block alignment has LCS alignment
(n/t)*(n/t) = (n?/t?) has O(n?/t)
points of interest points of interest
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Traversmg Blocks for LCS

. leen ahgnment scores s; » in the f1rst row and SCOres s.; in

the first column of a t x t mini square, compute alignment
scores in the last row and column of the minisquare.

* To compute the last row and the last column score, we use

these 4 variables:
1. alignment scores s, . in the first row
2. alignment scores s.; in the first column
3. substring of sequence u in this block (4! possibilities)

4. substring of sequence v in this block (4 possibilities)
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Traversmg Blocks for LCS (Cont d)

. If we used this to compute the grld it would
take quadratic, O(n?) time, but we want to do
better.

/\

Given these .
2t — 1 scores

we can calculate
< these 2t — 3 scores

"

t x t block
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Four Russians Speedup

. Bulld a lookup table for all p0581ble Values of the
four variables:
1. all possible scores for the first row s.,

2. all possible scores for the first column s.
3. substring of sequence u in this block (4 possibilities)

4. substring of sequence v in this block (4! possibilities)

* For each quadruple we store the value of the score
for the last row and last column.

* This will be a huge table, but we can eliminate
alignments scores that don’t make sense
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Reducmg Table Size

. Ahgnment scores in LCS are monotomcally
increasing, and adjacent elements can’t differ by
more than 1

* Example: 0,1,2,2,3,4 is 0k; 0,1,2,4,5,8, is not
because 2 and 4 differ by more than 1 (and so do
5 and 8)

* Therefore, we only need to store quadruples
whose scores are monotonically increasing and
differ by at most 1
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Efficient Encodmg of Ahgnment Scores

. Instead of recordmg numbers that correspond to
the index in the sequences u and v, we can use
binary to encode the differences between the
alignment scores

original encoding

( 0 1 2 2 |3 4

1 1 1 0 1 1 binary encoding
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Reducmg Lookup Table Slze

. 2t poss1be scores (t = size of blocks)

* 4! possible strings

— Lookup table size is (2t * 21)*(4t * 4t) = 26t
* Lett=(logn)/4;

— Table size is: 26(logm/4) = p6/4 = ;3/2)

 Table construction time t? - 2%t = (n>(log, n)?)
which is o(n?*/logn), i.e. dominated by the block
alignment time
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Summary

. We take advantage of the fact that for each block
with side lengths t = O(log(n)), we can pre-
compute all possible scores and store them in a
lookup table of size n/2)

* Then we used the Four Russian speedup to go
from a quadratic running time for LCS to
subquadratic running time: O(n?/log n )
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Next Tlme

g Graph Algonthms
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