A Space-efficient and Hardware-friendly Implementation of Ptex

Sujeong Kim*
University of North Carolina at Chapel Hill
Department of Computer Science

Karl Hillesland'
Advanced Micro Devices, Inc.

I

Justin Hensley*
Advanced Micro Devices, Inc.

(a) Rendered asset with texture data

(b) Texture data stored as atlas

(c) Texture data stored as packed Ptex data

Figure 1: /(a) shows a single Ptex asset rendered in our real-time graphics engine. 1(b) shows the texture data stored as a texture atlas, and
I(c) shows the same base texture data stored as a packed Ptex texture. Only 63% of the texels in the texture atlas contain actual color data,
while 93% of texels in the packed Ptex texture contain data. Additionally, the packed Ptex texture contains all the mip-map levels instead
of just a single level. The packed Ptex texture needs only 10% extra texels added to accelerate bilinear texture filtering. This rather modest
increase in size can be eliminated at the cost of manually performing interpolation in shader.

Abstract

We introduce a method to pack Ptex per-face texture data that
is both space-efficient and hardware-friendly. Recently presented
real-time implementations of Ptex have been wasteful with space
and required a storage cost many times higher than the size of the
original texture data. Our method packs multiple levels of Ptex
data together, and requires only around 8% increase in storage for
our test textures. Additionally, because of efficient data packing,
our method wastes less space than a typical texture atlas, which re-
quires buffer regions to be added between the separate charts within
the texture.

CR Categories: 1.3.7 [Computer Graphics]: Three-dimensional
Graphics and Realism—Texture;

Keywords: real-time graphics, texturing

1 Introduction and Background

Texture mapping is an integral part of real-time graphics applica-
tions, and in a typical application such as a video game, each art as-
set will have one or more UV-sets paired with the texture data. Un-
fortunately, handling the UV-sets introduces several complications.
First, the actual creation of the UV-map is an art unto itself be-
cause most automatic generation methods do not create maps with
high enough quality. Often, an artist will have to modify the gen-
erated UV-maps by hand, which is a labor-intensive task, to get the
desired look. Additionally, small local changes to a UV-map can

*e-mail:sujeong @cs.unc.edu
te-mail:karl.hillesland @amd.com
te-mail:justin.hensley @amd.com

cause drastic, non-local effects on rendered images. For instance,
increasing the effective sampling density in one region of the UV-
map will necessarily affect the sampling density in the rest of the
UV-map. Finally, seams in the UV-map add additional complexity
to UV-map creation when using tessellation due to the difficulty in
preventing cracks.

A texture atlas is a common way to pack a model’s surface data into
a single texture; an example is shown in Image 1(b). As can be seen
in this image, there are a large number of unused texels - in this tex-
ture, only 63% of the texels store actual surface data. Additionally,
colors can bleed from one piece to another in the down-sampled
mip-map levels when the pieces are too close together in the at-
las, and a texture atlas does not give the artist fine control over the
creation of the mip-map.

Ptex [Burley and Lacewell 2008], a UV-less per-face texturing
method, solves many of the issues with traditional texture mapping,
and is becoming widely used in the film industry. The need to as-
sign UV-maps is completely eliminated with Ptex, and resolution
can be varied independently for each face.

The basic idea of Ptex is to store a small texture, including its mip-
map chain, for each face of the model along with the adjacency in-
formation for each face. Using the adjacency information, seamless
interpolation can be handled at run time by searching through the
neighboring faces when necessary. Because multiple digital con-
tent creation applications natively support Ptex, it is an attractive
technique to modify for real time use because it can be integrated
into existing art pipelines relatively easily.

There are a couple of complicating factors to implementing a real-
time version of Ptex. Ptex’s native per-face texture data is not very
GPU-friendly because the built-in interpolation hardware cannot be
used across the edges of the faces. Additionally, directly storing



the texture blocks in separate textures is impractical due to cur-
rent graphics APIs, which limit the number of textures that can be
bound at any one time. Recently, a real-time implementation of
Ptex was presented [McDonald and Burley 2010]. Unfortunately,
this method used a wasteful packing strategy that increased the stor-
age cost of the textures many times over their original size.

We introduce a packing strategy for Ptex data that is both space-
efficient and hardware-friendly. Using our method, we found that
Ptex ends up being more efficient than a typical texture atlas, while
remaining efficient to render in real time. For our test textures, we
found that our packing increases the size of the texture by approxi-
mately 8%. An additional 10% was added for the borders to enable
hardware bilinear interpolation. This compares with a texture atlas
that increased the texture by approximately 58%. While our method
does not require DirectX 11-class hardware, it does easily enable an
art pipeline to bring subdivision-based art assets to real-time appli-
cations on hardware that supports domain and hull shaders.

2 Implementation

To pack the Ptex data, faces are sorted by maximum resolution of
their textures. To enable hardware bilinear filtering, a border of
one pixel is added to each block. The border data is then copied
from the neighboring blocks using the adjacency information pro-
vided by Ptex. For a given resolution, the per-face texture blocks
are packed in row-major order, starting from the left edge of the
packed texture for each resolution. Each mipmap level of a face’s
texture is stored with its respective resolution, not with its respec-
tive face. However, the ordering within each resolution slice is still
according to maximum resolution sorting.

Given this face ordering, we can generate a small table that tells
us the starting index for faces that contain the corresponding max-
imum resolution or higher. We can also generate a table indexed
by resolution that tells us the starting row in the packed texture for
each resolution. These two tables, called nRes and nRow respec-
tively, are used in the pixel shader to clamp to available resolutions
and compute texture coordinates within the packed texture. Be-
cause we need to compute the LOD per pixel, this step must be
done in the pixel shader, and cannot be done in the domain shader.
Code Listing 1 shows how to use nRes and nRow for the simple
case of square face texture resolutions and nearest-mip selection. It
is trival to extend the method to non-square textures and trilinear
filtering.

Listing 1: HLSL to sample packed data

// UV is parameterization within face [0,1]
int log2 = ComputeMipLevel (UV);

// Clamp to highest resolution available.
while (log2>= 0 && nRes[log2] > facelD)
—log2;

// Assuming square face textures for illustration
int size = (1 << log2) + 2;

// Index of face within this resolution.
// The subtraction accounts for faces that
// Do not have mips at this resolution.
int iFacelnRes = facelD — nRes[log2];

// Integer division to get number of faces
// that fit in each row of the packed texture.
int nFacesPerRow = textureWidth / size;

// Building texel index of face within slice.
int2 iUV = int2(

(iFacelnRes % nFacesPerRow),

(iFacelnRes / nFacesPerRow));

// Offset for border.

iUV += int2(1,1)

// Add row offset for the selected resolution.
iUV += int2 (0, nRow[log2]);

// Scale to face size.
UV = UV % float2 (size)*xfloat2(size, size);

// Offset by location in packed texture.
UV = UV + float2 (iUV);

// Scale to [0,1] for hardware bilinear filtering.
tPTex . Sample (sampler ,
UV / float2 (textureWidth, textureHeight))

3 Texture Compression

Texture compression [lourcha et al. 1999] is vital for real-time ap-
plications such as games. There are several ways to handle texture
compression with our packed format. The simplest method is to
directly compress the packed textures using standard compressors
such as DXT1 or DXTS5. Assuming that the Ptex per-face textures
are created with power-of-two sizes, the added border pixels will
interfere with the blocking that the texture-compression algorithm
uses and will give non-ideal results. This is because the packed tex-
ture data can place unrelated chunks of data adjacent to each other,
which will cause color-bleeding in the compressed data. This issue
can happen in texture atlases as well if there is not enough buffer
space between the pieces of the texture, but it is much less of an
issue. One possible solution to this problem is to add a slightly
larger border so the packed per-face textures are always a multiple
of 4x4 in size. This allows compression on complete blocks with-
out inadvertently pulling in data from nearby per-face textures. This
increases the size of the packed data, but in our example texture in
Image 1(b), the added data would still be less than the wasted space
incurred by the texture atlas. Another possibility is to use slightly
smaller, non-power-of-two blocks when originally creating the per-
face textures. Once the buffer data is added to enable hardware-
accelerated bilinear filtering, per-face textures will naturally match
the compressor block size.

4 Future Work

One disadvantage of method for packing is that hardware trilin-
ear texture filtering cannot be enabled. We are currently exploring
methods that would allow us to enable hardware trilinear filtering.
Additionally, we are exploring combining Ptex with something akin
to pelting to limit the amount of extra ghost data that needs to be
added because the per-face textures from ordinary vertices can be
placed next to each other in the packed texture map.

References

BURLEY, B., AND LACEWELL, D. 2008. Ptex: Per-face texture
mapping for production rendering. In Eurographics Symposium
on Rendering 2008, 1155-1164.

IOoURCHA, K., NAYAK, K., AND HONG, Z. 1999. System and
method for fixed-rate block-based image compression with in-
ferred pixels values. In US Patent 5,956,431.

MCDONALD, J., AND BURLEY, B. 2010. Per-face texture map-
ping for real-time rendering. SIGGRAPH 2010 Talk.



