
11/20/2014 Comp 555 Bioalgorithms (Fall 2014) 1

Lecture 23:
Randomized Algorithms

Chapter 12

11/20/2014 Comp 555 Bioalgorithms (Fall 2014) 2

Randomized Algorithms
• Randomized algorithms incorporate random,

rather than deterministic, decisions
• Commonly used in situations where no exact

and/or fast algorithm is known
• Main advantage is that no input can reliably

produce worst-case results because the
algorithm runs differently each time.

11/20/2014 Comp 555 Bioalgorithms (Fall 2014) 3

Select
• Select(L, k) finds the kth smallest element in L
• Select(L,1) find the smallest…

– Well known O(n) algorithm

• Select(L, len(L)/2) find the median…
– How?
– median = sorted(L)[len(L)/2]  O(n logn)

• Can we find medians, or 1st quartiles in O(n)?

minv = HUGE
for v in L:
 if (v < minv):
 minv = v

11/20/2014 Comp 555 Bioalgorithms (Fall 2014) 4

Select Recursion
• Select(L, k) finds the kth smallest element in L

– Select an element m from unsorted list L and
partition L the array into two smaller lists:

 Llo - elements smaller than m
 and
 Lhi - elements larger than m.

• If len(Llo) > k then
 Select(Llo, k)

• else if k > len(Llo) + 1 then
 Select(Lhi, k - len(Llo) - 1)

• else m is the kth smallest element

11/20/2014 Comp 555 Bioalgorithms (Fall 2014) 5

Example of Select(L, 5)

Given an array: L = { 6, 3, 2, 8, 4, 5, 1, 7, 0, 9 }

Step 1: Choose the first element as m

 L = { 6, 3, 2, 8, 4, 5, 1, 7, 0, 9 }

Our Selection

11/20/2014 Comp 555 Bioalgorithms (Fall 2014) 6

Example of Select(cont’d)

Step 2: Split the array into Llo and Lhi

 Llo = { 3, 2, 4, 5, 1, 0 }

 L = { 6, 3, 2, 8, 4, 5, 1, 7, 0, 9 }

 Lhi = { 8, 7, 9 }

11/20/2014 Comp 555 Bioalgorithms (Fall 2014) 7

Example of Select(cont’d)

Step 3: Recursively call Select on either Llo or Lhi
until len(Llo) = k, then return m.
len(Llo) > k = 5  Select({ 3, 2, 4, 5, 1, 0 }, 5)

m = 3

Llo = { 2, 1, 0 } Lhi = { 4, 5 }

m = 4
Llo = { empty }, Lhi = { 5 }

k = 5 > len(Llo) +1  Select({4, 5 }, 5 - 3 - 1)

k = 1 == len(Llo) + 1  return 4

11/20/2014 Comp 555 Bioalgorithms (Fall 2014) 8

Select Code

def select(L, k):
 value = L[0]
 Llo = [t for t in data if t < value]
 Lhi = [t for t in data if t > value]
 below = len(Llo) + 1
 if (k < len(Llo)):
 return select(Llo, k)
 elif (k > below):
 return select(Lhi, k - below)
 else:
 return value

11/20/2014 Comp 555 Bioalgorithms (Fall 2014) 9

Select Analysis with Good Splits

• Runtime depends on our selection of m:

 - A good selection will split L evenly such that

 |Llo | = |Lhi |= |L|/2

 - The recurrence relation is:
 T(n) = T(n/2)

 - n + n/2 + n/4 + n/8 + n/16 + ….= 2n  O(n)

Same as search
for minimum

11/20/2014 Comp 555 Bioalgorithms (Fall 2014) 10

Select Analysis with Bad Splits

However, a poor selection will split L unevenly and in the
worst case, all elements will be greater or less than m so
that one Sublist is full and the other is empty.

For a poor selection, the recurrence relation is
 T(n) = T(n-1)

In this case, the runtime is O(n2).

Our dilemma:

O(n) or O(n2),
 depending on the list… or O(n log n) independent of it

I could have sort ed
first and done
bet t er

11/20/2014 Comp 555 Bioalgorithms (Fall 2014) 11

Select Analysis (cont’d)

• Select seems risky compared to sort
• To improve Select, we need to choose m

to give good ‘splits’
• It can be proven that to achieve O(n) running

time, we don’t need a perfect splits, just
reasonably good ones.

• In fact, if both subarrays are at least of size n/4,
then running time will be O(n).

• This implies that half of the choices of m make
good splitters.

11/20/2014 Comp 555 Bioalgorithms (Fall 2014) 12

A Randomized Approach
• To improve Select, randomly select m.
• Since half of the elements will be good splitters,

if we choose m at random we will get a 50%
chance that m will be a good choice.

• This approach will make sure that no matter
what input is received, the expected running
time is small.

Randomized Select

11/20/2014 Comp 555 Bioalgorithms (Fall 2014) 13

def randomizedSelect(L, k):
 value = random.choice(L)
 Llo = [t for t in data if t < value]
 Lhi = [t for t in data if t > value]
 below = len(Llo) + 1
 if (k < len(Llo)):
 return randomizedSelect(Llo, k)
 elif (k > below):
 return randomizedSelect(Lhi, k-below)
 else:
 return value

11/20/2014 Comp 555 Bioalgorithms (Fall 2014) 14

RandomizedSelect Analysis

• Worst case runtime: O(n2)
• Expected runtime: O(n).
• Expected runtime is a good measure of the

performance of randomized algorithms, often
more informative than worst case runtimes.

• Worst case runtimes are rarely repeated
• RandomizedSelect always returns the correct

answer, which offers a way to classify
Randomized Algorithms.

11/20/2014 Comp 555 Bioalgorithms (Fall 2014) 15

Two Types of Randomized Algorithms

• Las Vegas Algorithms – always produce the
correct solution (i.e. randomizedSelect), but may
exceed expected time bound with small
probability

• Monte Carlo Algorithms – do not always return
the correct solution (but typically meet a worst
case boudn)

• Las Vegas Algorithms are always preferred, but
not always easy to come by.

cctgatagacgctatctggctatccaGgtacTtaggtcctctgtgcgaatctatgcgtttccaaccat

agtactggtgtacatttgatCcAtacgtacaccggcaacctgaaacaaacgctcagaaccagaagtgc

aaacgtTAgtgcaccctctttcttcgtggctctggccaacgagggctgatgtataagacgaaaatttt

agcctccgatgtaagtcatagctgtaactattacctgccacccctattacatcttacgtCcAtataca

ctgttatacaacgcgtcatggcggggtatgcgttttggtcgtcgtacgctcgatcgttaCcgtacgGc

11/20/2014 Comp 555 Bioalgorithms (Fall 2014) 16

The Motif Finding Problem
Motif Finding Problem: Given a list of t sequences

each of length n, find the “best” pattern of length
l that appears in each of the t sequences.

l = 8

t=5

DNA

n = 69

11/20/2014 Comp 555 Bioalgorithms (Fall 2014) 17

A New Motif Finding Approach
• Motif Finding Problem: Given a list of t

sequences each of length n, find the “best”
pattern of length l that appears in each of the t
sequences.

• Previously: we solved the Motif Finding
Problem using a Branch and Bound or a
Greedy technique.

• Now: randomly select possible locations and
find a way to greedily change those locations
until we converge to the hidden motif.

11/20/2014 Comp 555 Bioalgorithms (Fall 2014) 18

Profiles Revisited
• Let s = (s1,...,st) be the starting positions for l-

mers in our t sequences.
• The substrings corresponding

to these starting positions
will form:

 - t x l alignment matrix
 - 4 x l profile matrix*

 * Note that we now define the
profile matrix in terms of
frequency, not counts as in
Lecture 5.

 a G g t a c T t
 C c A t a c g t
 a c g t T A g t
 a c g t C c A t
 C c g t a c g G

 A 0.6 0.0 0.2 0.0 0.6 0.2 0.2 0.0
 C 0.4 0.8 0.0 0.0 0.2 0.8 0.0 0.0
 G 0.0 0.2 0.8 0.0 0.0 0.0 0.6 0.2
 T 0.0 0.0 0.0 1.0 0.2 0.0 0.2 0.8

 X a c g t a c g t

P(X|profile)=0.6*0.8*0.8*1.0*0.6*0.8*0.6*0.8 = 0.0885

l

t

4

11/20/2014 Comp 555 Bioalgorithms (Fall 2014) 19

• Let l-mer a = a1, a2, a3, … al
• P(a|P) is defined as the probability that an

l-mer a was created by the Profile P.
• If a is very similar to the consensus string of P

then P(a|P) will be high
• If a is very different, then P(a|P) will be low.
 l
 Prob(a|P) =Π p(ai,i)
 i=1

Scoring Strings with a Profile

11/20/2014 Comp 555 Bioalgorithms (Fall 2014) 20

Scoring Strings with a Profile (cont’d)

Given a profile: P =

A 1/2 7/8 3/8 0 1/8 0
C 1/8 0 1/2 5/8 3/8 0
T 1/8 1/8 0 0 1/4 7/8
G 1/4 0 1/8 3/8 1/4 1/8

 Prob(aaacct|P) = ???
The probability of the consensus string:

11/20/2014 Comp 555 Bioalgorithms (Fall 2014) 21

Scoring Strings with a Profile (cont’d)

Given a profile: P =

A 1/2 7/8 3/8 0 1/8 0
C 1/8 0 1/2 5/8 3/8 0
T 1/8 1/8 0 0 1/4 7/8
G 1/4 0 1/8 3/8 1/4 1/8

 Prob(aaacct|P) = 1/2 x 7/8 x 3/8 x 5/8 x 3/8 x 7/8 = .033646
The probability of the consensus string:

11/20/2014 Comp 555 Bioalgorithms (Fall 2014) 22

Scoring Strings with a Profile (cont’d)

Given a profile: P =

A 1/2 7/8 3/8 0 1/8 0
C 1/8 0 1/2 5/8 3/8 0
T 1/8 1/8 0 0 1/4 7/8
G 1/4 0 1/8 3/8 1/4 1/8

Prob(atacag|P) = 1/2 x 1/8 x 3/8 x 5/8 x 1/8 x 1/8 = .001602

 Prob(aaacct|P) = 1/2 x 7/8 x 3/8 x 5/8 x 3/8 x 7/8 = .033646
The probability of the consensus string:

Probability of a different string:

11/20/2014 Comp 555 Bioalgorithms (Fall 2014) 23

P-Most Probable l-mer

• Define the P-most probable l-mer from a sequence as an
l-mer in that sequence which has the highest probability
of being created from the profile P.

A 1/2 7/8 3/8 0 1/8 0
C 1/8 0 1/2 5/8 3/8 0
T 1/8 1/8 0 0 1/4 7/8
G 1/4 0 1/8 3/8 1/4 1/8

P =

Given a sequence = ctataaaccttacatc, find the P-most
probable l-mer

11/20/2014 Comp 555 Bioalgorithms (Fall 2014) 24

Third try: c t a t a a a c c t t a c a t c

Second try: c t a t a a a c c t t a c a t c

First try: c t a t a a a c c t t a c a t c

P-Most Probable l-mer (cont’d)

A 1/2 7/8 3/8 0 1/8 0
C 1/8 0 1/2 5/8 3/8 0
T 1/8 1/8 0 0 1/4 7/8
G 1/4 0 1/8 3/8 1/4 1/8

Find the Prob(a|P) of every possible 6-mer:

-Continue this process to evaluate every possible 6-mer

11/20/2014 Comp 555 Bioalgorithms (Fall 2014) 25

P-Most Probable l-mer (cont’d)

String, Highlighted in Red Calculations prob(a|P)

ctataaaccttacat 1/8 x 1/8 x 3/8 x 0 x 1/8 x 0 0

ctataaaccttacat 1/2 x 7/8 x 0 x 0 x 1/8 x 0 0

ctataaaccttacat 1/2 x 1/8 x 3/8 x 0 x 1/8 x 0 0

ctataaaccttacat 1/8 x 7/8 x 3/8 x 0 x 3/8 x 0 0

ctataaaccttacat 1/2 x 7/8 x 3/8 x 5/8 x 3/8 x 7/8 .0336

ctataaaccttacat 1/2 x 7/8 x 1/2 x 5/8 x 1/4 x 7/8 .0299

ctataaaccttacat 1/2 x 0 x 1/2 x 0 1/4 x 0 0

ctataaaccttacat 1/8 x 0 x 0 x 0 x 0 x 1/8 x 0 0

ctataaaccttacat 1/8 x 1/8 x 0 x 0 x 3/8 x 0 0

ctataaaccttacat 1/8 x 1/8 x 3/8 x 5/8 x 1/8 x 7/8 .0004

Compute prob(a|P) for every possible 6-mer:

11/20/2014 Comp 555 Bioalgorithms (Fall 2014) 26

P-Most Probable l-mer (cont’d)

String, Highlighted in Red Calculations Prob(a|P)

ctataaaccttacat 1/8 x 1/8 x 3/8 x 0 x 1/8 x 0 0

ctataaaccttacat 1/2 x 7/8 x 0 x 0 x 1/8 x 0 0

ctataaaccttacat 1/2 x 1/8 x 3/8 x 0 x 1/8 x 0 0

ctataaaccttacat 1/8 x 7/8 x 3/8 x 0 x 3/8 x 0 0

ctataaaccttacat 1/2 x 7/8 x 3/8 x 5/8 x 3/8 x 7/8 .0336
ctataaaccttacat 1/2 x 7/8 x 1/2 x 5/8 x 1/4 x 7/8 .0299

ctataaaccttacat 1/2 x 0 x 1/2 x 0 1/4 x 0 0

ctataaaccttacat 1/8 x 0 x 0 x 0 x 0 x 1/8 x 0 0

ctataaaccttacat 1/8 x 1/8 x 0 x 0 x 3/8 x 0 0

ctataaaccttacat 1/8 x 1/8 x 3/8 x 5/8 x 1/8 x 7/8 .0004

P-Most Probable 6-mer in the sequence is aaacct:

11/20/2014 Comp 555 Bioalgorithms (Fall 2014) 27

P-Most Probable l-mer (cont’d)

ctataaaccttacatc

because Prob(aaacct|P) = .0336 is greater
than the Prob(a|P) of any other 6-mer in the
sequence.

aaacct is the P-most probable 6-mer in:

11/20/2014 Comp 555 Bioalgorithms (Fall 2014) 28

Dealing with Zeroes

• In our toy example prob(a|P)=0 in many cases.
In practice, there will be enough sequences so
that the number of elements in the profile with a
frequency of zero is small.

• To avoid many entries with prob(a|P)=0, there
exist techniques to equate zero to a very small
number so that one zero does not make the
entire probability of a string zero (assigning a
prior probability, we will not address these
techniques here).

11/20/2014 Comp 555 Bioalgorithms (Fall 2014) 29

P-Most Probable l-mers in Many Sequences

• Find the P-most probable
l-mer in each of the “t”
sequences.

ctataaacgttacatc

atagcgattcgactg

cagcccagaaccct

cggtataccttacatc

tgcattcaatagctta

tatcctttccactcac

ctccaaatcctttaca

ggtcatcctttatcct

A 1/2 7/8 3/8 0 1/8 0

C 1/8 0 1/2 5/8 3/8 0

T 1/8 1/8 0 0 1/4 7/8

G 1/4 0 1/8 3/8 1/4 1/8

P=

11/20/2014 Comp 555 Bioalgorithms (Fall 2014) 30

P-Most Probable l-mers in Many
Sequences (cont’d)

ctataaacgttacatc

atagcgattcgactg

cagcccagaaccct

cggtgaaccttacatc

tgcattcaatagctta

tgtcctgtccactcac

ctccaaatcctttaca

ggtctacctttatcct

 P-Most Probable l-mers form a new profile

1 a a a c g t

2 a t a g c g

3 a a c c c t

4 g a a c c t

5 a t a g c t

6 g a c c t g

7 a t c c t t

8 t a c c t t

A 5/8 5/8 4/8 0 0 0

C 0 0 4/8 6/8 4/8 0

T 1/8 3/8 0 0 3/8 6/8

G 2/8 0 0 2/8 1/8 2/8

11/20/2014 Comp 555 Bioalgorithms (Fall 2014) 31

Comparing New and Old Profiles

Red – frequency increased, Blue – frequency decreased

1 a a a c g t

2 a t a g c g

3 a a c c c t

4 g a a c c t

5 a t a g c t

6 g a c c t g

7 a t c c t t

8 t a c c t t

A 5/8 5/8 4/8 0 0 0

C 0 0 4/8 6/8 4/8 0

T 1/8 3/8 0 0 3/8 6/8

G 2/8 0 0 2/8 1/8 2/8

A 1/2 7/8 3/8 0 1/8 0

C 1/8 0 1/2 5/8 3/8 0

T 1/8 1/8 0 0 1/4 7/8

G 1/4 0 1/8 3/8 1/4 1/8

11/20/2014 Comp 555 Bioalgorithms (Fall 2014) 32

Greedy Profile Motif Search

Use P-Most probable l-mers to adjust start positions until
we reach a “best” profile; this is the motif.

1) Select random starting positions.
2) Create a profile P from the substrings at these starting

positions.
3) Find the P-most probable l-mer a in each sequence and

change the starting position to the starting position of a.
4) Compute a new profile based on the new starting

positions after each iteration and proceed until we
cannot increase the score anymore.

11/20/2014 Comp 555 Bioalgorithms (Fall 2014) 33

GreedyProfileMotifSearch Algorithm

1. GreedyProfileMotifSearch(DNA, t, n, l)
2. Randomly select starting positions s=(s1,…,st) from DNA
3. bestScore  0
4. while Score(s, DNA) > bestScore
5. form profile P from s
6. bestScore  Score(s, DNA)
7. for i  1 to t
8. Find a P-most probable l-mer a from the ith sequence
9. si  starting position of a
10. return bestScore

11/20/2014 Comp 555 Bioalgorithms (Fall 2014) 34

GreedyProfileMotifSearch Analysis

• Since we choose starting positions randomly, there
is little chance that our guess will be close to an
optimal motif, meaning it will take a very long time
to find the optimal motif.

• It is unlikely that the random starting positions will
lead us to the correct solution at all.

• In practice, this algorithm is run many times with
the hope that random starting positions will be close
to the optimum solution simply by chance.

11/20/2014 Comp 555 Bioalgorithms (Fall 2014) 35

Gibbs Sampling
• GreedyProfileMotifSearch is probably not the

best way to find motifs.
• However, we can improve the algorithm by

introducing Gibbs Sampling, an iterative
procedure that discards one l-mer after each
iteration and replaces it with a new one.

• Gibbs Sampling proceeds more slowly and
chooses new l-mers at random increasing the
odds that it will converge to the correct solution.

11/20/2014 Comp 555 Bioalgorithms (Fall 2014) 36

How Gibbs Sampling Works
 1) Randomly choose starting positions
 s = (s1,...,st) and form the set of l-mers associated
 with these starting positions.
 2) Randomly choose one of the t sequences.
 3) Create a profile P from the other t -1 sequences.
 4) For each position in the removed sequence,

 calculate the probability that the l-mer starting at
 that position was generated by P.

 5) Choose a new starting position for the removed
 sequence at random based on the probabilities
 calculated in step 4.

 6) Repeat steps 2-5 until there is no improvement

11/20/2014 Comp 555 Bioalgorithms (Fall 2014) 37

Gibbs Sampling: an Example
Input:
 t = 5 sequences, motif length l = 8

 1. GTAAACAATATTTATAGC

 2. AAAATTTACCTCGCAAGG

 3. CCGTACTGTCAAGCGTGG

 4. TGAGTAAACGACGTCCCA

 5. TACTTAACACCCTGTCAA

11/20/2014 Comp 555 Bioalgorithms (Fall 2014) 38

Gibbs Sampling: an Example
1) Randomly choose starting positions,
 s=(s1,s2,s3,s4,s5) in the 5 sequences:

 s1=7 GTAAACAATATTTATAGC

 s2=11 AAAATTTACCTTAGAAGG

 s3=9 CCGTACTGTCAAGCGTGG

 s4=4 TGAGTAAACGACGTCCCA

 s5=1 TACTTAACACCCTGTCAA

11/20/2014 Comp 555 Bioalgorithms (Fall 2014) 39

Gibbs Sampling: an Example

2) Choose one of the sequences at random:
 Sequence 2: AAAATTTACCTTAGAAGG

 s1=7 GTAAACAATATTTATAGC
 s2=11 AAAATTTACCTTAGAAGG

 s3=9 CCGTACTGTCAAGCGTGG

 s4=4 TGAGTAAACGACGTCCCA

 s5=1 TACTTAACACCCTGTCAA

11/20/2014 Comp 555 Bioalgorithms (Fall 2014) 40

Gibbs Sampling: an Example
2) Choose one of the sequences at random:
 Sequence 2: AAAATTTACCTTAGAAGG

 s1=7 GTAAACAATATTTATAGC

 s3=9 CCGTACTGTCAAGCGTGG

 s4=4 TGAGTAAACGACGTCCCA

 s5=1 TACTTAACACCCTGTCAA

11/20/2014 Comp 555 Bioalgorithms (Fall 2014) 41

Gibbs Sampling: an Example

3) Create profile P from l-mers in remaining 4 sequences:

1 A A T A T T T A
3 T C A A G C G T

4 G T A A A C G A

5 T A C T T A A C

A 1/4 2/4 2/4 3/4 1/4 1/4 1/4 2/4

C 0 1/4 1/4 0 0 2/4 0 1/4

T 2/4 1/4 1/4 1/4 2/4 1/4 1/4 1/4

G 1/4 0 0 0 1/4 0 3/4 0
Consensus

String
T A A A T C G A

11/20/2014 Comp 555 Bioalgorithms (Fall 2014) 42

Gibbs Sampling: an Example

4) Calculate the prob(a|P) for every possible 8-mer
in the removed sequence:

 Strings Highlighted in Red prob(a|P)

AAAATTTACCTTAGAAGG .000732
AAAATTTACCTTAGAAGG .000122
AAAATTTACCTTAGAAGG 0
AAAATTTACCTTAGAAGG 0
AAAATTTACCTTAGAAGG 0
AAAATTTACCTTAGAAGG 0
AAAATTTACCTTAGAAGG 0
AAAATTTACCTTAGAAGG .000183
AAAATTTACCTTAGAAGG 0
AAAATTTACCTTAGAAGG 0
AAAATTTACCTTAGAAGG 0

11/20/2014 Comp 555 Bioalgorithms (Fall 2014) 43

Gibbs Sampling: an Example

5) Create a distribution of probabilities of
l-mers prob(a|P), and randomly select a new
starting position based on this distribution.

Starting Position 1: prob(AAAATTTA | P) = .706

Starting Position 2: prob(AAATTTAC | P) = .118

Starting Position 8: prob(ACCTTAGA | P) = .176

A) To create this distribution, divide each
probability prob(a|P) by the total:

11/20/2014 Comp 555 Bioalgorithms (Fall 2014) 44

Gibbs Sampling: an Example

 B) Select a new starting position at random
according to computed distribution:

P(selecting starting position 1): .706
P(selecting starting position 2): .118
P(selecting starting position 8): .176

t = random.random()
if (t < .706):
 # use position 1
elif (t < (.706 + .118)):
 # use position 2
else:
 # use position 8

11/20/2014 Comp 555 Bioalgorithms (Fall 2014) 45

Gibbs Sampling: an Example
Assume we select the substring with the highest
probability – then we are left with the following
new substrings and starting positions.

 s1=7 GTAAACAATATTTATAGC

 s2=1 AAAATTTACCTCGCAAGG

 s3=9 CCGTACTGTCAAGCGTGG

 s4=5 TGAGTAATCGACGTCCCA

 s5=1 TACTTCACACCCTGTCAA

11/20/2014 Comp 555 Bioalgorithms (Fall 2014) 46

Gibbs Sampling: an Example
6) We iterate the procedure again with the above

starting positions until we cannot improve the
score any more.

11/20/2014 Comp 555 Bioalgorithms (Fall 2014) 47

Gibbs Sampler in Practice

• Gibbs sampling needs to be modified when
applied to samples with biased distributions of
nucleotides (relative entropy approach).

• Gibbs sampling often converges to locally
optimal motifs rather than globally optimal
motifs.

• Must be run with many randomly chosen seeds
to achieve good results.

11/20/2014 Comp 555 Bioalgorithms (Fall 2014) 48

Another Randomized Approach

• Random Projection Algorithm is a different way to
solve the Motif Finding Problem.

• Guiding principle: Instances of a motif agree at a
subset of positions.

• However, it is unclear how to find these “non-
mutated” positions.

• To bypass the effect of mutations within a motif, we
randomly select a subset of positions in the pattern
creating a projection of the pattern.

• Search for that projection in a hope that the selected
positions are not affected by mutations in most
instances of the motif.

11/20/2014 Comp 555 Bioalgorithms (Fall 2014) 49

Projections

• Choose k positions in string of length l.
• Concatenate nucleotides at chosen k positions to

form k-tuple.
• This can be viewed as a projection of l-

dimensional space onto k-dimensional subspace.

ATGGCATTCAGATTC TGCTGAT

l = 15 k = 7 Projection

Projection = (2, 4, 5, 7, 11, 12, 13)

11/20/2014 Comp 555 Bioalgorithms (Fall 2014) 50

Random Projections Algorithm
• Select k out of l

positions uniformly at
random.

• For each l-tuple in input
sequences, hash into
buckets based on the
k selected positions.

• Recover motif from
enriched buckets that
contain many l-tuples
with at least one from
each sequence.

Bucket TGCT

TGCACCT

Input sequence:
…T C A A T G C A C C T A T...

11/20/2014 Comp 555 Bioalgorithms (Fall 2014) 51

Random Projections Algorithm (cont’d)

• Some projections will fail to detect motifs but if we try

many of them the probability that one of the buckets fills
increases.

• In the example below, the bucket **GC*AC is “bad”
while the bucket AT**G*C is “good”

ATGCGTC

...ccATCCGACca...

...ttATGAGGCtc...

...ctATAAGTCgc...

...tcATGTGACac... (1,2,5,7) projection

ATGCGTC

...ccATCCGACca...

...ttATGAGGCtc...

...ctATAAGTCgc...

...tcATGTGACac... (3,4,6,7) projection

11/20/2014 Comp 555 Bioalgorithms (Fall 2014) 52

Example
• l = 7 (motif size) , k = 4 (projection size)
• Choose projection (1,2,5,7)

GCTC

...TAGACATCCGACTTGCCTTACTAC...

Buckets

ATGC

ATCCGAC

GCCTTAC

11/20/2014 Comp 555 Bioalgorithms (Fall 2014) 53

Hashing and Buckets
• Hash function h(x) obtained from k positions of

projection.
• Buckets are labeled by values of h(x).
• Enriched buckets: contain more than s l-tuples, for

some parameter s with representatives from all
sequences

ATTC CATC GCTC ATGC

11/20/2014 Comp 555 Bioalgorithms (Fall 2014) 54

Motif Refinement
• How do we recover the motif from the sequences in

enriched buckets?
• k nucleotides are exact matches, (hash key of bucket).
• Use information in other l-k positions as starting point

for local refinement scheme, e.g. Gibbs sampler.

Local refinement algorithm ATGCGAC
Candidate motif

ATGC

ATCCGAC

ATGAGGC
ATAAGTC

ATGCGAC

11/20/2014 Comp 555 Bioalgorithms (Fall 2014) 55

Synergy between Random Projection
and Gibbs Sampler

• Random Projection is a procedure for finding good
starting points: every enriched bucket is a potential
starting point.

• Feeding these starting points into existing algorithms
(like Gibbs sampler) provides good local search in
vicinity of every starting point.

• These algorithms work particularly well for “good”
starting points.

11/20/2014 Comp 555 Bioalgorithms (Fall 2014) 56

Building Profiles from Buckets

A 1 0 .25 .50 0 .50 0

C 0 0 .25 .25 0 0 1

G 0 0 .50 0 1 .25 0

T 0 1 0 .25 0 .25 0

 Profile P

Gibbs sampler

Refined profile P*

ATCCGAC

ATGAGGC

ATAAGTC

ATGTGAC

ATGC

11/20/2014 Comp 555 Bioalgorithms (Fall 2014) 57

Motif Refinement
• For each bucket h containing more than s

sequences, form profile P(h)

• Use Gibbs sampler algorithm with starting point
P(h) to obtain refined profile P*

11/20/2014 Comp 555 Bioalgorithms (Fall 2014) 58

Random Projection Algorithm

• Choose a random k-projection.
• Hash each l-mer x in input sequence into bucket

labeled by h(x)
• From each enriched bucket (e.g., a bucket with more

than s sequences), form profile P and perform Gibbs
sampler motif refinement

• Candidate motif is best found by selecting the best
motif among refinements of all enriched buckets.

A Single Iteration:

11/20/2014 Comp 555 Bioalgorithms (Fall 2014) 59

Choosing Projection Size
• Projection size k
 - choose k small enough so that several motif

instances hash to the same bucket.
 k << l, l / 2 < k < l - const

 - choose k large enough to avoid contamination
by spurious l-mers:

 4k >> t (n - l + 1)

	Lecture 23:�Randomized Algorithms
	Randomized Algorithms
	Select
	Select Recursion
	Example of Select(L, 5)
	Example of Select(cont’d)
	Example of Select(cont’d)
	Select Code
	Select Analysis with Good Splits
	Select Analysis with Bad Splits
	Select Analysis (cont’d)
	A Randomized Approach
	Randomized Select
	RandomizedSelect Analysis
	Two Types of Randomized Algorithms
	The Motif Finding Problem
	A New Motif Finding Approach
	Profiles Revisited
	Scoring Strings with a Profile
	Scoring Strings with a Profile (cont’d)
	Scoring Strings with a Profile (cont’d)
	Scoring Strings with a Profile (cont’d)
	P-Most Probable l-mer
	P-Most Probable l-mer (cont’d)
	P-Most Probable l-mer (cont’d)
	P-Most Probable l-mer (cont’d)
	P-Most Probable l-mer (cont’d)
	Dealing with Zeroes
	P-Most Probable l-mers in Many Sequences
	P-Most Probable l-mers in Many Sequences (cont’d)
	Comparing New and Old Profiles
	Greedy Profile Motif Search
	GreedyProfileMotifSearch Algorithm
	GreedyProfileMotifSearch Analysis
	Gibbs Sampling
	How Gibbs Sampling Works
	Gibbs Sampling: an Example
	Gibbs Sampling: an Example
	Gibbs Sampling: an Example
	Gibbs Sampling: an Example
	Gibbs Sampling: an Example
	Gibbs Sampling: an Example
	Gibbs Sampling: an Example
	Gibbs Sampling: an Example
	Gibbs Sampling: an Example
	Gibbs Sampling: an Example
	Gibbs Sampler in Practice
	Another Randomized Approach
	Projections
	Random Projections Algorithm
	Random Projections Algorithm (cont’d)
	Example
	Hashing and Buckets
	Motif Refinement
	Synergy between Random Projection and Gibbs Sampler
	Building Profiles from Buckets
	Motif Refinement
	Random Projection Algorithm
	Choosing Projection Size

