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Apphcatlons of Clustermg

. V1ew1ng and analyzmg Vast amounts of
biological data as a whole set can be perplexing

/’“\

* [t is often easier to
interpret data if they
are partitioned into
similar subgroups.

* Such similar groups /45
are “clusters” 4
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Inferrmg Gene Functlonahty

e Researchers often want to know the functions of
newly sequenced genes

* Comparing the new gene sequences to known DNA
sequences often does not give away the function of
gene

* For 40% of sequenced genes, functionality cannot be
ascertained using only comparisons to sequences of
other known genes

* Microarrays or RNA-seq allow biologists to infer
gene function even when sequence similarity alone
is insufficient to infer function.
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Mlcroarrays and Expressmn Analy31s

* Microarrays compare the activity (expression
level) of the genes

— Under varying conditions (e.g.. with and w/o
disease)

— At different time points
— In different tissues

* Expression level is estimated by measuring
the amount of mRNA for that particular gene

— A gene is active if it is being transcribed
— More mRNA usually indicates more gene activity
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Mlcroarray Experlments

— Produce cDNA from mRNA (DNA is more
stable)

— Attach Fhosphor to cDNA to see when a
particular gene is expressed

— Different color phosphors are available to
compare many samples at once

— Hybridize cDNA over the microarray

— Scan the microarray with a phosphor-
illuminating laser

— [llumination reveals transcribed genes

— Scan microarray multiple times for the different
color phosphor’s
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Clustering Result
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Clustermg Mlcroarray Data

* Easier to interpret if partitioned into “gene” or “sample”
clusters

* Conceptually we could treat each gene in N arrays as a
point in N-dimensional space

* Make a distance matrix for the distance between every
two gene points in the N-dimensional space

* Genes with a small distance share the same expression
characteristics and might be functionally related or
similar.

* Clustering reveals groups of functionally related genes
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Clustering of Microarray Data (cont’d)
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Homogeneity and Separation Pr1nc1ples

. Homogene1ty Elements W1th1n a cluster are Close to
each other

* Separation: Elements in different clusters tend to be
further apart from each other

 ...clustering is not an easy task!
Given these points a SIS
clustering algorithm : .t e
might make two distinct
clusters
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Good Clustermg

This clustering satisfies both
Homogeneity and Separation principles
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Bad Clustermg

This clustering violates both
Homogeneity and Separation principles

Close distances
from points In
different clusters

Far distances from
points in the same
cluster
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Clustering Techniques and Terms

Hierarchical: Organize elements into a tree, leaves
represent genes and the length of the paths between
leaves represents the distances between genes. Similar
genes lie within the same subtrees.

- Agflomerative: Start with every element in its own cluster,
and iteratively join clusters together

—  Divisive: Start with one cluster and iteratively divide it into
smaller clusters
Optimization based: Determine point sets that
attempt to minimize distances within clusters
homogeneity) or maximize distances between clusters
separation)
—  K-means, K-mediods, Vector Quantization (VQ)
Dendrogram: A tree representation of clustering,

where one dimension is metric and others are some
meaningful ordering of the points being clustered
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Hierarchical Clustermg Example

Agglomemtwe Start W1th eaCh pomt as a cluster
Join closest two clusters, Form a new cluster using
the joined clusters, Repeat.

| {91, 92, 93,794, Os: 96 97, Os» Jo}

{91, 92, 94 96: 975 Yo}

{9, 94, 97, 9o} Branch heights
correspond to

{glv 96} time they were

{92, 94,97} ".

{92, 94}
{93, 95, g} I‘—l

"

9s U5 Us 91 Us 97 92 9a Yo
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H1erarch1cal Clustermg Example

Controlling the number of clusters: Establish a threshold
of joining distance. Remove all clusters above it.

I {91, 92, 93, 94, 95, 961 97, 9y Go}

‘{glv 02: 95 96, 97, Jo}

{91, 96}

{92, 94,97}

{92, 94}

{93, 95, 9}
{93, 95} “
O3 U5 U5 91 Us 97 92 Usa Yo
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Agglomeratlve Issues

. Wh1ch clusters to ]om7
— Distance based
e Cluster means

* Closest pair

* Closest to mediod
(most centrally located
point in cluster)

— Variance based

e Minimize residuals of a
model fit

* Closest after projection onto
axis with greatest variance
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Hierarchical Clustermg Algonthm

H|erarch|cal CIusterlnq(d /7)

1
2 Form n clusters each with one element

3 Construct a graph 7 by assigning one vertex to each cluster

A while there is more than one cluster

5. Find the two “closest” clusters C; and G,

6. Merge C; and G, into new cluster Cwith /C;/ +/C,/ elements

7 Compute distance from Cto all other clusters

8 Add a new vertex Cto 7 and connect to vertices C, and G,

9. Remove rows and columns of d corresponding to C, and G,

10. Add a row and column to d corresponding to the new cluster C
11 return 7

The algorithm takes an nxn distance matrix d of
pairwise distances between points as an input.
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Hierarchical Clustermg Example

Dzvzswe Start W1th a smgle cluster Composed of all pomts
Choose largest cluster, Split or partition it based on any
metric.

I {91, 92, 93, 94, 95, 96: 97, 95y Do}

{91, 92, 94 96: 975 Yo}

{92 94,97, 9o}

{91, 96}

{92, 94,97}

{93, 95, 9g}

99
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Divisive Issues

. Advantage Termmates when ob]ectlve is met

— A target number of clusters
— Minimize size/variance of largest cluster
— Achieves a desired separation metric between clusters
* Division Criteria
— Minimize distance between the separating
hyperplane and the closest point to each cluster

— Minimize residual variance
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Hierarchical Clustermg cont'd)

. I—I1erarch1cal Clustermg is often used to Construct
trees for explaining evolutionary history
(Phylogeny Trees)
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Hierarchical Clustermg Algorlthm

] Hierarchical Clustering (d, n)

2 Form n clusters each with one element

3 Construct a graph 7 by assigning one vertex to each cluster
A while there is more than one cluster

5. Find the two closest clusters C; and G,

6. Merge C; and G, into new cluster Cwith /C,/ +/C,/ elements
7

8

9

1

1

Compute distance from Cto all other clusters
Add a new vertex Cto 7 and connect to vertices C, and G,
Remove rows and columns of d corresponding to C, and G,

0. Add a row and column to d corresponding to the new cluster C
1 return 7

Different definitions of
“distances between clusters”
may lead to different clusterings
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Hierarchical Clustering: Recomputing

A PP U P U P U P U D P A D P U D P LD ‘!h 3 T S 1 ™ 2 TP ']-l‘s-IEf-"

Dlstances

* d,.(C, C)= min d(xy)

for all elements x in C and y in C

— Distance between two clusters is the smallest distance between any
pair of their elements

* d(CCY=(1/ ICTICI) Y dxy)
for all elements x in C and y in C

— Distance between two clusters is the average distance between all
pairs of their elements
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Optlmlzatlon-based Approaches

*  Need a function to optimize— “Squared-Error Distortion”
*  (QGiven a data point V and a set of points X,
define the distance from v to X

d(v, X)

as the (Euclidean) distance from Vv to the closest point from X.

*  Given a set of n data points V={v,...v,} and a set of k points X,
define the Squared Error Distortion

d(V,X)=Ydv, X)2/n 1<i<n
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K-Means Clustering Problem: Formulation

* Input: A set, V, consisting of n points and a
parameter k

* Output: A set X consisting of k points (cluster
centers) that minimizes the squared error
distortion d(V,X) over all possible choices of X
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1-Mean Clustering Problem: an Easy Case

B LR g TP Dl EP A D P D B Dol P e T Dl P Dol P D P el A e TP D P D P e P D P e PR S T PP T T

* Input: A set, V, consisting of n points

* Output: A single point x (cluster center) that
minimizes the squared error distortion d(V,x)
over all possible choices of x

x is just the centroid (mean) of all points

1-Mean C

ustering problem is easy.

However, it becomes very difficult

(NP-comp!

ete) for more than one center.

An efficient heuristic method for K-Means
clustering is the Lloyd algorithm
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K-Means Clustermg Lloyd Algorlthm

. LIovd Alqorlthm

]

2.  Arbitrarily assign the k& cluster centers
3.  while the cluster centers keep changing
4

Assigh each data point to the cluster C;
corresponding to the closest cluster
representative (center) (1 < /< k)

5. Compute new cluster representatives
according to the center of gravity of each
cluster, that is, the new cluster representative is

>v/ |C forallvinC for every cluster C

This may lead to merely a locally optimal clustering.
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Conservatlve K-Means Algorlthm

. Lloyd algorlthm is fast but in each iteration it moves
many data points, not necessarily converging.

* A more conservative method would be to move one
point at a time only if it improves the overall
clustering cost

The smaller the clustering cost of a partition of data
points is the better that clustering is

Different methods (e.g., the squared error
distortion) can be used to measure this clustering
cost

11/6/2014 Comp 555 Bioalgorithms (Fall 2014) 31



K-Means Greedy Algorlthm

. ProqressweGreedeMeans(k)

1

2. Select an arbitrary partition Pinto k clusters
3. while forever

4. bestChange < 0

5. for every cluster C

6. for every element /notin C

7. if moving /7to cluster C reduces its clustering cost
8. if (cost(P - cost(P;, 0 > bestChange
9. bestChange < cost(P) - cost(P. 5 )
10. RSN

/1. cC <« C

12. if bestChange > 0O

13. Change partition P by moving /" to C
/4. else

15. return P
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How to choose k?

As k increases the squared error distortion
decreases

— zero error when k = n, but also zero utility

e Strategy

100%

B0% - /5’"”‘
60% - /
40% 4

20% A

— Increase k until squared
error distortion or other
measure of variance
exhibits diminishing
returns

Percent of varian ce explain ed

0%
1 2 3 4 5 6 7 8 9

Number of clusters
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Are there better algor1thms7

g There are many more algorlthms
— Some with better properties
— Some more suitable to specific data
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