|                                                                                                                                  | _ |
|----------------------------------------------------------------------------------------------------------------------------------|---|
|                                                                                                                                  |   |
|                                                                                                                                  | - |
|                                                                                                                                  |   |
| Comp/Phys/Apsc 715                                                                                                               |   |
|                                                                                                                                  |   |
| Graphics System, Human Visual System<br>Characteristics, and Illusions:<br>Lighting, Surface Perception, Texture,                |   |
| Acuities, Receptive Fields, Brightness Illusions, Simultaneous Contrast, Constancy                                               |   |
| Simultaneous Contrast, Constancy                                                                                                 |   |
| 1/38/2014 Perception and Illusions Comp/Phys/Apsc 715 Taylor 1                                                                   |   |
|                                                                                                                                  |   |
|                                                                                                                                  |   |
|                                                                                                                                  |   |
| Example Videos                                                                                                                   |   |
|                                                                                                                                  |   |
|                                                                                                                                  |   |
| <ul> <li>Visual Queries for Neurobiology         <ul> <li>Link to folder (open queries_divx.avi with VLC)</li> </ul> </li> </ul> |   |
|                                                                                                                                  |   |
|                                                                                                                                  |   |
|                                                                                                                                  |   |
| 1/30/2014 Perception and Illusions Comp/Phys/Apsr. 715 Taylor 2                                                                  |   |
|                                                                                                                                  |   |
|                                                                                                                                  |   |
|                                                                                                                                  | 1 |
| Pop Quiz!                                                                                                                        |   |
| What is magic about Red, Green, Blue?                                                                                            |   |
| What is the human visual system especially                                                                                       |   |
| <ul><li>good at?</li><li>What is the human visual system especially</li></ul>                                                    |   |
| poor at?                                                                                                                         |   |
| <ul> <li>What visual channel is used for shape detection?</li> </ul>                                                             |   |
|                                                                                                                                  |   |
| 1/30/2014 Perception and Illusions Comp/Phys/Apsic 715 Taylor 3                                                                  |   |

| What happens in the world?                                                                                      |   |
|-----------------------------------------------------------------------------------------------------------------|---|
|                                                                                                                 |   |
| • Ambient Optical Array (Gibson, 1986)== Plenoptic                                                              |   |
| Function = $f(x,y,z,\phi,\theta,\lambda)$<br>— Describes intensity of light passing all locations, in all       |   |
| directions, at all wavelengths                                                                                  |   |
| <ul> <li>Is zero inside opaque objects</li> <li>Takes forever to simulate</li> </ul>                            |   |
| We only need a sampling of this function!                                                                       |   |
| Passing through center of projection of the eye(s)  Coming from pivels on the session.                          |   |
| <ul> <li>Coming from pixels on the screen</li> <li>At three wavelengths ("red", "green", and "blue")</li> </ul> |   |
| This sampling is what computer graphics is about                                                                |   |
|                                                                                                                 |   |
|                                                                                                                 |   |
|                                                                                                                 |   |
|                                                                                                                 |   |
|                                                                                                                 |   |
|                                                                                                                 |   |
|                                                                                                                 | 1 |
| Wile also laterale also 10                                                                                      |   |
| What's the big deal?                                                                                            |   |
|                                                                                                                 |   |
| How about just drawing the correct number of                                                                    |   |
| photons from objects in space?                                                                                  |   |
| Works for photorealism!                                                                                         |   |
| It would take forever to compute      Display daying large limited and accompany                                |   |
| Display devices have limited ranges  We're interested in displaying data                                        |   |
| <ul> <li>We're interested in displaying data</li> <li>Deviations from photorealism cause distortion</li> </ul>  |   |
| Perceptual machinery tuned for real world can                                                                   |   |
| drastically affect perception of quantitative data                                                              |   |
|                                                                                                                 |   |
|                                                                                                                 |   |
|                                                                                                                 |   |
|                                                                                                                 |   |
|                                                                                                                 |   |
|                                                                                                                 |   |
|                                                                                                                 |   |
|                                                                                                                 |   |
|                                                                                                                 |   |
|                                                                                                                 |   |
|                                                                                                                 |   |
|                                                                                                                 |   |
|                                                                                                                 |   |
|                                                                                                                 |   |
|                                                                                                                 |   |
|                                                                                                                 |   |
|                                                                                                                 |   |

### What happens in the computer?

- One or two screens stand in for 3D world
- Ideal display would match human capabilities
  - "Retina" display (+brightness...)
- Understand human perceptual system
  - to harness bandwidth and pattern matching (what's the best display to provide?)
  - to fool it (what cheats can we get away with?)

1/30/2014 Perception and Illusion

C---- (Db--/4--- 745 T-

### Different CG methods to render the environment

- Ray tracing
  - Optics: Traces paths from eye through screen
- Radiosity
  - $\boldsymbol{-}$  Solves the heat-transfer equation for light



- Cheap trick, fast to compute
- Simplified lighting model implemented in hardware



Comp/Phys/Apsc 715 Tay

### Ray Tracing Example

- Specular reflection
- Precise shadows
- Complex lighting
- Many minutes
  - In 1990



/30/2014 Perception and Illusion

Comp/Phys/Apsc 715 Taylo

### Radiosity Example • Diffuse light • Color washing • Soft shadows • Several hours – In 1990



| Scan Conversion Lighting Model • Diffuse depends on incident light angle (θ) – Color of the surface                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| <ul> <li>Specular also depends on view direction (angle of<br/>incidence = angle of reflection) (α)</li> <li>Color of the light</li> </ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| Ambient term independent of light & view                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| <ul> <li>This is a hack meant to simulate radiosity.</li> </ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| Lamberian scattering from pigment 0 under scattering 10 under scat |
| 1/30/2014 Perception and Illusions Comp/Phys/Apsc 715 Taylor 12                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |

### Ware Recommends: (1/2)

- Glossy paint model
  - Lambertian (diffuse reflection)
  - Specular (mirror reflection)
  - Ambient (everything glows)
  - Add textures
  - Add shadows
- Hardware support
  - All but shadows standard in OpenGL/DirectX
  - Shadows can be done using tricks

- 745 Today

### Ware Recommends: (2/2) 1/30/2014 Perception and Billiotions Comp/Phys/Ager. 715 Taylor

### Why does this model work?

- It may be the model that the brain uses for shape estimation
  - A more complex model may actually impede understanding of the surface
- Lambertian (diffuse) and texture better for overall shape perception
- Specular better for small details, if the lighting is just right
- Shadows indicate relative heights of objects, distances

1/30/2014 Perception and Illusion

p/Phys/Apsc 715 Taylor









### What is the human visual system tuned for?

- Understanding the environment
  - Navigation
  - Seeking food or avoiding foe
  - Tool use (object shape perception)
- Perception of *surfaces* in the environment
  - Independent of lighting conditions
  - Usually textured
  - Usually not planar



### Chromatic Aberration in the Lens System

- Most People See the Red
- Closer than the Blue
- Green where is it?
  - But some see the
  - Opposite effect
- Careful with this slide: Brightness effect?

1/30/2014 Perception and Illusion

Comp/Phys/Apsc 715 Taylor

### Physiology: Receptors

### • Rods

- active at low light levels (night vision)
- only one wavelength sensitivity function
- 100 million rod receptors and nothing on...

### Cones

- active at normal light levels
- three types: sensitivity functions peaks at different wavelengths ("red", "green", "blue")
- 6 million cone receptors
- Concentrated in the center of vision (fovea)

1/30/2014 Perception and Illusio

omp/Phys/Apsc 715 Tar





### Acuities: Boiled way down

- Human visual acuity in the fovea (central 2 degrees) is better than the display resolution (thus the name "retina display" when it became equal)
- Outside the fovea, it is much worse than the display resolution
- Can tell vernier acuity much more precisely (1/10 pixel) two lines not quite aligned
- Can integrate over space, time, and stereo to do better (and to improve effective display resolution)

1/30/2014 Perception and Illusio

--- Int--- (4---- 745 T--

### **Spatial Contrast Sensitivity Function**

- Peak sensitivity at around 1-3 cycles/degree
- Much more sensitive to contrast than hue



### Cutoff at 50 cycles/deg.

- Receptors: 20 sec of arc (180 per degree)
  - Pooled over larger and larger areas
  - 100 million receptors
  - 1 million fibers to brain
- A screen may have 30 pixels/cm need about 4 times as much.
- VR displays have 5 pixels/cm

1/30/2014 Perception and Illusion

Comp/Phys/Apsc 715 Taylor





### What brightness do we see?

- Receptors respond to absolute levels, but that's not what we perceive
- Neurons early in the system behave like change meters (in space and time)
- True for other stimuli (not just brightness)
- Tuned to see surfaces independent of overall illumination level
- Can attempt to do otherwise in displays encoding non-shape information with brightness changes, but this leads to inaccuracies

1/30/2014 Perception and Illusions Comp/Phys/Apsc 715 Taylor

### **Neurons**

- Signal each other by increasing or decreasing firing rate relative to background
- Can receive input from hundreds or thousands of other neurons
  - Some increase firing rate
  - Some decrease firing rate
  - Receptive field describes the weighting
- We'll look at one type of receptive field and illusions that it causes

1/30/2014 Perception and Illusion

·---- (Db---/4---- 745 7

### Center-surround Receptive Fields Retinal ganglion cells Can be on-center-off-surround or off-center-on-surround (A) (B) (B) y x 1/80/2014 Perception and Comp/Pre/Alapse 715 Tabler

### Center-surround Receptive Fields • Act as edge detectors more than level detectors A: mid-low B: lowest C: highest D: mid-high













| Illusions and Rendering                                                                              |   |
|------------------------------------------------------------------------------------------------------|---|
| Shading Illusions     Overlow of Auricasian                                                          |   |
| Surfice                                                                                              |   |
| • Uniform  — Chevreul                                                                                |   |
| Unifum Pading                                                                                        | - |
| Gouraud     Mach bands                                                                               |   |
| Prograday                                                                                            |   |
| 1/30/2014 Perception and Illusions Comp/Phys/Apix 715 Taylor 43                                      |   |
|                                                                                                      | - |
|                                                                                                      |   |
|                                                                                                      | _ |
| Why do we care?                                                                                      |   |
| <ul> <li>Visual artifacts in computer graphics</li> </ul>                                            |   |
| <ul><li>Uniform, Gouraud shading</li><li>Chevreul, Mach Bands</li></ul>                              |   |
| Hardware acceleration     Phong interpolation helps                                                  |   |
| Hardware acceleration becoming more common                                                           |   |
| Harness to enhance edges     Highlight objects so they stand out                                     |   |
| Errors when reading grayscale maps                                                                   | - |
| <ul><li>Up to 20% of the entire scale [Ware88]</li><li>Value read depends on nearby values</li></ul> |   |
| 1/30/2014 Perception and Illusions Comp/Phys/Apsx 715 Taylor 44                                      |   |
|                                                                                                      |   |
|                                                                                                      |   |
|                                                                                                      | , |
|                                                                                                      |   |
|                                                                                                      |   |
|                                                                                                      |   |
|                                                                                                      |   |
|                                                                                                      |   |
|                                                                                                      |   |
|                                                                                                      |   |
|                                                                                                      |   |
|                                                                                                      |   |

### Luminance, Brightness, Lightness

- Physical
  - Luminance: Number of photons coming from a region of space
- Perceptual:
  - Brightness
    - Amount of light coming from a glowing source
  - Lightness
    - Reflectance of a surface, paint shade

1/30/2014 Perception and Illusio

omp/Phys/Apsc 715 Tar

### Luminance

• Amount of light hitting the eye, weighted by the sensitivity of the photoreceptors to each



0.4 0.5 0.1 380 460 540 620 700 Wavelength in nanometers

Perception and Illusions Comp/Phys/Apsc 715 Tay

### Finer Detail Requires More Luminance Difference

- Text: at least 3:1- 10:1 preferred
- Generalizes to data
   Detection of detail
  - requires more contrast



1/30/2014 Perception and Illusions

Comp/Phys/Apsc 715 Ta

| Monitor Gamma Correction  • Attempt to make linear change in voltage map more closely to linear perceptual difference.  • Luminance ≈ Voltage <sup>γ</sup> • γ ranges from 1.4 through 3 γ=3 cancels n=0.33 Stevens' function: Brightness ≈ (Voltage³) <sup>0.33</sup> ≈ Voltage  • True control of luminance requires careful monitor measurement and calibration                                                                                                                                                                                                                                                                                  | Perceived amount of light coming from a glowing object  Stevens power law  — Brightness ≈ Luminance <sup>n</sup> — n = 0.333 for patches of light, 0.5 for points  — Applies to many other perceptual channels  • Loudness (dB), smell, taste, force, friction, etc.  Enables high sensitivity at low levels without saturation at high levels  Just-noticeable difference depends on value |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| <ul> <li>Perceived amount of light coming from a glowing object</li> <li>Stevens power law         <ul> <li>Brightness ≈ Luminance<sup>n</sup></li> <li>n = 0.333 for patches of light, 0.5 for points</li> <li>Applies to many other perceptual channels             <ul></ul></li></ul></li></ul>                                                                                                                                                                                                                                                                                                                                                 | Perceived amount of light coming from a glowing object  Stevens power law  — Brightness ≈ Luminance <sup>n</sup> — n = 0.333 for patches of light, 0.5 for points  — Applies to many other perceptual channels  • Loudness (dB), smell, taste, force, friction, etc.  Enables high sensitivity at low levels without saturation at high levels  Just-noticeable difference depends on value |
| <ul> <li>Loudness (dB), smell, taste, force, friction, etc.</li> <li>Enables high sensitivity at low levels without saturation at high levels</li> <li>Just-noticeable difference depends on value</li> <li>1/30/2014 Perception and Illustons</li> <li>Comp/Phys/Apric 715 Taylor</li> <li>Attempt to make linear change in voltage map more closely to linear perceptual difference.</li> <li>Luminance ≈ Voltage?</li> <li>γ ranges from 1.4 through 3 γ=3 cancels n=0.33 Stevens' function: Brightness ≈ (Voltage³)<sup>0.33</sup> ≈ Voltage</li> <li>True control of luminance requires careful monitor measurement and calibration</li> </ul> | Loudness (dB), smell, taste, force, friction, etc.  Enables high sensitivity at low levels without saturation at high levels  Just-noticeable difference depends on value                                                                                                                                                                                                                   |
| Monitor Gamma Correction  • Attempt to make linear change in voltage map more closely to linear perceptual difference.  • Luminance ≈ Voltage <sup>γ</sup> • γ ranges from 1.4 through 3 γ=3 cancels n=0.33 Stevens' function: Βrightness ≈ (Voltage³) <sup>0.33</sup> ≈ Voltage  • True control of luminance requires careful monitor measurement and calibration                                                                                                                                                                                                                                                                                  | 30/2014 Perception and Illusions Comp/Phys/Apsc 715 Taylor 46                                                                                                                                                                                                                                                                                                                               |
| Monitor Gamma Correction  • Attempt to make linear change in voltage map more closely to linear perceptual difference.  • Luminance ≈ Voltage <sup>γ</sup> • γ ranges from 1.4 through 3 γ=3 cancels n=0.33 Stevens' function: Βrightness ≈ (Voltage³) <sup>0.33</sup> ≈ Voltage  • True control of luminance requires careful monitor measurement and calibration                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                             |
| True control of luminance requires careful<br>monitor measurement and calibration                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | Attempt to make linear change in voltage map more closely to linear perceptual difference. Luminance $\approx$ Voltage $^{\gamma}$ $\gamma$ ranges from 1.4 through 3 $\gamma$ =3 cancels n=0.33 Stevens' function:                                                                                                                                                                         |
| monitor measurement and calibration                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | $\gamma$ ranges from 1.4 through 3 $\gamma$ =3 cancels n=0.33 Stevens' function: Brightness $\approx$ (Voltage <sup>3</sup> ) <sup>0.33</sup> $\approx$ Voltage                                                                                                                                                                                                                             |
| 1/30/2014 Perception and Illusions Comp/Phys/Apsc 715 Taylor                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | monitor measurement and calibration                                                                                                                                                                                                                                                                                                                                                         |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 30/2014 Perception and Illusions Comp/Phys/Apsc 715 Taylor 50                                                                                                                                                                                                                                                                                                                               |

## Adaptation, Contrast, and Lightness Constancy • Luminance is completely unrelated to perceived brightness or lightness • Luminance is completely unrelated to perceived brightness or lightness • Luminance is completely unrelated to perceived brightness or lightness • Luminance is completely unrelated to perceived brightness or lightness • Luminance is completely unrelated to perceived brightness or lightness

| Factor of 10,000 difference: sunlight to moonlight     Still can identify different-brightness materials     Absolute amount of light from surface irrelevant                                                                                                                                                            |                                                                                                               |                                                                                                                       |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------|
| The solute announce of higher from surface in cievant                                                                                                                                                                                                                                                                    | erent-brightness materials                                                                                    | <ul> <li>Still can identify</li> </ul>                                                                                |
| <ul> <li>Adaptation to change in overall light level</li> <li>Factor of 2 hardly noticeable</li> <li>Iris opens and closes (small effect)</li> <li>Receptors photobleach at high light levels (large effect)</li> <li>Can take time to regenerate when entering dark areas</li> <li>Eventually switch to rods</li> </ul> | oticeable<br>s (small effect)<br>ach at high light levels (large effect)<br>generate when entering dark areas | <ul> <li>Factor of 2 hardl</li> <li>Iris opens and clee</li> <li>Receptors photo</li> <li>Can take time to</li> </ul> |

### Contrast and Constancy Concentric opponent receptive fields react most strongly to differences in light levels Item relative to surround Corrects for background intensity differences

### Visual System Interprets 3D Shape • ©1995, Edward H. Adelson. \*\*Exercit Addition\*\*\* \*\*Tallogate Perception and Mission\*\* \*\*Tallogate Perceptio

| Visual Syste      | m Interprets 3D | Shape    |
|-------------------|-----------------|----------|
| • ©1995, Edward   | d H. Adelson.   | <u> </u> |
| Edward H. Adribon |                 |          |
|                   |                 |          |

| think                                                           | you're looking at                                                                                                         |     |
|-----------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------|-----|
| <ul> <li>Real paper in rea</li> <li>Very convincing</li> </ul>  | al office with real lamp                                                                                                  |     |
| <ul> <li>Photograph of the<br/>- Not so convincing</li> </ul>   |                                                                                                                           |     |
| <ul> <li>CRT display of sa</li> <li>Even less convin</li> </ul> |                                                                                                                           |     |
| show different p<br>— Even when imag                            | rsive vs. non-immersive displerceptions of aspect ratio, sloges on retina are the same perspective when viewing a picture | ope |
| movie                                                           |                                                                                                                           |     |

### Other Factors in Surface Lightness Perception • Direction of illumination and surface orientation - Shape-from-shading information factored out

- Lightest object in the scene is a reference white
  - Other objects scaled accordingly
- Ratio of specular to nonspecular reflection

1/30/2014 Perception and Illusions

omp/Phys/Apsc 715 Tag



| ioing On In T |   |   |    | ! |
|---------------|---|---|----|---|
|               | 1 | I | II | I |
| Parket        | 1 | ١ | ı  | 1 |
|               |   |   |    |   |

| More Available Online                                                                                      | 2          |
|------------------------------------------------------------------------------------------------------------|------------|
| <ul><li>http://www.purveslab.net/seeforyou</li></ul>                                                       | rself      |
| "Visuelle Welt" http://www.psycholo                                                                        |            |
| konstanz.de/abteilungen/kognitive-                                                                         | Biciaiii   |
| psychologie/various/demo-programs                                                                          | /viwo-     |
| visual-illusions                                                                                           |            |
| http://www.csc.ncsu.edu/faculty/hea                                                                        | iley/PP/in |
| dex.html                                                                                                   | /!: - /+:  |
| <ul> <li>http://www.qualitylogoproducts.com<br/>cal-illusions.htm</li> </ul>                               | i/iib/opti |
| car masions.htm                                                                                            |            |
|                                                                                                            |            |
|                                                                                                            |            |
|                                                                                                            |            |
|                                                                                                            |            |
|                                                                                                            |            |
|                                                                                                            |            |
| Application: Can we make an I                                                                              | nterval    |
|                                                                                                            | ilici vai  |
| Grayscale Map?                                                                                             |            |
| Just-noticeable-difference (JND): Weber's Law                                                              |            |
| <ul> <li>δL/L is constant at threshold (δ around 0.005)</li> </ul>                                         |            |
| <ul> <li>Applies when looking at small differences</li> <li>CIE uniform grayscale standard</li> </ul>      |            |
| Rated large differences in intensity to produce scale                                                      |            |
| - L = $116(Y/Y_n)^{1/3}$ - 16, $Y_n$ = ref white, $Y/Y_n > 0.01$                                           |            |
| Unavoidable Effects                                                                                        |            |
| <ul><li>Contrast/constancy: Surround affects perception</li><li>Crispening: Surround affects JND</li></ul> |            |
| Crispening: Surround affects 3ND     Adaptation: Overall light level affects perception                    |            |
| Therefore, take 'Uniform' with a big grain of salt                                                         |            |
|                                                                                                            |            |
|                                                                                                            |            |
|                                                                                                            |            |
|                                                                                                            |            |
|                                                                                                            |            |
|                                                                                                            |            |
|                                                                                                            |            |
|                                                                                                            |            |
|                                                                                                            |            |
|                                                                                                            |            |
|                                                                                                            |            |
|                                                                                                            |            |
|                                                                                                            |            |
|                                                                                                            |            |
|                                                                                                            |            |
|                                                                                                            |            |

# Conclusions (1/2) • Visual system is a difference detector — Don't rely on it for absolute intensity measurement — Enables seeing patterns despite background • Grayscale not a good method to code data — Various effects describe here — Waste of resources needed for luminance/shape (described later) • Choose background based on goal — Object detection → large luminance contrast — Subtle gradations → make use of crispening 1/780/2014 Perception and Illusions Conclusions (2/2) • Several illusions result from these effects — Be familiar with them and on the lookout — Test visualization formally, not just "by eye", if

### "The Lesson"

you want to provide quantitative data

Aim at realistic, not impoverished displayTake advantage of effects rather than fighting

Provide rich visual display

them

- Visualization is not good at representing precise, absolute numerical values
- Visualization is good at displaying patterns of differences or changes over time, to which the eye and brain are extremely sensitive

1/30/2014 Perception and Illusion

p/Phys/Apsc 715 Taylor

| 1/30/2014 Perception and Illusions Comp/Phys/Agsx: 715 Taylor 67                                                                                                                                                                                                                                              |  |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|
| References:                                                                                                                                                                                                                                                                                                   |  |
| <ul> <li>Importance of texture 2: Victoria Interrante</li> <li>Not always the best model: UNC nanoManipulator</li> <li>Receptor mosaic picture: [Frisby79], copied from Ware figure 2.15</li> <li>Graphics sampling and reconstruction: [Taylor94]</li> <li>Interpolation and Lighting Tricks: UNC</li> </ul> |  |
| nanoManipulator  1/36/2014 Perception and Illusions Comp./Phys/Aposc 715 Taylor 68                                                                                                                                                                                                                            |  |
| References:                                                                                                                                                                                                                                                                                                   |  |
| <ul> <li>Scan Conversion Example: David Ebert lecture</li> <li>Physiology (eye, receptors), Cone sensitivity, Rod/cone density: Penny Rheingans lecture</li> <li>Raytracing example: Donald W. Hyatt at Thomas Jefferson High School for Science and Technology using POV-Ray</li> </ul>                      |  |
| Radiosity example: http://www.vasse.hu/cornell_teanot.ntm     Anti-Aliasing example: http://www.ntibealer.com/bargainbirreview_ESAA.htm     Importance of texture: UNC nanoManipulator system                                                                                                                 |  |
| 1/30/2014 Perception and Illusions Comp/Phys/Apsc 715 Taylor 69                                                                                                                                                                                                                                               |  |

### References:

- Most of the material: <u>Information</u> <u>Visualization</u>
- Simultaneous Contrast, Center-surround Receptive Fields, Human Visual Characteristics, Communication between Receptors, Illusion examples: Penny Rheingans
- Mach Bands, Intensity Illusion: David Ebert

|  | Perception |  |
|--|------------|--|
|  |            |  |

psc 715 Taylor