Fourteen Ways
to Say Nothing
with Scientific
Visualization

Al Globus, Computer Sciences Corporation
Eric Raible, NASA Ames Research Center

Those not properly initiated into the mysteries of visualization research
often seek to understand the images rather than appreciate their beauty.
Such pernicious activity must be discouraged.

pon reading David Bailey's seminal work, "Twelve

Ways to Fool the Masses When Giving Performance

Results on Parallel Computers.™' we were struck by
the brilliant simplicity of the concept. Bailey ends with the ad-
monition, “Conclude your technical presentation and roll the
videotape. Audiences love razzle-dazzle color graphics, and this
material often helps deflect attention from the substantive tech-
nical issues.” Unfortunately, Bailey gives no guidance in the
means and methods for producing such a result. This article
humbly seeks to fill this void.

There are numerous time-tested scientific visualization tech-
niques for producing pretty pictures while avoiding unnecessary
illumination of the data. Our collection has been culled from the
scientific visualization literature and numerous presentations
we have given and attended.

86 Q018-9162:94/$4.00 © 1994 IEEE

1. Never include a color legend

Many visualization techniques involve assigning colors to
scalar data values. In lesser sciences. a legend relating colors to
values is provided. In our exalted art form, not only does a leg-
end mar the beauty of an image, but it may also divert the
viewer into idle contemplation of reality. (Note: Images can be
particularly enthralling if the sequence of colors is chosen solely
on aesthetic grounds. For optimal results, subtly use separate
color mappings for different parts of the image.)

2. Avoid annotation

In dreary old-fashioned sciences like physics and biology. in-
vestigators have been known to annotate their images with arrows

COMPUTER

pointing out features of supposed interest
along with explanatory text. This promotes
clarity of understanding, undermining the
sense of awe and confusion the best scien-
tific visualization engenders.

3. Never mention error
characteristics

If scientists using visualization software
knew that visualization techniques might
introduce error, they might not be prop-
erly impressed by our masterworks.
Therefore, never imply by word or deed
that your algorithm introduces any error
whatsoever. After all, if the picture looks
good, it must be correct.

4. When in doubt, smooth

Always strive for the smoothest possi-
ble surfaces, since they look so much bet-
ter than a lot of ugly facets. For example,
choose lighting normals to hide sharp
edges in the data. Smoothing can also ob-
scure errors and allow users to publish
their results earlier.

5. Avoid providing performance
data

When you are presenting a pretty pic-
ture, some stick-in-the-mud may ask how
long it took to calculate. The fact that
your ray-cast isosurface took hours of
massively parallel supercomputer time to
generate when nearly identical results
could be achieved in seconds using
marching cubes’ on a workstation is ir-
relevant. In addition to being smoother
(see rule 4), a ray-cast image can include
some wispy stuff scattered around to give
the image an ethereal quality.

6. Cunningly use stop-frame
video techniques

Each frame of a scientific video usually
takes seconds, minutes, or even hours to
produce. To achieve smooth animation. it
is usually necessary to generate video
frames one at a time and transfer them sep-
arately to tape. They can then be played
back at 30, or even 60, frames a second.
Stop-frame techniques can dramatically
improve perceived software performance.
The magic is lost, however, if you are so
foolish as to tell anyone what you're doing.

Faithful adherence to the rest of the rules

will help avoid tedious debugging of soft-
ware that already produces pretty pictures.

July 1994

7. Never learn anything about the
data or scientific discipline

Debugging scientific visualization
software is much more difficult if you are
worried about producing correct results.
Irritating details like accurate interpola-
tion techniques get in the way: in many
cases, ad hoc interpolation techniques
can produce much prettier pictures with
significantly less work. Better yet, pro-
gramming bugs can sometimes produce
stunning images. If you don't know what
to expect, you won't have to find and fix
such bugs. As we know, beauty is the
higher truth.

8. Never compare your results
with those of other visualization
techniques

Comparing results with those of other
visualization techniques is fraught with
danger. You may detect bugs in your
code that will need to be fixed. a tedious
chore. Much worse. other techniques
may produce prettier pictures.

9. Avoid visualization systems

Visualization systems. such as FAST
(Flow Analysis Software Toolkit)* and
AVS (Application Visualization Sys-
tem).* provide mechanisms to add mod-
ules implementing new visualization
techniques. There are two problem with
these systems. First. users may violate
rule 8 to your discomfort. Second. visu-
alization systems are usually “not in-
vented here.”

10. Never cite references for the
data

If you cite a reference describing the
data used to generate images. someone
may read the paper and discover that
your visualization bears no relationship
to the key elements the original experi-
ment was meant to elucidate. Some view-
ers may consider this a flaw that detracts
from your picture’s appeal.

11. Claim generality but show
results from a single data set

[t can be difficult to write visualization
algorithms that function properly on a
variety of data. Much effort may be saved
by running your software on one (small)
data set and using viewing angle and
color-map manipulations to make the im-

ages look different. as if from multiple
data sets. Follow rule 10 so that no one
will know what you're doing.

12, Use viewing angle to hide
blemishes

Many otherwise excellent algorithms
produce 3D objects containing unsightly
blemishes. Avoid carelessly choosing
viewing angles that expose such flaws. If
a suitable angle cannot be found, try an-
other data set. If another data set is too
much trouble. then:

13. If viewing angle fails, try
specularity or shadows

Sometimes every possible viewing an-
gle is marred by some small ugliness. In
these cases, try adding shadows or bril-
liant highlights in appropriate places.
However, never resort to using a paint
program for touching up your image; that
wouldn’t be scientific.

14. ‘This is easily extended to 3D’

Three-dimensional algorithms are al-
most always much more difficult than
2D. and the effort of generalizing a
promising 2D algorithm to 3D can de-
tract from producing pretty pictures. To
both impress your colleagues and avoid
much tedious work. simply claim that
your algorithm “is easily extended to
three or more dimensions.” Only the real
pros will know you're lying. but they
won't challenge you. since we all make
identical claims.

s Bailey pointed out, “It is of-
ten necessary for us to adopt
some advanced techniques in

order to deflect attention from possibly
unfavorable facts.” Follow these rules
faithfully and you'll never need to com-
promise your pretty pictures with the
mundane realities of science. May your
images be accepted by Siggraph. B

Acknowledgments

We acknowledge helpful contributions and
comments by David Bailey., Dan Asimov.
Michael Gerald-Yamasaki, Creon Levit. and
Sam Uselton. Nahum Gershon's panel ses-
sion® and Wayne Lytle’s brilliant video® pro-
vided inspiration.

The work of Al Globus is supported
through NASA Contract No. NAS2-12961.

87

References

1

. D. Bailey, “Twelve Ways to Fool the
Masses When Giving Performance Results
on Parallel Computers,™ Supercomputer
Rev.,Vol. 4,No. 8, Aug. 1991, pp. 54-55.

. W.E. Lorenson and H.E. Cline, “Marching
Cubes: A High-Resolution 3D Surface
Construction Algorithm,” Computer
Graphics (Proc. Siggraph 87). Vol. 21, No.
4, July 1987, pp. 163-169.

. G.Bancroftet al., “FAST: A Multiprocess-
ing Environment for Visualization of
CFD,” Proc. Visualization 90, IEEE CS
Press, Los Alamitos, Calif.. Order No. 2083
(microfiche only), 1990, pp. 14-27.

. C. Upson et al., “The Application Visual-
ization System: A Computational Envi-
ronment for Scientific Visualization,”
IEEE Computer Graphics and Applica-
tions, Vol. 9, No. 4, July 1989, pp. 30-41.

. N.D. Gershon, chair; J.M. Coggins, P.R. Ed-
holm, A. Globus, V.S. Ramchandran, pan-
elists, “How to Lie and Confuse with Visual-

ization,” Computer Graphics (Proc. Siggraph
93), Vol. 27, No. 1. 1993, pp. 387-388.

6. W. Lytle, “The Dangers of Glitziness and
Other Visualization Faux Pas,” videotape
described in Visual Proc: The Art and In-
terdisciplinary Programs of Siggraph 93,
Vol.27,No. 1,1993, p. 64.

Al Globus is a senior computer scientist with
the Computer Sciences Corporation at the
NASA Ames Research Center. His research
interests include scientific visualization, space
colonization, and computer-network-based
education.

Globus received a BA in information sci-
ence from the University of California at Santa
Cruz in 1979 and has taken graduate-level
courses at Stanford University. He is a mem-

ber of the IEEE Computer Society and the
American Institute of Aeronautics and As-

tronautics.

Eric Raible is a computer scientist in the Ap-
plied Research Branch at the NASA Ames Re-
search Center. His research interests include
scientific visualization, programming languages
and environments, and user interfaces.

Raible received a BS degree in computer
science from the Massachusetts Institute of
Technology in 1983.

Readers can contact the authors at NASA
Ames Research Center, MS 27A, Moffett
Field, CA 94035-1000, e-mail {globus, raible}@
nas.nasa.gov.

Does Your Software Have Bugs?

You need

Insight++" 2.0

A source-level automatic runtime debugger for C and C++

Insight++ automatically detects
on average 30% more bugs than

other debuggers, helping you to
produce higher quality software

faster.

For a limited time, get a multi-
user license for only $1495 or

call for a free trial.

Available for Sun, SGI, DEC,
HP9000, IBM RS/6000, and
others.

Phone: (818) 792-9941

FAX: (818) 792-0819

ParaSoft Corporation

E-mail: insight@parasoft.com

Insight++ finds all bugs related to:

v/ memory corruption
¢ dynamic, static/global,
and stack/local
v/ memory leaks
v/ memory allocation
* new and delete
v 1/O errors
v pointer errors
¢ library function calls
¢ mismatched arguments
¢ invalid parameters

Web: http://www.parasoft.com

Reader Service Number 1

