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Lecture 15: 
Protein Sequencing 

 
Study Chapter 8.10-8.15 
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From DNA to Proteins 
• The main steps 

– Regulatory factors cause 
DNA transcription to be 
initiated in a specific gene 

– Transcribed mRNA is a 
sequence of codons  
(nucleotide triplets) each 
specifying an amino acid 

– Ribosome translates and  
assembles the sequence 
of codons into a polypeptide chain = protein 

• Complicating details  
– alternative splicing, RNA editing prior to 

translation, post-translational modifications 
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Proteins 
• Proteins are the “machinery” of life 

– Compose the cellular structures 
– Control the biochemical reactions in cells 
– Regulate and trigger the chain reactions (metabolic 

pathways) that result in the cell’s life cycle 
– Determine which parts of the DNA “code” are 

activated, executed, and when 
• Proteins are assembled as chains of amino acids 

– rapidly fold into a unique 3D structure thereafter 
– folded structure determines their interaction with 

other proteins or molecules 
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Protein Components 

Amino Acid 3-Letter 
Code 

1-Letter  
Code 

Molecular  
Weight 

Alanine Ala A 89.09 

Cysteine Cys C 121.16 

Aspartate Asp D 133.10 

Glutamate Glu E 147.13 

Phenylalanine Phe F 165.19 

Glycine Gly G 75.07 

Histidine His H 155.16 

Isoleucine Ile I 131.18 

Lysine Lys K 146.19 

Leucine Leu L 131.18 

Amino Acid 3-Letter 
Code 

1-Letter  
Code 

Molecular  
Weight 

Methionine Met M 149.21 

Asparagine Asn N 132.12 

Proline Pro P 115.13 

Glutamine Gln Q 146.15 

Arginine Arg R 174.20 

Serine Ser S 105.09 

Threonine The T 119.12 

Valine Val V 117.15 

Tryptophan Trp W 204.23 

Tyrosine Tyr Y 181.19 

• Proteins are made from 20 amino acids 
• amino acids are assembled into chains 100’s to 

1000’s of amino acids long 
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Protein Assembly 
• Amino acids are joined 

by peptide bonds into 
long chains 
– H2O released leaving 

amino acid residues 
– residues connected along 

backbone 
– chemically different 

backbone ends 
• N-terminus 
• C-terminus 

 
 

N-terminus C-terminus 

Backbone 
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Protein Sequencing 
• Purify a sample 
• Break into pieces 

– Proteases cleave 
proteins into  
smaller “peptide” 
chains 

• Read fragments 
– Edman degradation for high-purity short peptide 

sequences 
– Mass spectrometry of peptide fragments to measure 

(mass/charge) 
• Reassemble 

– Relatively easy 
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Peptide Fragmentation 

• Peptides tend to fragment along the backbone. 
• Fragments can also lose neutral chemical groups like 

NH3 and H2O. 

H...-HN-CH-CO    .  .   .   NH-CH-CO-NH-CH-CO-…OH 

Ri-1 Ri Ri+1 

H+ 

Prefix Fragment Suffix Fragment 

Collision Induced Dissociation 

H2O 
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Breaking Peptides into Fragment Ions 

• Proteases, e.g. trypsin, break proteins into peptides. 
• A Tandem Mass Spectrometer further breaks the 

peptides down into fragment ions and measures the 
mass of each piece. 

• Mass Spectrometer accelerates the fragmented ions; 
heavier ions accelerate slower than lighter ones. 

• Mass Spectrometer measures mass/charge ratio of an 
ion. 
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N- and C-terminal Peptides 

NH2- -CO2H 
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Terminal peptides and ion types 

Peptide 

Mass (D)    57  +  97  + 147 + 114  = 415 

Peptide 

Mass (D)    57  +  97  + 147 + 114 – 18 = 397 

without 
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N- and C-terminal Peptides 
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Peptide Sequencing Problem 
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Peptide Sequencing Problem 
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Peptide Sequencing Problem 
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Reconstruct peptide from the set of masses of fragment ions 

                                   (mass-spectrum) 
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Mass Spectra 

G V D L K 

mass 
0 

57 Da = ‘G’  99 Da = ‘V’ L K   D V G 

• The peaks in the mass spectrum: 
– Prefix  
– Fragments with neutral losses (-H2O, -NH3) 
– Noise and missing peaks. 

and Suffix Fragments. 

D 

H
2O
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Protein Identification with MS/MS 

G V D L K 

mass 
0 

In
te

ns
ity

 

mass 
0 

MS/MS 
Peptide 
Identification:  
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Strategies for Protein Identification 
S#: 1708 RT: 54.47 AV: 1 NL: 5.27E6
T: + c d Full ms2 638.00 [ 165.00 - 1925.00]
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Search 

Database of all peptides = 20n 
 

AAAAAAAA,AAAAAAAC,AAAAAAAD,AAAAAAAE,
AAAAAAAG,AAAAAAAF,AAAAAAAH,AAAAAAI, 

 

AVGELTI, AVGELTK , AVGELTL, AVGELTM, 

 

YYYYYYYS,YYYYYYYT,YYYYYYYV,YYYYYYYY 

Database of 
known peptides 

 
MDERHILNM,   KLQWVCSDL, 
PTYWASDL,   ENQIKRSACVM, 
TLACHGGEM,  NGALPQWRT, 
HLLERTKMNVV,   GGPASSDA,   
GGLITGMQSD,  MQPLMNWE, 
ALKIIMNVRT,  AVGELTK,  
HEWAILF,  GHNLWAMNAC, 

GVFGSVLRA,  EKLNKAATYIN.. 
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A Paradox 

• Database of all peptides is huge ≈ O(20n) . 
• Database of all known peptides is much 

smaller ≈ O(108). 
• However, de novo algorithms can be much 

faster, even though their search space is much 
larger! 

• A database search scans all peptides in the 
database of all known peptides search space 
to find best one. 

• De novo eliminates the need to scan database 
of all peptides by modeling the problem as a 
graph search. 
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Strategies for Protein Identification 
S#: 1708 RT: 54.47 AV: 1 NL: 5.27E6
T: + c d Full ms2 638.00 [ 165.00 - 1925.00]
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De novo Peptide Sequencing  
 

S#: 1708 RT: 54.47 AV: 1 NL: 5.27E6
T: + c d Full ms2 638.00 [ 165.00 - 1925.00]
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  S   E    Q   U   E    N    C   E 

Mass/Charge (M/Z) 

a is an ion type shift in b 
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  noise 

Mass/Charge (M/Z) 
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 MS/MS Spectrum 

Mass/Charge (M/z) 

In
te
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ity
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Some Mass Differences between Peaks 
Correspond to Amino Acids 

s 
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Ion Types 
• Some masses correspond to fragment ions, 

others are just random noise 

• Known ion types Δ={δ1, δ2,…, δk} allow us 
distinguish fragment ions from noise 

• We can learn ion types δi and their 
probabilities qi by analyzing a large test 
sample of annotated spectra.  
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Example of Ion Type 

• Δ={δ1, δ2,…, δk}   

• Ion types  

                      {b, b-NH3, b-H2O}  

  correspond to      

                      Δ={0, 17, 18}   
 

*Note: In reality the δ value of ion type b is -1 but we will “hide” it for the sake of simplicity 
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Matching Spectra 

• The match between two spectra is the number of masses 
(peaks) they share (Shared Peak Count or SPC) 

• In practice mass-spectrometrists use the weighted SPC that 
reflects intensities of the peaks 

• Match between experimental and theoretical spectra is 
defined similarly  
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Peptide Sequencing Problem 
Goal: Find a peptide with maximal match between an 

experimental and theoretical spectrum. 
Input: 

– S: experimental spectrum 
– Δ: set of possible ion types 
– m: parent mass 

Output:  
– P: peptide with mass m, whose theoretical 

spectrum best matches the experimental S 
spectrum 
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Vertices of Spectrum Graph 
• Masses of potential N-terminal peptides 

• Vertices are generated by reverse shifts corresponding to ion types  

                                         Δ={δ1, δ2,…, δk} 

• Every N-terminal peptide can generate up to k  ions 

                                         m-δ1, m-δ2, …, m-δk  

• Every mass s in an MS/MS spectrum generates k vertices  

                                 V(s) = {s+δ1, s+δ2, …, s+δk} 

    corresponding to potential N-terminal peptides 

• Vertices of the spectrum graph: 
            {initial vertex}∪V(s1) ∪V(s2) ∪... ∪V(sm) ∪{terminal vertex} 
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Reverse Shifts 

Shift in H2O+NH3 

Shift in H2O 
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Edges of Spectrum Graph 

• Two vertices with mass difference 

corresponding to an amino acid A: 

– Connect with an edge labeled by A 
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Paths 
• Paths in the labeled graph spell out amino acid 

sequences 
 

• There are many paths, how to find the correct 
one? 
 

• We need scoring function to evaluate paths 
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Path Score 

• p(P,S) = probability that peptide P produces 
spectrum S= {s1,s2,…sq} 
 

• p(P, s) = the probability that peptide P generates 
a peak s 
 

• Scoring = computing probabilities 
 

• p(P,S) = ΠsєS p(P, s)  
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• For a position t that represents ion type δj : 

    
                     qj,  if peak is generated at t 

     p(P,st) =  

                         1-qj ,  otherwise 

Peak Score 
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Peak Score (cont’d) 

• For a position t that is not associated with an ion 
type: 

                             qR ,  if peak is generated at t 
      pR(P,st) =  
                             1-qR ,  otherwise 
 
• qR = the probability of a noisy peak that does not 

correspond to any ion type 
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Optimal Paths in the Spectrum Graph 

• For a given MS/MS spectrum S, find a peptide 
P’ maximizing p(P,S) over all peptides P: 
 
 
 

• Peptides = paths in the spectrum graph 
 

• P’ = the optimal path in the spectrum graph 
 

 

 p(P,S)p(P',S) Pmax=
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Ions and Probabilities 

• Tandem mass spectrometry is characterized by a 
set of ion types {δ1,δ2,..,δk} and  their 
probabilities {q1,...,qk} 
 

• δi-ions of a partial peptide are produced 
independently with probabilities qi 
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Ions and Probabilities 
 

• A peptide has all k peaks with probability            
 

• and  no peaks with probability 
 

• A peptide also produces a “random noise” with 
uniform probability qR in any position. 
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Ratio Test Scoring for Partial Peptides 

 
• Incorporates premiums for observed ions and 

penalties for missing ions. 
 

• Example: for k=4, assume that for a partial 
peptide P’ we only see ions δ1,δ2,δ4.  

 
The score is calculated as: 
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Scoring Peptides 
• T-  set of all positions.  

 

• Ti={t δ1,, t δ2,..., ,t δk,}- set of positions that 
represent ions of partial peptides Pi. 
 

• A peak at position tδj  is generated with 
probability qj. 
 

• R=T- (∪Ti ) - set of positions that are not 
associated with any partial peptides (noise).  
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Probabilistic Model 
• For a position t δj ∈ Ti the probability p(t, P,S) that 

peptide P produces a peak  at position t. 
 

 
 
• Similarly, for t∈R, the probability that P produces a 

random noise peak at t is: 
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Probabilistic Score 
• For a peptide P with n amino acids, the score for 

the whole peptide is expressed by the following 
ratio test: 
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De Novo vs. Database Search  
S#: 1708 RT: 54.47 AV: 1 NL: 5.27E6
T: + c d Full ms2 638.00 [ 165.00 - 1925.00]
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HLLERTKMNVV,   GGPASSDA,   
GGLITGMQSD,  MQPLMNWE, 

ALKIIMNVRT,  AVGELTK, 
HEWAILF,  GHNLWAMNAC, 

GVFGSVLRA,  EKLNKAATYIN.. 

Database of 
known peptides 
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TLACHGGEM,  NGALPQWRT, 
HLLERTKMNVV,   GGPASSDA,   
GGLITGMQSD,  MQPLMNWE, 
ALKIIMNVRT,  AVGELTK,  
HEWAILF,  GHNLWAMNAC, 

GVFGSVLRA,  EKLNKAATYIN.. 



10/23/2014 COMP 555  Bioalgorithms  (Fall 2014) 49 

Peptide Identification Problem 
Goal: Find a peptide from the database with maximal 

match between an experimental and theoretical 
spectrum. 

Input: 
– S: experimental spectrum 
– database of peptides 
– Δ: set of possible ion types 
– m: parent mass 

Output:  
– A peptide of mass m from the database whose 

theoretical spectrum matches the experimental S 
spectrum the best 
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MS/MS Database Search 

Database search in mass-spectrometry has been very 
successful in identification of already known proteins. 

 
Experimental spectrum can be compared with theoretical 

spectra of database peptides to find  the best fit. 
 
SEQUEST  (Yates et al., 1995) 
 
But reliable algorithms for identification of new protein forms  

via mutation is a much more difficult problem. 
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Modified Peptides 

• Virtual Database Approach 
• Yates et al.,1995: an exhaustive search in  a virtual 

database of all modified peptides. 
 

• Exhaustive search  leads to a large combinatorial 
problem, even for a small  set of modifications 
types. 
 

• Problem (Yates et al.,1995).  Extend the virtual 
database  approach to a large set of modifications. 
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Exhaustive Search for modified peptides. 

•     YFDSTDYNMAK 
 
 
 

• 25=32 possibilities, with 2 types of 
modifications!  

Phosphorylation? 

Oxidation? 

• For each peptide, 
generate all 
modifications. 

• Score each 
modification. 
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Peptide Identification Challenge 
Very similar peptides may have very different 

spectra! 
 
Goal: Define a  notion of spectral similarity that 

correlates well with the sequence similarity. 
 
If peptides are a few mutations/modifications 

apart, the spectral similarity between their 
spectra should be high. 
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Deficiency of Shared Peaks Count 

Shared peaks count (SPC): intuitive measure of 
spectral  similarity. 

 
Problem: SPC diminishes very quickly as the 

number of mutations increases. 
 
Only a small portion of correlations between the  

spectra of mutated peptides is captured by SPC. 
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SPC Diminishes Quickly 

S(PRTEIN)  = {98, 133, 246, 254, 355, 375, 476, 484, 597, 632} 

S(PRTEYN) = {98, 133, 254, 296, 355, 425, 484, 526, 647, 682} 

S(PGTEYN) = {98, 133, 155, 256, 296, 385, 425, 526, 548, 583} 

no mutations 
SPC=10 

1 mutation 
SPC=5 

2 mutations 
SPC=2 
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Spectral Convolution 

 

S2 −S1 = {s2 − s1:s1 ∈S1,s2 ∈S2}
Number of pairs s1 ∈S1,s2 ∈S2with s2 − s1 = x :

(S2 −S1)(x)

The shared peaks count (SPC peak):
(S2 −S1)(0)
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Elements of S2       S1 represented as elements of a difference matrix. The 
elements with multiplicity >2 are colored; the elements with multiplicity =2 
are circled. The SPC takes into account only the red entries 
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Spectral Convolution: An Example 
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Spectral Comparison: Difficult Case 

S = {10, 20, 30, 40, 50, 60, 70, 80, 90, 100} 
Which of the spectra   

S’ = {10, 20, 30, 40, 50, 55, 65, 75,85, 95}  
or                                 

S” = {10, 15, 30, 35, 50, 55, 70, 75, 90, 95}  
fits the  spectrum S the best? 
 
SPC:  both S’ and S” have 5 peaks in common with S. 
Spectral Convolution: reveals the peaks at 0 and 5. 
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Spectral Comparison: Difficult Case 

S     S’ 

S     S’’ 
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Limitations 

Spectral convolution does not reveal that spectra S 
and S’ are similar, while spectra S and S” are 
not. 

 

Clumps of shared peaks: the matching positions 
in S’ come in clumps while the matching 
positions in S” don't. 

 

This important property  was not captured by 
spectral convolution. 
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Shifts 

A = {a1 < … < an} : an ordered set of natural 
numbers.  

A shift (i,∆) is characterized by two parameters,  
the starting position (i) and the shift distance (∆). 
The shift (i,∆) transforms        
                             {a1, …., an} 
into                    
                 {a1, ….,ai-1,ai+∆,…,an+ ∆ } 
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Shifts: An Example 

The shift (i,∆) transforms       {a1, …., an} 
into                   {a1, ….,ai-1,ai+∆,…,an+ ∆ } 
 

e.g. 
10  20  30  40  50  60  70  80  90 

 

10  20  30  35  45  55  65  75  85 
   

10  20  30  35  45  55  62  72  82 

shift  (4, -5) 

  shift (7,-3) 
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Spectral Alignment Problem  
• Find a series of k shifts that make the sets  

A={a1, …., an} and  B={b1,….,bn} 
    as similar as possible. 

 
• Provides a notion of “k-similarity” between sets 

 
• D(k) - the maximum number of elements in 

common between sets after k shifts (Like SPC). 
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Representing Spectra in 0-1 Alphabet 

• Quantize (bin) the mass dimension  
• Convert spectrum to a 0-1 string with 1s 

corresponding to the positions of the peaks. 
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Comparing Spectra=Comparing 0-1 Strings 

• A modification with positive offset corresponds to 
inserting a block of 0s 

• A modification with negative offset corresponds to 
deleting a block of 0s 

• Comparison of theoretical and experimental spectra 
(represented as 0-1 strings) corresponds to a (somewhat 
unusual)  edit distance/alignment  problem where 
elementary edit operations are insertions/deletions of 
blocks of 0s 

• Use sequence alignment algorithms! 
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Spectral Alignment vs. Sequence Alignment 

• Manhattan-like graph with different alphabet 
and scoring. 

• Movement can be diagonal (matching masses) or  
horizontal/vertical (insertions/deletions 
corresponding to PTMs). 

• At most  k horizontal/vertical  moves. 
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Spectral Product 

A={a1, …., an} and  B={b1,…., bm} 
    Spectral product A⊗B: two-dimensional matrix with nm 

1s corresponding to all pairs of  
    indices (ai,bj) and remaining  
    elements being 0s.   

 

         10  20  30  40  50 55  65   75  85  95 

δ 

1       1       1       1       1   1       1       1       1       1 

1       1       1       1       1   1       1       1       1       1 

1       1       1       1       1   1       1       1       1       1 

1       1       1       1       1   1       1       1       1       1 

1       1       1       1       1   1       1       1       1       1 

1       1       1       1       1   1       1       1       1       1 

1       1       1       1       1   1       1       1       1       1 

1       1       1       1       1   1       1       1       1       1 

1       1       1       1       1   1       1       1       1       1 

1       1       1       1       1   1       1       1       1       1 

SPC: the number of 1s at 
the main diagonal. 

δ-shifted SPC: the number 
of 1s on the diagonal (i,i+ δ) 
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Spectral Alignment: k-similarity  

k-similarity between spectra:  the maximum number of 1s 
on a path through this graph that uses at most k+1 
diagonals. 

  
k-optimal spectral 
 alignment = a path. 
 
The spectral alignment 
allows one to detect 
more and more subtle  
similarities between 
spectra by increasing k. 
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SPC reveals only 
D(0)=3 matching 
peaks. 

Spectral Alignment 
reveals more 
hidden similarities 
between spectra: 
D(1)=5 and D(2)=8 
and detects 
corresponding 
mutations. 

Use of k-Similarity 
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Black line represent  the path for k=0  
Red lines represent the path for  k=1  
Blue lines (right) represents the path for k=2 
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Spectral Convolution’s Limitation 
 The spectral convolution considers diagonals 

separately without combining them into feasible 
mutation scenarios. 

D(1) =10       shift function score = 10    D(1) =6 

         10  20  30  40  50 55  65   75  85  95 
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Dynamic Programming  
for Spectral Alignment 

Dij(k):  the maximum number of 1s on a path to 
(ai,bj ) that uses at most k+1 diagonals. 

 
 
 
 
 
Running time: O(n4 k) 

 

Dij (k) = max
( i ', j ')< ( i, j )

Di ' j ' (k) +1, if (i' , j' ) ~ (i, j)
Di ' j ' (k −1) +1, otherwise

 
 
 

)(max)( kDkD ij
ij

=
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Edit Graph for Fast Spectral Alignment 

diag(i,j) – the position 
of previous 1 on the 
same diagonal as (i,j) 
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Fast Spectral Alignment Algorithm 
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
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Running time: O(n2 k)  
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Spectral Alignment: Complications 

Spectra are combinations of an  increasing (N-
terminal ions)  and a decreasing (C-terminal 
ions) number series. 
 

These series form  two diagonals in the spectral 
product, the main diagonal and the 
perpendicular diagonal. 
 

 The  described algorithm  deals with the main 
diagonal only. 
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Spectral Alignment: Complications 

• Simultaneous analysis of N- and C-terminal ions 
 

• Taking into account the intensities and charges 
 

• Analysis of minor ions 
 


	Lecture 15:�Protein Sequencing
	From DNA to Proteins
	Proteins
	Protein Components
	Protein Assembly
	Protein Sequencing
	Peptide Fragmentation
	Breaking Peptides into Fragment Ions
	N- and C-terminal Peptides
	Terminal peptides and ion types
	N- and C-terminal Peptides
	Peptide Sequencing Problem
	Peptide Sequencing Problem
	Peptide Sequencing Problem
	Mass Spectra
	Protein Identification with MS/MS
	Strategies for Protein Identification
	A Paradox
	Strategies for Protein Identification
	De novo Peptide Sequencing �
	 S  E    Q   U   E    N    C   E
	 
	Slide Number 23
	 
	 
	Slide Number 26
	 
	 MS/MS Spectrum
	Some Mass Differences between Peaks Correspond to Amino Acids
	Ion Types
	Example of Ion Type
	Matching Spectra
	Peptide Sequencing Problem
	Vertices of Spectrum Graph
	Reverse Shifts
	Edges of Spectrum Graph
	Paths
	Path Score
	Peak Score
	Peak Score (cont’d)
	Optimal Paths in the Spectrum Graph
	Ions and Probabilities
	Ions and Probabilities
	Ratio Test Scoring for Partial Peptides
	Scoring Peptides
	Probabilistic Model
	Probabilistic Score
	De Novo vs. Database Search 
	Peptide Identification Problem
	MS/MS Database Search
	Modified Peptides
	Exhaustive Search for modified peptides.
	Peptide Identification Challenge
	Deficiency of Shared Peaks Count
	SPC Diminishes Quickly
	Spectral Convolution
	Slide Number 57
	Spectral Convolution: An Example
	Spectral Comparison: Difficult Case
	Spectral Comparison: Difficult Case
	Limitations
	Shifts
	Shifts: An Example
	Spectral Alignment Problem 
	Representing Spectra in 0-1 Alphabet
	Comparing Spectra=Comparing 0-1 Strings
	Spectral Alignment vs. Sequence Alignment
	Spectral Product
	Spectral Alignment: k-similarity 
	Use of k-Similarity
	Slide Number 71
	Spectral Convolution’s Limitation
	Dynamic Programming �for Spectral Alignment
	Edit Graph for Fast Spectral Alignment
	Fast Spectral Alignment Algorithm
	Spectral Alignment: Complications
	Spectral Alignment: Complications

