Lecture 21:
Imperfect Tree
Construction

Study Chapter 10.9 - 10.11
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Last time ...

. Construct an evolutlonary tree that explams present
day genetic diversity

— Given n x n distance matrix D recording gene dissimilarity
among n species

— Find n leaf weighted binary tree T such that
Dij = dij(T)
— Internal nodes record the putative historical divergence of
species
— Edge weights correspond to time intervals under the
molecular clock assumption

* AdditivePhylogeny algorithm
— finds T when D is additive
— but usually D is not additive!
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Least- Squares Distance Phylogeny Problem

e If the distance matrix D is NOT additive, then we look for a tree T
that approximates D the best:

Squared Error: ;. (d,(T) - D;)?

* Squared Error is a measure of the quality of the fit between
distance matrix and the tree: we want to minimize it.

* Least Squares Distance Phylogeny Problem: finding the best
approximation tree T for a non-additive matrix D (NP-hard).
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* Unweighted Pair Group Method with
Arithmetic Mean (UPGMA)

* UPGMA is a hierarchical clustering algorithm:

— assigns the distance between clusters to be the
average pairwise distance

— assigns a height to every vertex in the tree,
that is midway between the cluster distances

11/13/2014 Comp 555 Bioalgorithms (Fall 2014) 5



Balanced Cluster Mergmg
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UPGMA’s Weakness

. The algorlthm produces an ultmmetrzc tree the
distance from the root to every leaf is the same

UPGMA models a constant molecular clock:

— all species represented by the leaves in the tree

— assumed to coexist at t=0 and to have accumulated
mutations (and thus evolve) at the same rate.

In reality the assumptions of UPGMA are
seldom true, but they are frequently
approximately true.
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Clustermg in UPGMA

Given two dls]omt clusters C, C]- of sequences,

1
d;; = S d
J ‘CiHCj‘ peCi, qeC; .

Note that if C, = C; ~ C. then the distance to another
cluster C is the Welgflted distance from C; and C,

dil C, jI‘Cj‘

=" +,

11/13/2014 Comp 555 Bioalgorithms (Fall 2014) 8



UPGMA Algorlthm

Inltlahzatlon

Assign each x; to its own cluster C;
Define one leaf per sequence, each at height 0
Iteration:

Find two clusters C;and C; such that d;; is min

Let G, =C, v (

Add a vertex connecting C;, C;and place it at height d;;/2
Delete C;and C,

Termination:

When a single cluster remains
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UPGMA Algorlthm (cont’d)
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Ahgnment Matrix vs. Distance Matrix

Sequence a gene of length m nucleotides in n
species to generate an...

n x m alignment matrix

CANNOT be
transformed back

into alignment Transform
matrix because v into. ..

information was
lost on the

forward n X n distance
transformation m atri X
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Character-Based Tree Reconstruction

. Better techmque

— Character-based reconstruction algorithms
use the n x m alignment matrix

(n = # species, m = #characters)
directly instead of using distance matrix.

— GOAL: determine what character strings at internal
nodes would best explain the character strings for the
n observed species
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Character-Based Tree Reconstruction

. Characters may be nucleotldes of an ahgned
DNA, where A, G, C, T, - are states of this
character (genotypes)

* Other view of characters may be as traits like the
# of eyes or legs or the shape of a beak or a fin
(phenotypes)

* By setting the length of an edge in the tree to the
Hamming distance between character
sequences, we may define the parsimony score
of the tree as the sum of the lengths (weights) of
the edges
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Parsimony Approach to
_Evolutionary Tree Reconstruction

* Assumes observed character differences result
from the simplest possible, most parsimonious,
explanation (i.e. the fewest mutations)

* Seeks the tree that yields lowest possible
parsimony score - sum of cost of all changes
mutations found in the tree

* Example: What is the most parsimonious
ancestor to the following three sequences:

{ATCG, ATCC, ACGG}
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Pars1mony Scores

. leen ancestors and a tree relatmg them to the leafs, it is
a simple matter to compute a parsimony score

ACTC ATGC ATGG
ANN
ATCC ACGG ATGT ATCC ATGG ATCG
NN N
ATCG ATCC ATCG ACGG ATCC ACGG
Parsimony score: 5 Parsimony score: 6 Parsimony score: 4
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Character-Based Tree Reconstruction

(a) Parsimony Score=23 (b)) Parsimony Score=2

Figure 10,16 If we label a tree’s leaves with characters (in this case, eyebrows and
mouth, each with two states), and choose labels for each internal vertex, we implicitly
create a parsimony score for the tree. By changing the labels in {a) we are able to create
a tree with a better parsimony score in (b).

11/13/2014 Comp 555 Bioalgorithms (Fall 2014) 16



Small Parsimony Problem

. I np utTreeTW1th each leaf labeled by an m— “
character string.

* Qutput: Labeling of internal vertices of the tree T
with ancestors that minimize the parsimony
score.

* We can assume that every leaf is labeled by a
single character, because the characters in the
string are independent.
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We1ghted Small Par51mony Problem

* A more general version of Small Parsimony
Problem

Input includes a k Xk scoring matrix describing the
cost of transformation of each of k states into
another one

For the Small Parsimony problem, the scoring
matrix is simply the Hamming distance

dy(v, w) = 0 if v=w
dy(v, w) =1 otherwise
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Scormg Matrices

Small Parsimony Problem  Weighted Parsimony Problem

A|T|G|C A T|G]|C
AlO0O ] T |11 AlO 4 |9
T]11]0 1|1 T]13]02 |4
G|1]1T|0]|1 G|4]2 0|4
C|1]1|11]0 Cl1914(4|0
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Unwe1ghted VS. We1ghted

Small Parsimony Scoring Matrix:

AlT|G]|C
/\

T C
AWA
C GT C
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Unwe1ghted VS. We1ghted

Weighted Parsimony Scoring Matrix:

A A|T|G|C
3/ \9 AlO|314109
T|[3|0|2]4
Gl4|2]0]4
clo|4]4]0

/Y 7\
C Weighted Parsimony Score: 22
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Weighted Small Parsimony
__ Problem: Formulation

* Input: Tree T with each leaf labeled by elements
of a k-letter alphabet and a k x k scoring matrix

(9})

* Qutput: Labeling of internal vertices of the tree T
minimizing the weighted parsimony score
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Sankoff S Algorlthm

. Check the chlldren of a
vertex and determine the
minimum between them

* An example

i |A T G C
a1 0 3 a Y
T(3 0 2 ¢
G|l4 2 0 4
Cl9 4 4 0
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Sankoff Algorithm°

* Calculate and keep track of a score for every
possible label at each vertex

— 5,(v) = minimum parsimony score of the subtree
rooted at vertex v if v has character ¢

e The score at each vertex is based on scores of its
children:

— s,(parent) = min, {s;( left child) + ¢, } +
min; {s,( right child) + ¢, }
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Sankoff Algorlthm

. Begm at leaves
— If leaf has the character in question, score is

— Else, score is o

" . e M w
f_',..{x "r-ﬂ“‘\
g .
/
(TT=]=]e=] [ [=1e] 0] [ [0 o) [eTee | 0[]
A T 6 C A T @ C A T @ C A T @ c
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Sankoff Algorlthm

s |A T ¢ ¢ S(v)=min{su) + 5 3+
AlDO 3 4 9 min.{s.(W) + o
T|3 0 2 4 {si(W) + 9 &
G|4 2 0 4 _
cly ¢« & 0 GEIETETE] ) | &, 5 [sum
AT G
Alo ]| oo
sa(v) =0
+ min{s;(w) + & A} T o | 3]
G 00 4 00
C 00 9 00
(TT=l=]®) [El=]=][0)
T R R
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Sankoff Algorlthm (cont )

s |A T ¢ ¢ S(v)=min{su) + 5 3+
AlO 3 4 9 In.ds. .
T|3 0 2 4 m'nJ{SJ(W) T é] t}
G|l 4 2 0 4 pu
Ci® ¢ % O IFTTITTT] o si(w) J, 4 |sum
A T G 0
Sx(v) =0
+90=9 00 3 0

|!|m|u]m] loo | oo | 00

AT G C A T G C
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Sankoff Algorlthm (cont )

5 F A T 6 ¢ S(v)=min{siu) + 4 J+
AlO0O 3 4 9 In.{s. .
T!3 o0 2 ¢ man{SJ(W) T é], '[}
G4 2 0 4 _
C19 ¢ % © SITIRES]
AT @

Repeat for T, G, and C

(Tel=l=) [(El=J=]0]

A T G C A T G C
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Sankoff Algorlthm (cont )

((Te]m[ew] [leTe]d] | [eo ﬁ[ulml Bl® 0] %)

(-]
113204 * T 8 € o0 55T Bigofithms (s 20Ty @ © AT G G




Sankoff Algorlthm (cont )

Repeat for root

AT 6 ¢

A T @ C

q"'.

(Te]=[e] [El=]l=]d] [ d(=]e] [w]=]0]=]

(-]
1713204 * T 8 € oo 558 Biigofithms 20Ty @ € AT & G




Sankoff Algorlthm (cont )

Smallest score at root IS minimum welghted

par3|mony Score (7w 1] In this case, 9 -
A T 4 ¢ ]
so label with T

(=== El=I=]7 [EI=[=] L_l;-]ﬂ[w_]
A T G € AT G ¢ AT @ ¢ T @

11/13/2014 Comp 555 Bioalgorithms (Fall 2014) 31



Sankoff Algorithm: Traveling down the

* The scores at the root vertex have been
computed by going up the tree

* After the scores at root vertex are computed the
Sankoff algorithm moves down the tree and
assign each vertex with optimal character.
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Sankoff Algorlthm (cont )

O i1s derived from 7 + 2
So left child is T, R EEEARLY

Andrightchildis T
EARANIND CI2IETE)

A T @

(Te]=[e] [El=]l=]d] [ d(=]e] [w]=]0]=]

(-]
1713204 * T 8 € oo 558 Biigofithms 20Ty @ € AT @ G




Sankoff Algorlthm (cont )

((Telm]=] [ 90 (o= [0 ]| D] [a [0 ee] [co[ee | 0] o |
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Fitch'’s Algonthm

. Also solves Small Par81m0ny problem

* Assigns a set of characters to every vertex
in the tree.

* If the two children’s sets of character overlap, it’s
the common set (intersection) of them

* If not, it's the combined set (union) of them.

11/13/2014 Comp 555 Bioalgorithms (Fall 2014) 35



Fltch S Algorlthm contd)

An example:
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Fitch Algorithm

1 ) Asmgn a sel of posszble letters to every Vertex
traversing the tree from leaves to root

e Each node’s set is the union of its children’s sets
(leaves contain their label) if they are disjoint

— E.g. if the node we are looking at has a left child
labeled {A} and a right child labeled {C}, the node

will be given the set {A, C}
e Each node’s set is the intersection of its
children’s sets (leaves contain their label) if they
overlap

— E.g. if the node we are looking at has a left child
labeled {A, C} and a right child labeled {A, T}, the
node will be given the set {A}
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Fitch Algonthm (cont )

2 ) Asmgn labels to each Vertex traversmg the tree
from root to leaves

* Assign root arbitrarily from its set of letters

* For all other vertices, if its parent’s label is in its
set of letters, assign it its parent’s label

* Else, choose an arbitrary letter from its set as its
label
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Fltch Algonthm (cont )

A C G G
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Fltch VS. Sankoff

. Both have an O(nk) runtlme

* Are they actually different?

* Let's compare ...
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As seen previously:

{A C,G}
— {AQ G}
A G G {G) W G G (G
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Companson of Fitch and Sankoff

. As seen earher the scormg matrlx for the F1tch
algorithm is merely:

A|lT|G]|C
AlO|T]|1]1
T]11]10]1]|1
Gl1|1]0]|1
c|1(1]11]0

* So let’s do the same problem using Sankoff algorithm
and this scoring matrix
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Sankof

((Telm]=w] [=[=]=]0] [m[w][0][=]
T @ O© AT G ¢ AT G
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Sankoff vs. Fitch

. The Snkoff algorlth gles the sam set of optlal
labels as the Fitch algorithm

* For Sankoff algorithm, character ¢ is optimal for vertex v
if 5,(v) = min, .;45;(v)
— Denote the set of optimal letters at vertex v as S(v)

o If S(left child) and S(right child) overlap,
assign S(parent) is the intersection

* else assign S(parent) the union of S(left child) and S(right child)

e This is also the Fitch recurrence

* The two algorithms are identical
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Large Parsunony Problem

o Input An nxm matrlx M descrlbmg n spec1es

each represented by an m-character string

* Output: A tree T with n leaves labeled by the n
rows of matrix M, and a labeling of the internal
vertices such that the parsimony score is
minimized over all possible trees and all
possible labelings of internal vertices

No tree is provided.
. So we have to infer
.' both the tree and
the ancestor
characters
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Large Pars1mony Problem (cont )

. P0581b1e search space is huge espec1ally as n
increases
* How many rooted binary trees with n leafs?

~ (2n-3)!
Tn)= 2"2(n —2)!

T(n)tor2,3,4,5,6,7,8,9,10, ...
1, 3,15, 105, 945, 10395, 135135, 2027025, 34459425...
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Large Pars1mony Problem (cont.)

* Problem is NP-complete

— Exhaustive search only possible w/ small n(< 10)

e Hence, branch and bound or heuristics used

11/13/2014 Comp 555 Bioalgorithms (Fall 2014) 47



Nearest Neighbor Interchange
A Greedy Algorithm

> P WP O OP OO OO OISO OO OO OO DU

* A Branch Swapping algorithm

* Only evaluates a subset of all possible trees
* Defines a neighbor of a tree as one reachable by a
nearest neighbor interchange

— A rearrangement of the four subtrees defined by one
internal edge

— Only three different rearrangements per edge
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Nearest Ne1ghbor Interchange (Cont )
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Nearest Nelghbor Interchange (Cont )

* Start with an arbitrary tree and check its
neighbors

* Move to a neighbor if it provides the best
improvement In parsimony score

* No way of knowing if the result is the most
parsimonious tree

* Could be stuck in local optimum
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Summary

— distance-based evolutionary trees

* Additive guarantees that the tree would reproduce all
pairwise distances, but not all distance matrices are additive

 Sequences = Distances 7 Sequences

— character-based evolutionary trees
* Trees directly from sequences
* The most general version is hard (Large parsimony)

* More recent approach - Perfect phylogeny tree
— Nodes are current or ancestral sequences
— Edges are actual mutations (SNPs)
— Leverages “Infinite sites model”
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