Lecture 12:
Divide and Conquer Algorithms

Study Chapter 7.1 - 7.4

9/30/2014 COMP 555 Bioalgorithms (Fall 2014)

D1V1de and Conquer Algonthms

— Divide problem into sub-problems

— Conquer by solving sub-problems
recursively. If the sub-problems are small
enough, solve them in brute force fashion

— Combine the solutions of sub-problems into a
solution of the original problem

9/30/2014 COMP 555 Bioalgorithms (Fall 2014) 2

Sortmg Problem Rev151ted

* Given: an unsorted array

51214 |7 (1|3 |26

e Goal: sort it

9/30/2014 COMP 555 Bioalgorithms (Fall 2014) 3

ergesort D1V1de Step

Step 1 — D|V|de

512417 1|13 |2 |6

<5 2| |4 71 |1 3 2| |6

log(n) divisions to split an array of size n into single elements

9/30/2014 COMP 555 Bioalgorithms (Fall 2014) 4

Mergesort Conquer Step

Q2471 3| (2| |6
O(n)

215 4 |7 1|3 2 |6

2 14|57 1121316

logn iterations, each iteration takes O(n) time. Total Time: O(n logn)

9/30/2014 COMP 555 Bioalgorithms (Fall 2014) 5

Mergesort Merge

9/30/2014

2 arrays of size 1 can be easily merged to
form a sorted array of size 2

5 2 |—P» |2 |5

2 sorted arrays of size n and m can be
merged in O(n+m) time to form a sorted
array of size n+m

COMP 555 Bioalgorithms (Fall 2014) 6

9/30/2014

Mergesort Merge

1213 [6
\f//
reil r—-
14157
y) . T 112
— =
pa— Etcetera...

213 |4 / le

COMP 555 Bioalgorithms (Fall 2014)

Merge Algonthm

Merge(a, b)

nl « size of array a
nZ2 « size of array b

dpjpg € ©
an2+](—oo
[1
S 1
for k< 1tonl+ n2
ifa < b
G <« a
[[+]
else
G < b,
N a
return c

9/30/2014 COMP 555 Bioalgorithms (Fall 2014) 8

MergeSort Example

Divide, e T
o S ~ .
20 | 4 7 6 1 3 9 5
N N S O\ O\
20 4 7 6 1 E o | |5 |
[W ~ ~N 7 N
4 20 6 7 1 3 5 9
Conquer . — W —
< 4 6 7 20 1 3 5 9
\ /
1 3 4 5 6 7 9 20
N

9/30/2014 COMP 555 Bioalgorithms (Fall 2014)

MergeSort Algorlthm

Merquort(d
n < size of array ¢
ifn=1

return c

left « list of first n/2 elements of ¢
right < list of last n-n/2 elements of ¢
sortedLeft < MergeSort(/efd
sortedRight < MergeSort(righ?
sortedList < Merge(sortedLeft,sortedRigh?d
10. return sortedList

1.
2.
3.
4.
5.
6.
/.
8.
9.

9/30/2014 COMP 555 Bioalgorithms (Fall 2014) 10

MergeSort Runmng Tlme

C lee by a recurrence relaton
T(n) = 2T (5) +0(n)
T(1) =0(1)

with solution

T(n) =0(nlgn)

Now for a biological problem

9/30/2014 COMP 555 Bioalgorithms (Fall 2014) 11

Ahgnments Requlre Quadra’uc Memory

Alignment Path

* Space complexity for
computing alignment path 4
for sequences of length n
and m is O(nm)

n <

* We keep a table of all scores
and backtracking references
in memory to reconstruct N

the path (backtracking)

9/30/2014 COMP 555 Bioalgorithms (Fall 2014) 12

Computmg Alignment Score with

Alignment Score

However, the space
complexity of just computing
the score itself is only O(n)

For example, we only need n< [

1

the previous column to L
calculate the current column, [
and we can throw away that
previous column once we're

done using it

Ino

-Ir-.
-I...-

T—

-t

—

=

—
— s s s o -
=

L o et e i R B]
—-.-

9/30/2014 COMP 555 Bioalgorithms (Fall 2014) 13

Computing Alighment Score: Recycling Columns

Only two columns of scores are saved at any
given time

v||[® a2l ™ | 2 [elllw

v C eIV VARV A 4 1H\4

viliw VAR 2l | 4 VARVEIL 44

A4 I C e VARV A 4

v VAl VARVEIM
memory for column memory for column
1is used to 2 is used to
calculate column 3 calculate column 4

9/30/2014 COMP 555 Bioalgorithms (Fall 2014) 14

D&C Sequence Ahgnment

Find the best scoring path L

.)
aligning two sequences '

Path(source, sink)
] if(source & sink are in consecutive columns)

2 output the longest path from source to sink

3 else

4. midd/e — vertex with largest score from source to sink
5

6

Path (source, midd/e)
Path(midd/e, sink)

The only problem left is how to find this “middle vertex”!

9/30/2014 COMP 555 Bioalgorithms (Fall 2014) 15

Computmg the Ahgnment Path

Uz m We want to find the Iongest (i.e.
best) path from (0,0) to (n,m) as
it passes through column m/2

ForO<i<n

iNm/2

/ length(i)
Pretx® \ as the length of the longest path

— from (0,0) to (n,m) that passes
Suffx(i), through vertex (i, m/2)

9/30/2014 COMP 555 Bioalgorithms (Fall 2014) 16

Crossmg the Midline

Prefix(i)

Define (mid,m/2) as the vertex where the longest path crosses
the middle column.

length(mid) = optimal length = max, ., length(i)

9/30/2014 COMP 555 Bioalgorithms (Fall 2014) 17

Computing Prefix()

s the len ch of the Iongest pathrom

(0,0) to (i,m/2)

Compute prefix(i) in the left half of the matrix

store prefix(i) column

<4< € ¢ ¢ | <
<

0 m/2 m

9/30/2014 COMP 555 Bioalgorithms (Fall 2014) 18

Computmg Sufflx()

. SuffIX(I) IS the Iength of the Iongest path from (1, m/2) to (n m)
 suffix(i) is the length of the longest path from (n,m) to (i,m/2)
with all edges reversed

« Compute suffix(i) in the right half of the “reversed” matrix

'y

store suffix(i) column

> | > >

0 m/i m

9/30/2014 COMP 555 Bioalgorithms (Fall 2014) 19

Lenth(z) Preﬁx() + Suﬁ'zx

» Add prefix(i) and suffix(i) to compute length(i):
- length()=prefix() + suffix())

* You now have a middle vertex of the maximum
path (I,m/2) as maximum of length(i)

0

Clea o

Clea o

TN
middle point found

VALAL
“ O

Clea b

OCla|l a3 3q|3

m/2

O
}>/
O
O
O
m

9/30/2014 COMP 555 Bioalgorithms (Fall 2014) 20

Fmdmg the M1ddle Pomt

9/30/2014 COMP 555 Bioalgorithms (Fall 2014) 21

Fmdmg the M1ddle Pomt agam

9/30/2014 COMP 555 Bioalgorithms (Fall 2014) 22

And Agam

0O m/8 m/4 3m/8 m/2 5m/8 3m/4 7m/8 m

9/30/2014 COMP 555 Bioalgorithms (Fall 2014) 23

T1me = Area Flrst Pass

On first pass, the algorithm touches the
entire area

Area = n*m

9/30/2014 COMP 555 Bioalgorithms (Fall 2014) 24

Tlme = Area Second Pass

On second pass, the algorithm covers only
1/2 of the area m/2

Area/2

9/30/2014 COMP 555 Bioalgorithms (Fall 2014) 25

Tlme = Area Second Pass

On second pass, the algorithm covers only
1/2 of the area m/2

Area/2

Regardless of I's value!

9/30/2014 COMP 555 Bioalgorithms (Fall 2014) 26

Tlme = Area Th1rd Pass

On third pass, onIy 1/4th is covered.

Area/4

9/30/2014 COMP 555 Bioalgorithms (Fall 2014) 27

Geometric Reduction At Each Iteration

L+ Vst Vh o + (A <2
Runtime: O(Area) = O(nm) |

5t pass: 1/16

N
31 pass: 1/4 i

first pass: 1 4th pass: 1/8

2nd pass: 1/2

Total Space: O(n) for score computation, O(n+m) to store the optimal
alignment

9/30/2014 COMP 555 Bioalgorithms (Fall 2014) 28

Can We Do Even Better7

* Align in Subquadratic Time?

* Dynamic Programming
takes O(nm) for global
alignment, which is
quadratic
assuming n ~ m

* Yes, using the
Four-Russians Speedup

9/30/2014 COMP 555 Bioalgorithms (Fall 2014) 29

Partltlomng Sequences into Blocks

. Partltlon the nxn gr1d into blocks of size t X t

* We are comparing two sequences, each of size n,
and each sequence is sectioned off into chunks,
each of length ¢

* Sequence u = u,...u, becomes

| uq. o uy | |t | oo | Ui Uy
and sequence v = v,...v, becomes

2P 72 R T o2 IR B O /2

9/30/2014 COMP 555 Bioalgorithms (Fall 2014) 30

r N - B
. t 3
/_H
n < t{ > nft
L partition)

9/30/2014 COMP 555 Bioalgorithms (Fall 2014) 31

Block Allgnment

. Block allgnment of sequences u and v:

1. An entire segment of length t in u is aligned
with an entire segment of length ¢ in v

2.An entire segment of length ¢ in is u is deleted
3.An entire segment of length ¢ in is v is deleted

* Block path: a path that traverses every ¢ x ¢
square through its corners

9/30/2014 COMP 555 Bioalgorithms (Fall 2014) 32

Block Ahgnment Examples

valid invalid

9/30/2014 COMP 555 Bioalgorithms (Fall 2014) 33

Block Alignment Problem

. Goal ' Fmd the longest block path through an ed1t
graph

* Input: Two sequences, u and v partitioned into
blocks of size t. This is equivalent to an n x n
edit graph partitioned into ¢ x t subgrids

* Qutput: The block alignment of u and v with the
maximum score (longest block path through the
edit graph)

9/30/2014 COMP 555 Bioalgorithms (Fall 2014) 34

Constructmg Ahgnments within Blocks

. To solve compute ahgnment score ﬁ for each pair

of blocks | qyseq--- U | @NA |V 1ye147.- .U

J°t
* How many blocks are there per sequence?

(n/t) blocks of size ¢

* How many pairs of blocks for aligning the two
sequences?

(n/t) x (n/1)
* For each block pair, solve a mini-alignment problem
of size t x t, which requires t x t = O(#?) effort

e Total cost? 9\ improvement!
* O((n/ 1> £2) = Om?)

9/30/2014 COMP 555 Bioalgorithms (Fall 2014) 35

Constructmg Ahgnments within Blocks

® Solve mini-alignment problems

Block pair represented by
each small square

9/30/2014 COMP 555 Bioalgorithms (Fall 2014) 36

Block Ahgnment Dynamlc Programmmg

. Let s denotethe 0pt1ma1 block ahgnentscr
between the first i blocks of # and first j j blocks ot
v

| :
Opiock 1S the penalt
" Si-1j ~ Oblock f(;);of;sertin or
Si . = MaX I g Or'
J Sij1~ Oblock deleting an entire
4 segment of length t
+ /3.
I-1)-1 'B',J) B is score of pair
\ ,

of blocks in row i
and column j.

9/30/2014 COMP 555 Bioalgorithms (Fall 2014) 37

Block Allgnment Runtlme

* Indices i,j range from 0 to n/¢

* Running time of algorithm is

O([n/t]*[n/t1*O(B,))) = O(n*/ %)
* Computing all g ;requires solving (1/t)*(n/1)
mini block alignments, each of size (#*t)

* So computing all g, ;takes time
O((n?/) #2) = O(n?)
e [.0oks like a wash, but is it?

9/30/2014 COMP 555 Bioalgorithms (Fall 2014) 38

Recall Our Bag of Trlcks

. A key 1n51ght of dynamlc programmmg was to reuse
repeated computations by storing them in a tableau

* Are there any repeated computations in Block
Alignments?

e Let’s check out some numbers...

— Lets assume n =m =4000 and t = 4
— n/t=1000, so there are 1,000,000 blocks

— How many possible blocks are there?

* Assume we are aligning DNA with DNA, so the sequences are over
an alphabet of {A,C,G,T}

* Possible sequences are 4t = 4* = 256,
* Possible alignments are 4! x 4 = 65536
— There are fewer possible alignments than blocks, thus we
must be frequently solving the same alignments!
9/30/2014 COMP 555 Bioalgorithms (Fall 2014) 39

Four Ru551ans Techmque

. The trlck is in how to plck t relatlve ton

* choose t = log,(n)/4

* Instead of having (n/t)*(n/t) mini-alignments,
construct 4’ x 4’ mini-alignments for all pairs of ¢
nucleotide sequences, and put in a lookup table.

* However, size of lookup table is not really that
huge if ¢ is small.

 Choose t = (log,n)/4. Then
At x4t =\Inx\n=n

. . n n
which is much less than - X ~

9/30/2014 COMP 555 Bioalgorithms (Fall 2014) 40

each sequence
has t nucleotides

9/30/2014

AAAAAA
AAAAAC
AAAAAG
AAAAAT
AAAACA

Lookup table “Score”

AAAAAA
AAAAAC
AAAAAG
AAAAAT
AAAACA

size 1s n, which is much smaller

' than (n/ty*(n/t) > repeats

Rather than precomputing this

table you could actually use a hash
table and compute it lazily

You can also order the sequences

(alphabetize them) to exploit the

symmetry, thus cutting the table-
size in half

COMP 555 Bioalgorithms (Fall 2014) 41

New Recurrence

. The new lookup table Score is mdexed by a palr
of t-nucleotide strings, so

-

Si 1:i - Oy
Si,j = max -1, block

A

Sij-1 ~ Oblock

S;.1j.1 + Score(i™ block of v, j™ block of u)

\

9/30/2014 COMP 555 Bioalgorithms (Fall 2014) 42

Four Russians Speedup Runtlme

. Smce computmg the lookup table Score of size 1
takes O(n) time, the running time is dominated
by the (n/t)*(n/t) accesses to the lookup table

* Overall running time: O([n2/#?])

* Since t = (log, n)/4, substitute in:
— O([n?/{log,n}?]) accesses to the lookup table

* How much time for each access?

— Total lookup table size is 4! x 4" = n so safe answer is
O(log,n) using some sort of binary tree

e Total time is therefore
— O([n?/{log,n}?] - (log,n)) = O(n?/log,n)

9/30/2014 COMP 555 Bioalgorithms (Fall 2014) 43

So Far...

. We can d1V1de up the grld 1nt0 blocks and run
dynamic programming only on the corners of

these blocks

* In order to speed up the mini-alignment
calculations to under n?, we create a lookup table
of size n, which consists of all scores for all ¢-
nucleotide pairs

e Running time goes from quadratic, O(n?), to
subquadratic: O(n?/log n)

9/30/2014 COMP 555 Bioalgorithms (Fall 2014) 44

Four Russians Speedup for LCS

. hkethe block partltloned graph te LCS pathl
is not restricted to pass through the vertices of
the blocks.

block alignment longest common subsequence

9/30/2014 COMP 555 Bioalgorithms (Fall 2014) 45

Block Ahgnment vs. LCS

. In blck ahgnment we only care about the
corners of the blocks.

* In LCS, we care about all points on the edges of
the blocks, because those are points that the path
can traverse.

* Recall, each sequence is of length 1, each block is
of size t, so each sequence has (1/t) blocks.

9/30/2014 COMP 555 Bioalgorithms (Fall 2014) 46

Block Ahgnment vs. LCS: Points Of Interest

block alignment has LCS alignment
(n/t)*(n/t) = (n?/t?) has O(n?/t)
points of interest points of interest

9/30/2014 COMP 555 Bioalgorithms (Fall 2014) 47

Traversmg Blocks for LCS

. leen ahgnment scores s; » in the f1rst row and SCOres s.; in

the first column of a t x t mini square, compute alignment
scores in the last row and column of the minisquare.

* To compute the last row and the last column score, we use

these 4 variables:
1. alignment scores s, . in the first row
2. alignment scores s.; in the first column
3. substring of sequence u in this block (4! possibilities)

4. substring of sequence v in this block (4 possibilities)

9/30/2014 COMP 555 Bioalgorithms (Fall 2014) 48

Traversmg Blocks for LCS (Cont d)

. If we used this to compute the grld it would
take quadratic, O(n?) time, but we want to do
better.

/\

Given these .
2t — 1 scores

we can calculate
< these 2t — 3 scores

"

t x t block

9/30/2014 COMP 555 Bioalgorithms (Fall 2014) 49

Four Russians Speedup

. Bulld a lookup table for all p0581ble Values of the
four variables:
1. all possible scores for the first row s.,

2. all possible scores for the first column s.
3. substring of sequence u in this block (4 possibilities)

4. substring of sequence v in this block (4! possibilities)

* For each quadruple we store the value of the score
for the last row and last column.

* This will be a huge table, but we can eliminate
alignments scores that don’t make sense

9/30/2014 COMP 555 Bioalgorithms (Fall 2014) 50

Reducmg Table Size

. Ahgnment scores in LCS are monotomcally
increasing, and adjacent elements can’t differ by
more than 1

* Example: 0,1,2,2,3,4 is 0k; 0,1,2,4,5,8, is not
because 2 and 4 differ by more than 1 (and so do
5 and 8)

* Therefore, we only need to store quadruples
whose scores are monotonically increasing and
differ by at most 1

9/30/2014 COMP 555 Bioalgorithms (Fall 2014) 51

Efficient Encodmg of Ahgnment Scores

. Instead of recordmg numbers that correspond to
the index in the sequences u and v, we can use
binary to encode the differences between the
alignment scores

original encoding

(0 1 2 2 |3 4

1 1 1 0 1 1 binary encoding

9/30/2014 COMP 555 Bioalgorithms (Fall 2014) 52

Reducmg Lookup Table Slze

. 2t poss1be scores (t = size of blocks)

* 4! possible strings

— Lookup table size is (2t * 21)*(4t * 4t) = 26t
* Lett=(logn)/4;

— Table size is: 26(logm/4) = p6/4 = ;3/2)

 Table construction time t? - 2%t = (n>(log, n)?)
which is o(n?*/logn), i.e. dominated by the block
alignment time

9/30/2014 COMP 555 Bioalgorithms (Fall 2014) 53

Summary

. We take advantage of the fact that for each block
with side lengths t = O(log(n)), we can pre-
compute all possible scores and store them in a
lookup table of size n/2)

* Then we used the Four Russian speedup to go
from a quadratic running time for LCS to
subquadratic running time: O(n?/log n)

9/30/2014 COMP 555 Bioalgorithms (Fall 2014) 54

Next Tlme

g Graph Algonthms

9/30/2014 COMP 555 Bioalgorithms (Fall 2014) 55

