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Lecture 14: 
DNA Sequencing  

and Assembly 
Study Chapter 8.9 
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DNA Sequencing 
• Shear DNA into 

millions of small 
fragments 

• Read 500 – 700 
nucleotides at a time 
from the small 
fragments  
(Sanger method) 
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Shotgun Sequencing 

cut many times at 
random (Shotgun) 

Genomic region 

Get one or two 
reads from the ends 

of each segment 
~500 bp ~500 bp 



Illumina HiSeq 2500  (8 @ UNC) 
2 x 100 bp reads 
11 days for 16 samples 
~35 GB per sample (12x coverage) 

High throughput 

Individual labs 

Life Technologies Ion Torrent 
2 hours 
~100 MB to 3 GB 

Illumina MiSeq 
2x250 bp reads 
20 hours, 1 GB per day 

Current sequencing technologies 

Pacific Biosciences (1@UNC) 
1000-10,000 bp reads 
20 min, 200 MB 
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Illumina reversible dye terminator chemistry 

DNA/cDNA 
(0.1-1 ug total RNA) 
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Pacific Biosciences Single-Molecule Real-Time sequencing 

Metzker ML (2010) Nat Rev Genet 

•  No PCR steps are required 
•  Mutated polymerase has slower base incorporation (1-3 bp per second) 
•  Read lengths > 1 kb, but a high error rate (~15%) 
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Fragment Assembly 
• Assembles the individual overlapping short 

reads (fragments) into a genomic sequence 
• Shortest Superstring problem is an overly 

simplified abstraction 
• Problems: 

– DNA read error rate of 1% to 3% 
– Can’t separate coding and template strands 
– DNA is full of repeats 

• Let’s take a closer look 
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Fragment Assembly 

Cover region with ~7-fold redundancy 
Overlap reads and extend to reconstruct the 

original genomic region 

reads 
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Read Coverage 

Length of genomic segment:  L 

Number of reads:                    n         Coverage  C = n l / L 
Length of each read:               l 
 
How much coverage is enough? 
 

 Lander-Waterman model: 
 Assuming uniform distribution of reads, C=10 results in 1 gapped 

region per 1,000,000 nucleotides 

C 
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Challenges in Fragment Assembly 
• > 50% of human genome is repeats: 
  - over 1 million Alu repeats (about 300 bp) 
  - about 200,000 LINE repeats (1000 bp and longer) 
• Repeats are a major problem for fragment assembly 

– assume reads are 100bp and we have 300bp repeats 

Repeat Repeat Repeat 

Green and blue fragments are interchangeable when  
assembling repetitive DNA 



Types of Genome Assemblies 
• De Novo –  

An assembly based entirely on self-consistency 
or self-similarity of short reads (contigs).  

 
• Comparative –  

An assembly of a genome using the sequence of 
a close relative as a reference. Sometimes called 
a “template assembly” or “resequencing” 
 

• Confounding problem for both types: Repeats 
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Repeat Types 
• Low-Complexity DNA (e.g. ATATATATACATA…) 

 
• Microsatellite repeats     (a1…ak)N where k ~ 3-6 

     (e.g. CAGCAGTAGCAGCACCAG) 
• Transposons/retrotransposons    

– SINE    Short Interspersed Nuclear Elements 
     (e.g., Alu: ~300 bp long,  >106 in human) 
 

– LINE    Long Interspersed Nuclear Elements 
     ~500 - 5,000 bp long, > 200,000 in human 
 
– LTR retrotransposons Long Terminal Repeats (~700 bp) at 

                     each end 
• Gene Families   genes duplicate & then diverge 

 
• Segmental duplications  ~very long, very similar copies 
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Overlap-Layout-Consensus Assembly  

Assembler programs ARACHNE, PHRAP, CAP, TIGR, CELERA 

Overlap:  find potentially overlapping reads 

Layout:  merge reads into contigs and                    
               then combine contigs into 
   supercontigs 

Consensus:  requires many overlap-
ping reads to derive the DNA seq-
uence and to correct for read errors 

..ACGATTACAATAGGTT.. 

Common Approach: 
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Overlap 
• Find the best match between the suffix of one 

read and the prefix of another (shortest 
superstring) 

 

• Due to sequencing errors, most algorithms use 
dynamic programming to find the optimal 
overlap alignment 

 

• Filter out fragment pairs that do not share a 
significantly long common substring 
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Overlapping Reads 

TAGATTACACAGATTAC 

TAGATTACACAGATTAC 
||||||||||||||||| 

• Make an index of all k-mers of all reads   
   (k ~ 20-24) 
 

• Find read-pairs sharing a k-mer 
 

• Extend alignment –  
  throw away if not >95% similar 

T GA 

TAGA 
| || 

TACA 

TAGT 
||   
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Histogram Similarity 

• Histogram of 3-mers (18 total) 
 

v = tagattacacagattattga 

A2 C2 G2 T2 

A3:C3:G3:T3 A3:C3:G3:T3 A3:C3:G3:T3 A3:C3:G3:T3 

A1 0:0:0:0 2:0:0:0 2:0:0:0 0:0:0:3 
C1 0:1:1:0 0:0:0:0 0:0:0:0 0:0:0:0 
G1 0:0:0:2 0:0:0:0 0:0:0:0 0:0:0:0 
T1 0:1:1:1 0:0:0:0 1:0:0:0 2:0:1:0 
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Overlapping Reads and Repeats 
• Does this really speed up the process? 
• A k-mer that appears N times, initiates N2 

comparisons (you consider all pairs of reads that 
share the k-mer substring) 

• For an Alu that appears 106 times  1012 
comparisons – too much 

• How to avoid repeats: 
 Discard all k-mers that appear more than  
               t × Coverage, (t ~ 10) 
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Finding Overlapping Reads 

    k-mer table makes it easy to create local multiple 
alignments from the overlapping reads 

TAGATTACACAGATTACTGA 
TAGATTACACAGATTACTGA 
TAG TTACACAGATTATTGA 
TAGATTACACAGATTACTGA 
TAGATTACACAGATTACTGA 
TAGATTACACAGATTACTGA 
TAG TTACACAGATTATTGA 
TAGATTACACAGATTACTGA 
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Finding Overlapping Reads (cont’d) 

• Correct errors using multiple alignment 
and consensus scoring 

TAGATTACACAGATTACTGA 
TAGATTACACAGATTACTGA 
TAG TTACACAGATTATTGA 
TAGATTACACAGATTACTGA 
TAGATTACACAGATTACTGA 

C: 20 
C: 35 
T: 30 
C: 35 
C: 40 

C: 20 
C: 35 
C:  0 
C: 35 
C: 40 

• Score alignments 
• Accept alignments with good scores 
 

A: 15 
A: 25 
A: 40 
A: 25 
-     

A: 15 
A: 25 
A: 40 
A: 25 
A:  0 
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Layout 
• Repeats are still a major challenge 
• Do two aligned fragments really overlap, or are 

they from two copies of a repeat?  
• Solution:  repeat masking – hide the repeats? 

– Masking results in high rate of misassembly (up to 
20%) 

– Misassembly means alot more work at the finishing 
step 
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2. Merge Reads into Contigs 

• Overlap graph: 
– Nodes: reads r1…..rn 
– Edges: overlaps (ri, rj, shift, orientation, score) 

Note: 
of course, we don’t 
know the “color” of 
these nodes 

Reads that come 
from two regions of 
the genome (blue 
and red) that contain 
the same repeat 
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2. Merge Reads into Contigs 

We want to merge reads up to potential repeat boundaries 

repeat region 

Unique Contig 

Overcollapsed Contig 
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2. Merge Reads into Contigs 

• Ignore non-maximal reads 
• Merge only maximal reads into contigs 

repeat region 
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2. Merge Reads into Contigs 

• Remove transitively inferable overlaps 
– If read r overlaps to the right reads r1, r2, 

and r1 overlaps r2, then (r, r2) can be inferred 
by (r, r1) and (r1, r2) 

r r1 r2 r3 
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2. Merge Reads into Contigs 
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2. Merge Reads into Contigs 

• Ignore “hanging” reads, when detecting repeat boundaries 

sequencing error repeat boundary??? 

b 
a 

a 

b 

… 
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Overlap graph after forming contigs 
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Repeats, errors, and contig lengths 
• Repeats shorter than read length are easily resolved 

– Read that spans across a repeat disambiguates order of flanking regions 
 

• Repeats with more base pair diffs than sequencing error rate are OK 
– We throw overlaps between two reads in different copies of the repeat 

 
• To make  the genome appear less repetitive, try to: 

 
– Increase read length 
– Decrease sequencing error rate 

 
Role of error correction: 
 Discards up to 98% of single-letter sequencing errors 
   decreases error rate  
   ⇒ decreases effective repeat content  
   ⇒ increases contig length 
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Consensus 
• A consensus sequence is derived from a profile 

of the assembled fragments 
 

• A sufficient number of reads is required to 
ensure a statistically significant consensus 

 
• Reading errors are corrected 
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Derive Consensus Sequence 

Derive multiple alignment from pairwise read 
alignments 

TAGATTACACAGATTACTGA TTGATGGCGTAA CTA 
TAGATTACACAGATTACTGACTTGATGGCGTAAACTA 
TAG TTACACAGATTATTGACTTCATGGCGTAA CTA 
TAGATTACACAGATTACTGACTTGATGGCGTAA CTA 
TAGATTACACAGATTACTGACTTGATGGGGTAA CTA 

TAGATTACACAGATTACTGACTTGATGGCGTAA CTA 

Derive each consensus base by weighted 
voting 
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Some Assemblers 
• PHRAP 

• Early assembler, widely used, good model of read errors 
• Overlap O(n2) → layout (no mate pairs) → consensus  

• Celera 
• First assembler to handle large genomes (fly, human, mouse) 
• Overlap → layout → consensus 

• Arachne 
• Public assembler (mouse, several fungi) 
• Overlap → layout → consensus 

• Phusion 
• Overlap → clustering → PHRAP → assemblage → consensus 

• Euler 
• Indexing → Euler graph → layout by picking paths → consensus 
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EULER Fragment Assembly 

• Traditional “overlap-layout-consensus” technique has a 
high rate of mis-assembly 

 
• EULER uses the Eulerian Path approach borrowed from 

the SBH problem 
 
• Fragment assembly without repeat masking can be done 

in linear time with greater accuracy 
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Overlap Graph: Hamiltonian Approach 

Find a path visiting every VERTEX exactly once: Hamiltonian path problem 

Each vertex represents a read from the original sequence. 
Vertices from repeats are connected to many others. 

Repeat Repeat Repeat 
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Overlap Graph: Eulerian Approach 

Repeat Repeat Repeat 

Find a path visiting every EDGE 
exactly once: 
Eulerian path problem 

Placing each repeat edge 
together gives a clear 
progression of the path 
through the entire sequence. 

Two solutions 
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Multiple Repeats 
Repeat1 Repeat1 Repeat2 Repeat2 

Can be easily 
constructed with any 
number of repeats 

Two solutions 
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Construction of Repeat Graph 
• Construction of repeat graph from k – mers: 

emulates an SBH experiment with a huge 
(virtual) DNA chip. 

 
• Breaking reads into k – mers: Transform 

sequencing data into virtual DNA chip data. 
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Construction of Repeat Graph (cont’d) 

• Error correction in reads: “consensus first” 
approach to fragment assembly.  Makes reads 
(almost) error-free BEFORE the assembly even 
starts. 

 
• Using reads and mate-pairs to simplify the 

repeat graph (Eulerian Superpath Problem). 
 



Hybrid Sequencing 
• Use short read sequencing to create accurate 

overlap graphs 
 

• Align noisy long reads to overlap graphs to link  
contigs 
– How to align a noisy read to a graph? 
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Conclusions 
• Graph theory is a vital tool for solving biological 

problems 
 
• Wide range of applications, including 

sequencing, motif finding, protein networks, and 
many more 
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