
Physically-Based Modeling Techniques for
Interactive Digital Painting

by
William Valentine Baxter III

A dissertation submitted to the faculty of the University of North Carolina at Chapel
Hill in partial fulfillment of the requirements for the degree of Doctor of Philosophy in
the Department of Computer Science.

Chapel Hill
2004

Approved by:

Ming C. Lin, Advisor

Dinesh Manocha, Reader

Gary Bishop, Reader

Anselmo Lastra, Committee Member

Michael Minion, Committee Member

ii

iii

cO 2004

William Valentine Baxter III

ALL RIGHTS RESERVED

iv

v

ABSTRACT
WILLIAM VALENTINE BAXTER III: Physically-Based Modeling

Techniques for Interactive Digital Painting
(Under the direction of Ming C. Lin)

In this dissertation I present a novel, physically-based approach to digital painting.

With the interactive simulation techniques I present, digital painters can work with

digital brushes and paints whose behavior is similar to real ones. Using this physically-

based approach, a digital painting system can provide artists with a versatile and

expressive creative tool, while at the same time providing a more natural style of

interaction enabled by the emulation of real-world implements.

I introduce several specific modeling techniques for digital painting. First, I present

a physically-based, 3D, deformable, virtual brush model based on non-linear quasi-static

constrained energy minimization. The brush dynamics are computed using a skeletal

physical model, which then determines the motion of a more complex geometric model.

I also present three different models for capturing the dynamic behavior of viscous paint

media, each offering a different trade-off between speed and fidelity—from 2D heuristics,

to 3D partial differential equations. Accurate modeling of the optical behavior of paint

mixtures and glazes is also important, and for this I present a real-time, physically-

based rendering technique, based on the Kubelka-Munk equations and an eight-sample

color space. Finally, I present techniques for modeling the haptic response of brushes in

an artist’s hand, and demonstrate that all these techniques can be combined to provide

the digital painter with an interactive, virtual painting system with a working style

similar to real-world painting.

vi

vii

To Papa Bear,

a.k.a. William V. Baxter, Sr.

viii

ix

ACKNOWLEDGMENTS

It takes a tremendous amount of dedication and perseverance to complete a doctoral

dissertation. At least that’s what I’ve been told. I’m not sure I possess either of those

qualities in great enough quantity to complete a dissertation, but I am fortunate in

that I have been constantly surrounded by many great and motivated people whose

encouragement and assistance throughout this process has made up for any attributes

I lack. I would like to sincerely extend my gratitude to those individuals here.

I would first like to thank my dear friend Leo Chan for setting me off on this course.

I got together with Leo sometime in the fall of 1997, and he mentioned to me that

he was working on computer graphics. It was his compelling description of a field

combining computer science, math, and physics, with elements of visual design and art

that piqued my interest and led me to apply to graduate schools.

Thanks to Mark Harris and Vincent Scheib, for good discussions and inspirations

relating to research topics over the years, but also for inspiration to greater heights in

every form of technical and non-technical communication. Thanks as well to Kenny Hoff

for his infectious enthusiasm about graphics and many stimulating discussions on that

and any number of other topics.

I extend my humble appreciation to Greg Coombe, Jeff Feasel, and Karl Gyllstrom

for letting me make noise with them, the one endeavor that may have done the most

to preserve my sanity in the last couple of years.

x

Thanks to all the painters who used and tested my painting systems: Rebecca Holm-

berg, John Holloway, Andrea Mantler, Haolong Ma, Sarah Hoff, my wife Eriko Baxter,

Lauren Adams from the Art department, and all those who gave me valuable feedback

after seeing the demo. An especially large thanks to painter John Holloway for his

enthusiasm, encouragement, and belief in this project, and to Rebecca Holmberg for

going far beyond the call of duty to create so many delightful paintings with dAb while

at the same time finishing her own degree in chemistry. I wish I could do more, but all

I have to offer is my sincere thanks and an honorary degree from the “Baxter school of

digital painting.”

I am very grateful for all the help and the late nights given up by collaborators

on this and previous research: Avneesh Sud, Naga Govindaraju, Vincent Scheib,

Yuanxin Liu, and Jeremy Wendt. And thanks to those who allowed me to collaborate

with them on their research as I learned the ropes: Carl Erikson, and the late-90’s

Walkthrough MMR all-star gang – Dan Aliaga, Rui Bastos, Jon Cohen, Dave Luebke,

Andy Wilson, and Hansong Zhang. I would especially like to thank Vincent Scheib for

his help on the dAb paint model, and Jeremy Wendt for his invaluable assistance in

the paint measurement effort and with the Kubelka-Munk rendering code.

Thanks to Dinesh Manocha for giving me the opportunity to work with him and

the Walkthrough group for my first two and a half years of graduate school. Without

his willingness to take a chance on me, a kid with no computer graphics experience, I

would probably still be shoveling business logic code around today.

Many thanks to my advisor, Ming Lin, whose firm belief in my abilities and belief

in this topic kept me going. She is tough on her students, but her tireless promotion

of her students’ interests behind the scenes does not go unnoticed. Thanks to Dr. Lin

and Dr. Manocha’s support, I have always been free to pursue the research ideas I

wanted to pursue throughout my time here.

xi

Thanks also to everyone who read this admittedly long dissertation, and for their

invaluable feedback. I am especially grateful to Ming Lin for working with me through-

out the writing process, and to my outside readers, Gary Bishop and Dinesh Manocha.

Also thanks to my other committee members, Anselmo Lastra and Michael Minion,

who also took the time to read large portions and provide constructive feedback. Their

efforts greatly improved this dissertation.

I would like to express my appreciation also to the the agencies and foundations

that have provided support for my work. First to the Link Foundation and NVIDIA

for fellowships in my last two years, and to the agencies who have sponsored various

research in the GAMMA group: Intel Corporation, the National Science Foundation,

the Office of Naval Research, and the U.S. Army Research Office.

Also, a big thanks to my parents, Suzanne and Bill, Jr., for their love and support

from the beginning and especially during this time. Three days before my defense I

began to find out just how much I really owe them when I became a father myself.

Thanks to my sister Amy for breaking ground by becoming the first (but now not the

only!) doctor in the family and for always inspiring me to try harder throughout my

life.

Finally, I would like to thank to my wife, Eriko, for her tireless dedication, for the

sacrifices she has made, for always staying by my side, for setting a shining example

with her seemingly bottomless persistence, for her unwavering belief in the value of

seeing the dissertation through to the end, and for all the encouragement she provided

in the times I felt hopeless. Thank you, Elly-chan.

xii

xiii

CONTENTS

LIST OF FIGURES xxi

LIST OF TABLES xxv

1 Introduction 1

1.1 Painting and Computers . 2

1.2 Painting Media . 9

1.3 Applications and Benefits . 12

1.4 Thesis . 14

1.5 New Results . 16

1.5.1 Overview of Results . 16

1.5.2 Brush Dynamics . 18

1.5.3 Paint Dynamics . 19

1.5.4 Paint Appearance . 22

1.5.5 Interface . 23

1.5.6 Summary . 24

1.6 Thesis Organization . 25

2 Previous Work 26

2.1 Non-Photorealistic Rendering Overview 27

xiv

2.2 Automatic Rendering Techniques . 28

2.3 Modeling Natural Media . 30

2.4 Painting Interfaces . 36

3 Brush Modeling 39

3.1 Previous work . 42

3.2 Introduction to Brushes . 44

3.3 Overview of Modeling Approach . 46

3.4 Brush Dynamics . 47

3.4.1 Virtual Work and Optimization 49

3.4.2 Spine Kinematics . 50

3.4.3 Spring Energy . 52

3.4.4 Friction Energy . 52

3.4.5 Damping and Plasticity . 56

3.4.6 Derivatives . 56

3.4.7 Constraints . 57

3.5 Geometric Modeling of Brushes . 57

3.5.1 Subdivision Surface . 57

3.5.2 Bristle Strips . 58

3.6 Implementation and Results . 62

3.7 Limitations . 65

3.8 Summary . 65

4 dAb Paint: A Simple Two-layer Paint Model 67

4.1 dAb Features . 68

4.2 Mathematical Description of Contact Footprints 69

4.3 Paint Stroking Algorithms . 72

xv

4.4 Paint Representation . 74

4.5 Details of the Paint Stroking Algorithms 77

4.5.1 Generating Footprints on the Canvas 77

4.5.2 Bi-directional Paint Transfer and Blending 80

4.5.3 Updating Brush Textures . 82

4.6 Rendering . 83

4.6.1 Optical Composition . 83

4.6.2 Embossing . 84

4.7 Drying the Canvas . 85

4.8 Relative Height Field . 86

4.9 The Palette . 87

4.10 Implementation and Results . 88

4.11 Limitations . 89

4.12 Summary . 91

5 Stokes Paint: 3D Volumetric Paint 92

5.1 Previous Work in Fluid Simulation . 94

5.2 Governing Equations . 97

5.3 Numerical Method . 100

5.3.1 Viscosity . 102

5.3.2 Pressure Solver . 103

5.3.3 Boundary Conditions . 105

5.3.4 Interaction . 106

5.3.5 Free Surface . 106

5.3.6 Scalar Advection . 108

5.3.7 Summary of Method . 108

5.4 Paint System Integration . 109

xvi

5.4.1 Voxelizing the Brush . 109

5.4.2 Brush-Canvas Paint Transfer . 109

5.4.3 Brush Controls . 112

5.4.4 Paint filtering . 113

5.4.5 Surface Extraction . 115

5.4.6 Drying . 116

5.4.7 The Canvas . 116

5.4.8 The Palette . 116

5.5 Results . 117

5.6 Limitations . 118

5.7 Summary . 120

6 IMPaSTo: A Realistic, Efficient Paint Model 121

6.1 IMPaSTo Overview . 122

6.2 Paint Dynamics Principles . 124

6.3 Paint Representation . 126

6.4 Paint Motion . 127

6.4.1 Advection . 128

6.4.2 Computing Velocity . 131

6.5 Paint Transfer . 132

6.6 Paint Drying . 134

6.7 The Palette . 135

6.8 Brush Modes . 136

6.9 GPU Implementation . 137

6.10 Results . 139

6.11 Limitations . 140

6.12 Summary . 143

xvii

7 Paint Rendering 145

7.1 Paint Composition and Optical Properties 146

7.2 Overview of Color . 147

7.2.1 Metamerism . 153

7.2.2 Color Space Transformations . 154

7.3 Overview of Color Mixing Models . 155

7.3.1 Additive Mixing . 155

7.3.2 Average Mixing . 156

7.3.3 Subtractive Mixing . 156

7.3.4 Pigment Mixing . 158

7.4 Previous Work . 160

7.4.1 Color Samples for Kubelka Munk 162

7.5 Measuring the paints . 163

7.6 Converting to Kubelka-Munk . 165

7.7 Lights, Sampling and Gaussian Quadrature 166

7.8 Rendering Pipeline and GPU Implementation 169

7.8.1 XYZ to RGB conversion . 170

7.8.2 Glossy and Specular Reflection 173

7.9 Color Comparison . 174

7.10 Results . 175

7.11 Limitations and Future Work . 176

7.12 Summary . 177

8 Computer Interface 179

8.1 Evaluation Criteria . 181

8.2 Target User . 182

8.3 Prior Work on Painting Interfaces . 182

xviii

8.3.1 The Palette . 183

8.4 Painting Interface . 184

8.4.1 The Brushes . 185

8.4.2 The Paint . 186

8.4.3 The Canvas . 186

8.4.4 The Palette . 186

8.4.5 Brush Shadows . 187

8.4.6 Bi-manual Input . 187

8.5 Input Devices . 188

8.5.1 Mouse . 188

8.5.2 Trackers . 189

8.5.3 Tablets . 189

8.5.4 Haptic Devices . 190

8.6 Related Work on Haptics . 192

8.6.1 Force Feedback . 192

8.6.2 Volumetric Approaches . 193

8.6.3 6-DOF Haptic Rendering . 194

8.6.4 Fluid Force Computation . 194

8.7 Simple Force Computation . 195

8.7.1 Decoupled Haptics . 195

8.7.2 Basic Force Model . 196

8.8 Fluid Force . 198

8.8.1 Preliminaries . 198

8.8.2 Approximated Fluid Forces . 199

8.8.3 Accurate Force Computation . 201

8.8.4 Haptic Display of Viscous Flows 202

xix

8.8.5 Force Computation . 204

8.8.6 Force Filtering . 205

8.9 Haptic Results . 206

8.9.1 Simple Haptics . 207

8.9.2 Fluid-Based Haptics . 207

8.10 Limitations and Future Work . 209

8.11 Summary . 212

9 Conclusions 213

9.1 Summary of Results . 213

9.1.1 Mayer’s Attributes . 216

9.1.2 Process, Accident, and Complexity 217

9.2 Future Work . 218

9.3 Conclusions . 221

A Brush Optimization Derivations 223

A.1 Spring Energy Derivative . 223

A.2 Friction Derivative . 224

A.3 Anisotropic Friction Derivative . 225

A.4 Damping Derivative . 226

B An Artist’s Statement 227

Bibliography 231

xx

xxi

LIST OF FIGURES

1.1 An ancient cave painting . 2

1.2 A painting by Jan Davidsz de Heem . 3

1.3 A painting by Willem de Kooning . 4

1.4 A painting by Albert Bierstadt . 5

1.5 A painting by Vincent van Gogh . 5

1.6 Paintings created using the techniques in this dissertation. 15

1.7 System architecture overview . 17

1.8 The complexity of paint . 20

1.9 Comparison of paint models . 21

1.10 Interactive digital painting setup . 23

2.1 Input devices . 38

3.1 Examples of modeled brushes. 40

3.2 Basic brush anatomy . 44

3.3 vBRUSH brush models and marks . 46

3.4 Time stepping a brush spine . 47

3.5 Angle Parameterizations . 50

3.6 Nomenclature for parts of a brush. 52

3.7 Anisotropic Coulomb friction . 55

3.8 Energy terms in the objective function 55

3.9 Rendering order for paint transfer . 60

3.10 A comparison of strokes . 63

xxii

3.11 A painting by Eriko Baxter . 63

3.12 A painting made with vBRUSH brushes 64

3.13 A painting made with vBRUSH brushes 64

4.1 Comparison of the stroking algorithms in dAb. 74

4.2 Layers in the dAb Paint Model . 76

4.3 Footprint attribute textures . 78

4.4 Bi-directional paint transfer and glazing 80

4.5 Modeling of partial drying . 85

4.6 The dAb virtual palette . 88

4.7 Paintings created with dAb. 90

5.1 Comparison of error residuals . 104

5.2 Pressure and velocity boundary conditions 105

5.3 Paintings created with Stokes Paint . 118

5.4 More paintings created with Stokes Paint 119

6.1 Marks demonstrating the 3D canvas texture 122

6.2 Painting features supported by IMPaSTo 123

6.3 Steps in 3D paint simulation . 125

6.4 Cross section of Monet’s Water Lilies 128

6.5 Conservative advection flux computation in 1D 130

6.6 Paint motion from brush interaction in IMPaSTo 140

6.7 Paintings created with IMPaSTo . 141

7.1 Spectral sensitivities of cones . 149

7.2 The CIE 1964 Color Matching Functions 152

7.3 XYZ Chromaticity Diagram . 153

7.4 Light paths through paint . 159

xxiii

7.5 Paint measurement setup . 164

7.6 Real paint spectral measurements . 165

7.7 Relighting with different spectral light source 167

7.8 Steps in Kubelka-Munk rendering . 169

7.9 Kubelka-Munk color comparison . 174

8.1 The graphical user interface . 185

8.2 Graphs of haptic normal force . 196

8.3 A typical grid cell . 203

8.4 The boundary discretization scheme . 204

8.5 Haptic filtering applied to a 70Hz input 206

8.6 Image sequence from a haptic-enabled fluid simulation 208

8.7 Graph of computed fluid feedback forces 209

8.8 The effect of grid resolution on force 210

8.9 Forces displayed in a painting application 211

xxiv

xxv

LIST OF TABLES

2.1 Features of painting systems . 31

3.1 Summary of mathematical notation for brushes 48

4.1 Attribute textures in the dAb model 77

4.2 Performance measurements of the dAb model. 89

6.1 The five physical principles of the IMPaSTo paint model 125

6.2 Textures used in the GPU implementation. 127

8.1 Input devices for brush control . 189

xxvi

Chapter 1

Introduction

We don’t make mistakes here, we just have happy accidents. We
want happy, happy paintings. If you want sad things, watch the news.
Everything is possible here. This is your little universe.
— Bob Ross, on his popular PBS show, “The Joy of Painting”.

Painting is a universally appreciated and widely practiced form of art with a mag-

nificent history. Nearly every culture across the globe regards some form of painting

among its primary arts. Paintings found on the walls of caves in Europe dating back

to 40,000 B.C. (Johnson, 2003) attest to the long-standing fascination of humans with

painting (Figure 1.1). This fascination is as strong today as ever, with hundreds of

museums across the world displaying their painting collections to millions of visitors

every year. It is impossible to put a price on the value of painting to mankind, but

the recent sale of a painting for $104 million1 certainly gives an indication of painting’s

staggering value to man.

The enduring popularity of painting is probably due to a combination of its simplic-

ity and range. It is something simple enough that a child can do it, yet deep enough to

require a lifetime to master. Painting is among the more versatile of the visual arts. In

a painting, an artist is able to give manifestation to almost any imaginative impulse,

1Picasso’s Garçon a la Pipe sold for a record price of $104 million in May, 2004. Prior to that the
record was $82.5 million, paid for Vincent Van Gogh’s Portrait of Dr. Gachet in 1990. (Source: BBC
News, http://news.bbc.co.uk/2/hi/entertainment/3682127.stm)

2

Figure 1.1: An ancient cave painting, c. 15,000-10,000 B.C., located in Lascaux,
France. (Scan by Mark Harden, http://www.artchive.com)

no matter how far removed from reality. A good painting has the ability to draw the

viewer in, to tell a story, to transport the viewer to another location or into another

state of mind, to alter mood, to provoke thought, or to inspire action. Paintings can

be convincingly lifelike (Figure 1.2), or viscerally abstract (Figure 1.3); they can be

spacious and expansive (Figure 1.4), or closed and personal (Figure 1.5). The variety

and range of paintings is limitless.

1.1 Painting and Computers

We do not typically think of painting as technology. However, in the days of Leonardo

da Vinci, the pursuit of improved painting technique was the very pursuit of advanced

imaging technology. Da Vinci and others sought to discover the principles necessary to

create realistic paintings, just as computer graphics researchers since the 1970’s have

sought to develop computer algorithms for realistic image synthesis. Throughout the

majority of human history, painting was the most technologically sophisticated means of

3

Figure 1.2: Still-Life, Jan Davidsz de Heem, c. 1650

image reproduction. This remained so up until about 1837 when Louis-Jacques-Mandé

Daguerre introduced the world to photography(Honour & Fleming, 1995). Today, when

one thinks of imaging technology, one looks towards computer graphics.

Modern computer graphics have enabled some truly stunning artistic creations that

would be impossible to achieve any other way. Da Vinci, though a genius, could never

have painted Toy Story2. Yet it was with nothing but the traditional tools of painting

that he and other great masters over the ages were able to create many stunningly

realistic and lasting masterpieces. These great artists—Rembrandt, Goya, Vermeer,

and countless others—accomplished their feats with the help of the tools and materials

at hand. And their tools were essentially the same tools that a student of painting

would use today. Centuries of technological advancement have not altered the basic

process of painting, simply because that process is highly effective.

2Pixar’s—and the world’s—first feature length 3D computer animated film.

4

Figure 1.3: Composition, Willem de Kooning, 1955. Solomon R. Guggenheim
Museum. 55.1419. ©2003 The Willem de Kooning Foundation/Artists Rights Society
(ARS), New York.

5

Figure 1.4: Looking Up the Yosemite Valley, Albert Bierstadt, c. 1865-67 (Scan by

Mark Harden, http://www.artchive.com)

Figure 1.5: Irises, Vincent Van Gogh, 1889. (Scan by Mark Harden,

http://www.artchive.com)

6

Computers have changed most artists’ lives relatively little, but at the same time,

the rise of computers has significantly impacted the lives of others. Writers have widely

adopted word processors as the main tool of their craft. Today, very few writers or

students create works of significant length with pen and paper. Computers have also

transformed many engineering tasks such as design and manufacturing. The same

transformation has occurred in the worlds of audio and video production. But, in

contrast, most visual artists today still work with traditional materials. Relatively few

have embraced computer-based drawing and painting tools for serious artwork.

Why have artists not adopted computers more widely? It is not out of ignorance

of the many advantages the computer can offer, like undo and version control. The

problem, many artists argue, is that computer images lack a certain human warmth.

(See (Cockshott, 1991), and Appendix B, e.g.) Tunde Cockshott, an artist by training,

argued in his dissertation that computer painting programs he had tried all “took

far too shallow a view of the process of real painting,” going on to cite the common

opinion among artists (including himself) that these programs were all “too sterile”

(Cockshott, 1991, p.10). Artist John Holloway agrees, saying most computer generated

images lack what he calls “organicness” and are “too clean, too sterile”. (Holloway has

been working with my IMPaSTo painting system for some time. His full comments

appear in Appendix B.)

In order for computer images to shed this sterility, those who create computer paint-

ing systems must understand how artists view painting. There are three closely related

aspects of real painting that are important to artists, but that are typically overlooked

by painting programs. These are the importance of the process, the importance of

accident, and the importance of complexity. In order to create painting systems that

artists will embrace, it is necessary to understand these three concepts and arrange for

them to be fundamental to the operation of the digital system.

7

Painting is a process. It is a fusion of feeling and action, sight and touch, purpose

and paint, which goes beyond merely producing an image to give an artistic impres-

sion (Mayer, 1991). Current painting programs focus more on the product, on the

final image, rather than the process of getting there. David Em comments that this

emphasis is typical of the engineering mindset, to put the product before the process,

whereas the process comes first with the artist when making a work of art (Em, 1983).

Cockshott writes about the iterative and interactive nature of the painting process

(Cockshott, 1991, p.21), how the artist starts with an idea, and moves to achieve that

end, but ultimately “cannot but help be influenced by the process of making the image”

(emphasis his). Computer artist Lillian Schwartz writes about the process becoming

encapsulated in the image. She says that if the artist is effective “we remain moved

because of the spirit preserved in the artwork” (Schwartz, 1992). Current painting

programs focus too much on creating eye-catching effects with a single click, to the

detriment of the overall process of painting.

Closely related to process is the concept of the accidental. The accident, in some

sense, gives rise to process in creating art. The artist tries something, sees what

results, decides where to go from there, and repeats this cycle until it seems that

any further attempt at improvement can only detract. Often “what results” is not

what the artist expected, and this can lead him or her in new directions. Many artists

have talked about the importance of the accidental in art. Pablo Picasso embraced the

accidental, summing up his artistic process glibly as: “I begin with an idea and then it

becomes something else.” He believed in the importance of the idea merely as a starting

point (Ashton, 1972, p.72). Jackson Pollock writes about the unpredictable direction a

painting inevitably takes during its creation, describing a painting as something with

“a life of its own” (Chipp, 1968, p.584). Popular painting guru Bob Ross believed in the

benefit of accidents as well, as is plain from the quote at the beginning of this chapter,

8

and his frequent use of the phrase “happy accident”. Most painting programs go out

of their way to make every operation completely predictable and precise, leaving little

room for the type of spontaneity that gives rise to accident.

Finally, the role of complexity is important as well. Real painting materials have

a rich, dynamic behavior, and not even a master painter can say for sure what a

mark is going to look like until the brush finally leaves the canvas. At the same time,

the mark made is also not completely random. The skilled painter’s exerted control

will almost always achieve the general, if not the specific, outcome desired. (Lewis,

1984) tries to give computer painting more organic complexity by adding fractal noise

to stroke textures. Though he succeeds in adding complexity, the control aspect is

neglected, leading to marks that have complexity largely uncorrelated with the painter’s

actions. The richness of natural material behavior leads to a richness of expression in the

resulting work that is, nonetheless, still under artist control. Complexity relates back

to the notion of the accidental as well. More complexity naturally leads to an increased

potential for accident. This connection is expressed vividly in the drip and splatter

works of Jackson Pollock. (Cockshott, 1991, p.25) criticizes the brushes provided by

typical painting programs, arguing they are created by feature-happy engineers who

know little about what artists want. He writes,

the role of the artistically-naive developer of computer-based paint systems
has been perpetuated. This is evident in the range of tools and effects
available in the contemporary commercial products, many of which have
little real value other than as gimmicks such as a brush which paints a trail
of musical notes.

He further derides other, less gimmicky types of brushes offered by these programs as

being no more expressive than a simple child’s potato stamp (Cockshott, 1991, p.26).

There is little chance for accident when the tools at hand are imbued with inhuman

digital precision. In contrast, the materials and tools relied on by artists are rich with

9

natural complexity. Brushes are composed of thousands of individual hairs, each able to

move independently. Paint squishes, flows, adheres, and spreads in often unpredictable

ways. Even in the hand of an expert, a brush will never make exactly the same mark

twice. The effect of this complexity is not pure randomness, but more a steerable

unpredictability. The artist still has the ultimate control.

In this thesis I propose new models of the traditional painting materials and tools

that enable the creation of painting systems that offer all three of these important

aspects to the artist—process, accident, and complexity.

1.2 Painting Media

Very little has fundamentally changed in the craft of painting from the days of the first

painters. The basic challenge remains the same: “to fix pigments to a ground in order

to preserve them.” (Honour & Fleming, 1995). This is accomplished by preparing a

support, such as wood, rock, or canvas, with a film of ground onto which the pigment

can adhere. What has changed is the make-up of these components. Painting materials

have gone from simple primitive stains, to twelfth century techniques such as fresco

(applying stains to wet plaster), to tempera paints made from egg-yolk and powdered

pigments, to oils, which were in use by the 1430’s in the Netherlands by Jan van Eyck

and others. Finally in the 1960’s came the development of acrylic paints (Honour &

Fleming, 1995).

Among the many traditional painting media used by artists today, none is given

more deference and respect than oil. Oil paints were developed and rose to prominence

in the 15th or 16th century, and this prominence has continued to the present day. In

The Artists’ Handbook, Mayer summarizes the key attributes that give oils their lasting

appeal in the eyes of artists and art aficionados. Mayer lists the following attributes

10

of oil paint. Though the majority lose their relevance when applied to computer-based

painting, the first three are worth examining more closely3. Features of oil paint include:

1. Its great flexibility and ease of manipulation, and the wide range of
varied effects that can be produced.

2. The artist’s freedom to combine transparent and opaque effects, glaze
and body color, in full range in the same painting.

3. The dispatch with which a number of effects can be obtained by a
direct, simple technique.

4. The fact that the colors do not change to any great extent on drying;
the color the artist puts down is, with very slight variation, the color
he or she wants.

5. The fact that large pictures may be done on lightweight, easily trans-
portable linen canvases.

6. The universal acceptance of oil painting by artists and the public,
which has resulted in a universal availability of supplies, highly refined,
developed, and standardized.

7. Its principal defects are the eventual darkening or yellowing of the oil,
and the possible disintegration of the paint film by cracking, flaking
off, etc. ((Mayer, 1991))

Issues of permanence, transportability, and availability of materials (items 4–6) are

all made largely irrelevant by digital image manipulation tools. The single detriment

listed, discoloration and cracking from aging (item 7), does not apply to digital cre-

ations. However, items 1–3 are all relevant to digital tools. In particular, item 3 is an

area where computers tend to have difficulty: the “dispatch with which a number of

effects can be obtained by a direct, simple technique.” A strong case can be made that

traditional painting tools and materials have been unmatched by modern computer

programs for image generation in this regard.

3I have rearranged a few of these points so that those relevant to computer painting are all grouped
together. The numbering is also mine.

11

Typical computer interfaces for painting software rely on a large number of states

and modes to achieve their wide variety of effects. These modes generally become more

difficult and unintuitive to manage the more flexibility the program allows. In contrast,

the traditional tools of painting are in some ways very straightforward and intuitive

to use, while still maintaining a phenomenal degree of flexibility. For example, one

can obtain different marks by using different brushes or vary marks dynamically by

applying different amounts of pressure and brush angle; one can make paint thinner

with more oil medium for smoother strokes, or transparent glazes. Achieving these

effects is second nature to a painter; the brush and paint become extensions of the

artist.

Informal interviews I have conducted with many painters and digital artists over the

course of this research have revealed that most of them crave this close connection with

their materials, and feel it lacking in current digital tools. Even at a digital studio like

Pixar Animation Studios, background painters will still create the detailed backgrounds

that appear 3D animated films using traditional painting techniques. These paintings

are then scanned into the computer for inclusion into the 3D virtual set.

One painter at Pixar sums up the situation like this (Tia, 2001):

“My artist’s toolbox has oils and acrylics—and a computer. But the
computer’s not tactile, and I miss that. You can’t push junk around.
. . . [W]hen my computer goes down, I have no clue what to do. That’s
frustrating. But I really don’t want to understand it” — Tia.

This quote illustrates two distinct points. One is that most artists have absolutely no

interest in becoming computer experts in order to use digital tools. The painters at a

studio like Pixar are hired for their artistic talent, not their computer knowledge. The

studio, in fact, spends at least three months training newly hired artists on the use of

the in-house digital tools. This training is required in part because the digital tools

work so differently from the traditional tools these artists are familiar with. This leads

12

to the second point I would like to highlight: not only are current computer based

painting programs significantly different, they also do not allow the same level of fluid,

direct interaction with the medium that is possible with real painting, and desired by

most painters. Digital paint models in typical programs do not allow the artist to “push

junk around,” nor are they “tactile”.

This dissertation presents several novel techniques developed for simulating a nat-

ural medium like oil paint, as well as methods for simulating the brushes, canvas, and

palette used in traditional painting. Together, the composition of these physically-

based digital paint media and tools leads to a natural painting environment, which

allows painters to work on the computer just as they would with real-world tools. When

given a chance to use the more natural, 3D virtual simulation-based painting interface

developed in the course of this research, painters have been very positive. Often the

first question asked is how they can obtain a copy of the software for themselves.

My interactions with artists over the course of this research lead me to believe

that, with the type of painting simulation and natural painting software interface

presented in this dissertation, the divide between traditional artists and digital art

can be significantly narrowed.

1.3 Applications and Benefits

By simulating the traditional tools and materials of painting, the potential advantages

are several. First, as already mentioned, the primary goal is to create an effective

and expressive tool for artists. By providing virtual equivalents of familiar tools, such

a program can enable traditionally trained artists to more easily and rapidly make

the transition to the digital realm. By transferring the skills and techniques they

already know over to a computer-based system, they can immediately take advantage

13

of the benefits of digital content creation, such as undo, save, no waiting for physical

or chemical processes like drying, and unlimited version control. But even for artists

who are not already trained painters, the techniques presented in this dissertation give

artists more expressive virtual tools compared to existing painting programs.

The second application is as a tool for training novices to paint. Someone interested

in learning painting techniques could use a simulation-based painting system to practice

mixing paints to achieve the desired hue and tint, and to practice brush loading, basic

strokes, layering and composition. This practice can be spread over multiple sessions

separated by any amount of time, and the student can have complete control over the

drying process, drying the canvas instantly so she can proceed immediately with no

lost time, or leaving it wet indefinitely so she can continue working with a wet-on-

wet technique after any length of hiatus. Furthermore, tedious setup and cleanup are

eliminated entirely.

The third application for this technology is to increase the accessibility of painting.

The potential exists to enable painters of all sorts to paint in situations in which they

otherwise would not be able. The thinners used in oil painting, for instance, require a

well-ventilated room for safe usage. This makes it difficult for anyone with limited space

to pursue their painting hobby. Using a computer-based painting system produces no

fumes, requires no physical space to store all the partially completed canvases, and

creates no mess. It is perfect for children, who love to paint4, but may have difficulty

with the complex interfaces of most computer painting programs. Or it could be used

effectively in a museum setting to get visitors more involved in thinking about the craft

and skills that go into painting, as well as the science of visual thinking.

It is legitimate to ask why one should use the computer to simulate things the

way they are, rather than how they could be. These arguments are raised cogently

4“Every child is an artist. The problem is how to remain an artist once he grows up.”—Pablo
Picasso

14

in (Schofield, 1994). Why not just ignore the constraints of the real world and create

a new media truly unique to the computer? Simulated paint, no matter how faithful

the reproduction, can never be more paint-like than paint itself, by definition. So why

make the effort?

First, even in this dissertation, the goal is not to reproduce paint exactly as it is

in reality. I allow for instantaneous drying, and for multiple levels of undo and redo,

for instance, which are not easily achieved in the physical world. The philosophy is to

model reality selectively, picking and choosing only aspects of the real world that are

conducive to creative expression.

Second, a major tenet of this dissertation is that by creating a physically-based

interface one leverages human beings’ experience with how materials behave. So even

if humans could adjust to some hypothetical non-physical rules, the user would have

to take time to learn those unfamiliar rules. To the extent that the virtual materials

mimic their real-world equivalents, no computer-specific training will be required to use

them, thus resulting in a savings of time, money, and frustration.

Non-physical, or quasi-physical, paint systems that seek to transcend the real world

are, nonetheless, a fascinating and important topic for further study.

1.4 Thesis

My thesis is:

With efficient, physically-based models for capturing the behavior,

appearance, and feel of the brushes and thick paint used in traditional

painting, one can create interactive, computer-based painting systems

that are flexible, versatile, and easy to use.

In support of this thesis I have created several prototype painting systems, dAb, Stokes

Paint, and IMPaSTo, and have given them to hundreds of users to experiment with

15

Eriko Baxter

Rebecca Holmberg John Holloway

Figure 1.6: Examples of paintings created by various artists using the different
physically-based digital painting techniques presented in this dissertation. Many more
examples are included in later chapters.

and to create original paintings. The users range over all levels of experience, both

with traditional painting techniques and with digital techniques, some being advanced

at one or the other, some at both, and some complete novices at fine art. Regardless of

experience, users have all been able to begin painting immediately, and many users have

spent many hours enjoying the realistic painting experience, creating a wide variety of

paintings. Examples of these paintings are shown in Figure 1.6. Many more examples

are shown throughout the remaining chapters of this dissertation. Painters’ reactions

have generally been very positive; one went so far as to emphatically declare “this is

exactly what I’ve been waiting for.”

16

1.5 New Results

The goal of this dissertation is not simply to develop another digital image creation

program, but rather to devise algorithms for creating a full simulation of traditional

painting, using modern physically-based numerical simulation techniques. The result,

I believe, is a simulation of painting that is not only unprecedented in its realism

and in the versatility of the digital medium, but also unparalleled in usability. Though

there are still many challenges to address in future research, this dissertation represents

several significant strides towards the goal of creating a computer-based painting system

that can compare to real-world painting in every way.

1.5.1 Overview of Results

I present several specific scientific advances to further the goal of realistic interactive

digital painting. To adequately facilitate the painting process, one needs accurate

models for both the brush and the paint, and this translates naturally into an overall

painting pipeline consisting of the following simulation stages (Figure 1.7):

1. Brush dynamics: Update brush according to user input.

2. Paint dynamics: Update paint distribution according to brush motion.

3. Paint Rendering: Compute color, and display the resulting paint to the screen.

Each step is performed repeatedly until the artist deems the painting complete. The

artist closes the loop by observing the results of each stroke and planning the next

one accordingly in order to achieve a desired result. This feedback loop implies that a

high level of interactivity is desirable in these models, in order to allow the user/artist

to immediately see and react to the results of each manipulation. Consequently, the

17

3D Paint
Simulation

Paint
Rendering

3D Brush
Simulation

Rendered
3D

Canvas

IO Device
Position and

Motion

Brush mesh
position

 and motion

Paint pigment
and

volume

Figure 1.7: System architecture overview. The process begins with input from
either a pressure- and tilt-sensitive tablet or Phantom haptic IO device, then the
system simulates the brush, simulates the paint, and renders the painting’s pigment
concentrations into a final RGB image for display.

focus of this work is on techniques that are fully interactive, ideally providing 30-60Hz

update rates.

The entire simulation should also be presented to the user via an easy-to-use

interface. And since the feel of the materials is important to the overall experience

of realism, an important aspect of the interface is the recreation of the haptic (or

tactile) sensation of painting.

In this dissertation I describe novel models for each of the above components in

order to create a painting system that is significantly closer to real-world, traditional

painting than any previous computer-based system. I have combined these realistic,

physically-based models with the first ever haptic interface for painting and a virtual

mixing palette. Specifically, in the chapters that follow I present the following. 1) A

model for 3D dynamically deformable paint brushes. 2) Three different models for paint

behavior that fall in three distinct zones on the trade-off curve between performance

and simulation fidelity. 3) An accurate real-time physically-based model for calculating

the color of paint mixtures based on full-spectrum measurements of real oil paints.

Finally, I present 4) a natural user-interface with haptic feedback models that truly

give the painter the feel of painting.

18

The next few sections explain the responsibilities and scope of each component in

the painting pipeline in more detail, and give a brief overview of my approach for each

one.

1.5.2 Brush Dynamics

The brush dynamics component takes input from the user and transforms it into

brush motion and deformation, and outputs a description of the brush’s dynamic

state. In many previous systems this transformation has been as simple as conversion

from 2D mouse input to the 2D position of a brush bitmap on the canvas. In this

dissertation it consists of a simulation of a deformable 3D brush driven by input from

a six degree-of-freedom haptic interface. My simulation is based on quasi-static energy

optimization of a skeletal brush representation, and includes an anisotropic friction

model, and modeling of brush plasticity. The geometric model for the brush consists of

a combination of a dynamic subdivision surface and individual bristles, both of which

are deformed according to the skeletal dynamics.

Modeling of brushes is made difficult by the stiffness of most bristle materials,

which leads to numerical stiffness in the differential equations used to model their

motion(Witkin & Baraff, 1997). The modeling is further complicated by the intricate

geometry of the thousands of individual bristles.

In Chapter 3, I present a hybrid approach to dealing with this complexity.

� Physical behavior and geometric modeling of the brush are treated separately.

� Physical behavior is modeled using a simplified spring skeletal system to capture

the essential dynamics of a three dimensional brush under user control.

� The geometric model consists of two components, a surface model to capture the

19

extents of the brush as a whole, and a bristle model to capture individual bristle

details.

� The surface model consists of a subdivision surface that is dynamically deformed

based on the deformation of the physical skeleton, and is able to mimic the paint

marks created by smoother, softer brushes.

� The bristle model consists of hundreds of individual polygonal strips that are

dynamically deformed using a weighted interpolation scheme based on the motion

of the physical skeleton, capturing the scratchy, random look of strokes created

by coarser brushes.

The flexible brush model I present offers the digital painter for the first time a range

of virtual 3D deformable brushes that faithfully recreates the range of brushes that are

typically found in the traditional painter’s tool set. Combined with the paint models

I will present, these brush modeling techniques are able to create a wide variety of

realistic brush marks at interactive rates.

1.5.3 Paint Dynamics

The paint dynamics model takes the brush state description as input and determines

how paint is altered on the canvas based on the brush’s motion. In this dissertation I

model the behavior of a viscous oil-like paint medium.

The complex geometry of real viscous paints that results from the simplest ma-

nipulation poses a challenge for real-time simulation. An example of this complexity

is shown in Figure 1.8. The image shown was the result of working a dab of slightly

thinned oil paint with a palette knife. Determining a good geometric representation is

only part of the challenge. The motion and evolution of this surface when manipulated

by a brush is even more difficult.

20

Figure 1.8: The complex, dynamic geometric surface of real paint presents a challenge
for simulation.

Rather than a single approach, I introduce several methods for dealing with the

complexity and the computational demands of manipulating a viscous fluid with a free

surface and discuss the characteristics of each, for use on different computing platforms

with different capabilities.

In particular, I present the following paint models:

� A simple 2D model appropriate for computers with a 500 MHz processor or better,

and most any accelerated 3D graphics adapter. (Chapter 4)

� A method based on 3D viscous fluid flow equations for faster CPUs. (Chapter 5)

� A 2.5D method, based on physical principles, which leverages the parallelism and

vector processing capability of programmable graphics processing units (GPUs).

(Chapter 6)

Each paint model offers a particular trade-off between speed and physical fidelity.

Figure 1.9 gives an overview of the major differences between these paint models.

21

������

����	
��������������

����	���
������

����	�������

�������
� �	
�������������

� �����������������

� �������������������

� ��� �!���

� ��∀���������#�∃

� %���������#�∃

&������	��	����	����� !∋

�(!
� ��)�����

� ����������

� �������������������

� ��� �!���

� ��∀���������∗�∃

� %���������∗�∃

&������	��	����
∀#∃∃���%� &∋

������+������
� ,��#���

� ������+��−�������

� (����������������

� .�/���0���!���

� ��∀���������∗�∃

� %���������#�∃

&�������	��	����	∋�∀�� !∋

Figure 1.9: A comparison of the three paint models I propose. In any type of
simulation there is inevitably a trade-off between speed and simulation accuracy. The
three paint models in this dissertation each occupy a different position along this trade-
off curve.

The first method, the subject of Chapter 4, is shown on the left in Figure 1.9. It is a

simple two-layer, 2D heuristic that allows for fast interactive response even on modest

hardware, but that still offers several paint-like attributes, and full integration with my

3D virtual brush models. This paint model was originally presented in (Baxter et al.,

2001).

The second method, the subject of Chapter 5, is shown on the right in Figure 1.9. It

is based on the Stokes’ equations for viscous flow. It uses a full 3D grid to represent the

paint and can therefore capture the interesting subsurface paint distribution that can

arise even from fairly simple paint manipulation. It is also the most computationally

demanding of my paint models. This paint model was originally presented in (Baxter

et al., 2004a).

The third method, the subject of Chapter 6, is shown in the middle of Figure 1.9.

It offers a balance between costly physically-based techniques and fast approximations.

It uses a multiple-layer model to allow the user to build up an unlimited number of

paint layers, and uses the programmable graphics processor to perform the simulation,

22

leaving the CPU free for other tasks. This paint model was originally presented in

(Baxter et al., 2004b).

1.5.4 Paint Appearance

Finally, given a distribution of paint on the canvas, the paint appearance model is

responsible for rendering an image of that paint to the display.

Paint is made by mixing a dry pigment, such as titanium oxide powder, in a medium

such as linseed oil. The optical properties of such a material are non-linear and cannot

be modeled well using the simple, linear RGB color space that is typical in rendering

computer graphics. The mixing of pigmented materials is much better modeled by

the Kubelka-Munk mixing and compositing equations developed by German scientists

Kubelka and Munk (Kubelka & Munk, 1931; Kubelka, 1948; Kubelka, 1954). These

equations account for the internal absorption and scattering of light that occurs in a

material such as paint.

As mentioned by Mayer (Mayer, 1991), the ability to create both transparent glazes

and opaque effects is an important part of the flexibility of oil paint. To enable this

range of behavior I present a multi-layer representation for paintings as part of the

paint model.

Specifically, in Chapter 7 I present:

� A novel high-accuracy paint coloration model based on Kubelka and Munk’s

model, suitable both for interactive and archival color purposes.

� A Gaussian-quadrature technique for choosing an 8-sample color space basis at

runtime.

� Techniques to enable relighting paintings under any full spectrum illuminant.

23

Figure 1.10: Artists paint by manipulating an input device, like the haptic stylus
shown above, to control a 3D virtual paint brush. The results are displayed interactively
and continuously as the artist works.

� A measurement technique for acquiring Kubelka-Munk coefficients from real-

world paint samples.

� An implementation of the Kubelka-Munk color model that leverages the data

parallelism of the GPU to deliver interactive performance.

1.5.5 Interface

An interface should be easy to learn but at the same time not limit the user. An

interface that is intuitive, or, in other words, simply does “what the user expects”

with little or no training, is highly desirable. In many cases a user’s past experience

determines the degree to which a new interface will seem intuitive. Keeping an interface

simple by limiting the choices presented to the user can reduce the learning curve, but

at the same time can restrict the flexibility afforded the user.

24

One striking benefit of using simulation extensively in a user interface for painting

is that it enables a natural style of interaction that is not possible with the existing

computer image generation tools. My interviews with users indicate that the interface

introduced in this dissertation is easier to learn and less intimidating to many traditional

artists than the interfaces typically used in image creation applications. At the same

time, the natural 3D brush input system and simulated media gives the artist much of

the same flexibility he or she would have with a real brush and paint.

The interface of a painting system should also serve to enhance the painter’s con-

nection with the virtual tools and materials. I propose a natural painting interface

with haptic feedback that gives the user a fully three-dimensional input channel for

interacting with the virtual brush and paint, with haptic feedback that gives the painter

extra tactile information to better control the brush.

Specifically, in Chapter 8 I present:

� A natural interface for painting that recreates the traditional tools and environ-

ment of real-world painting.

� A painter’s palette interface for brush loading and mixing that is intuitive and

easy to use.

� Haptic models for brush force feedback. A simple model as well as a physically-

based model for haptic interaction with fluids.

Figure 1.10 shows the overall interface setup.

1.5.6 Summary

This dissertation covers a wide range of topics important to the accurate, realistic

simulation of the tools and materials used in traditional painting. Figure 1.6 gives a

preview of some of the resulting paintings that have been created with the techniques

25

in this dissertation, and Figure 1.10 shows painters using the natural interface. The

techniques I present offer the painter an interface focused on process rather than

product, with complex material models that facilitate expressive mark-making and

serendipitous accidents.

1.6 Thesis Organization

The rest of the dissertation is organized as follows. The next chapter discusses previous

work in painting systems and related subject areas. Chapter 3 details my novel

physically-based virtual 3D brush model. Chapters 4–6 describe the three different

models for paint dynamics that I have developed. In Chapter 7, I describe a technique

for real-time rendering of the appearance of paint using the Kubelka-Munk equations.

Chapter 8 details the issues relating to both the overall interface, as well as the specifics

of haptic feedback generation used by this system. Finally, in Chapter 9, I summarize

the major results of this dissertation and conclude with a look at areas for future

improvement.

26

Chapter 2

Previous Work

Art is a process. [. . .] The computer also represents a process. But it
is a polymorph of mathematical and logical design. What it can do is
subject to what we believe it can do for us.
— (Schwartz, 1992)

In this chapter I describe the previous research in painting systems and non-photorealistic

rendering that provides the general background and context for my work. The previous

work related to the specific techniques I use in simulating brushes and paints based on

physical models will be discussed later, in the corresponding chapters.

2.1 Non-Photorealistic Rendering Overview

The quest for photorealism has been the main driving force behind computer graphics

research for the past several decades. Many stunning achievements have been made

in this time. But a complementary research trend has gained momentum recently,

one with the goal of creating more stylized imagery. Much as painters of the 19th

century began to realize that realism was not always the best way to convey a message,

recently graphics researchers have begun to embrace the idea that a simple line drawing

can sometimes be a better way of conveying information than a realistically shaded 3D

model, and that traditional artistic styles can be far more expressive than photorealistic

images for some applications. The efforts to bring such stylization to computer graphics

28

are collectively referred to as non-photorealistic Rendering (NPR). Research on NPR

can be categorized roughly into two pursuits (Sousa, 1999): 1) rendering methods

applied to directly to reference images and/or 3D models to create painterly or otherwise

expressive renditions; and 2) simulation of natural media for drawing or painting

(pencil, charcoal, pen-and-ink, watercolor, oil), including their correspondent tools and

accessories (paper, brushes, canvas).

This dissertation is concerned with the latter, simulated media, and in particular

the simulation of viscous oil-like paint and the attending tools: brushes, canvases, and

palettes. Next I provide a survey some of the previous work in non-photorealistic

rendering. More in-depth surveys and taxonomies can found in (Sousa, 1999) or in the

books (Gooch & Gooch, 2001; Strothotte & Schlechtweg, 2002).

2.2 Automatic Rendering Techniques

The goal of automatic NPR methods is to algorithmically generate expressive renditions

of existing photographs or 3D scenes, typically in some traditional artistic style. The

challenge is to somehow distill the often fuzzy principles developed by artists over the

years into concrete algorithms that can be executed by a computer with little or no

human intervention.

Various methods for automatically rendering images in pencil sketch, charcoal, pen-

and-ink, crosshatch, technical illustration, cartoon shading and other styles have been

developed. Chapter 2 of (Sousa, 1999) gives a good summary of the work done in these

areas throughout the 1990s. Two books have been published on the subject of NPR

as well (Gooch & Gooch, 2001; Strothotte & Schlechtweg, 2002). Both offer excellent

summaries of the state of the field.

More relevant to this dissertation, several researchers have also developed automatic

29

methods for transforming images or 3D scenes into painterly renderings (i.e. renderings

that look like paintings). Some examples include (Meier, 1996; Curtis et al., 1997;

Litwinowicz, 1997; Hertzmann, 1998; Hertzmann, 2001; Hertzmann, 2002; Hays & Essa,

2004). These algorithms place and align paint strokes based on properties of the input

image, such as image silhouettes or isochromal contours. Most of the work in this area

has treated strokes merely in terms of color, but the latter two references additionally

use height fields and bump-mapping to generate strokes with surface texture as well.

While most techniques so far have focused on either one or the other of the main

NPR pursuits – either on automatic stylization or on providing a model for natural

media – the watercolor simulation of (Curtis et al., 1997) was notable in that it achieved

both. It presents first a realistic simulation of the medium, then uses that simulation

as a basis for a mostly automatic NPR technique. (Sousa, 1999) accomplished this as

well with his pencil modeling and subsequent automatic pencil rendering algorithms.

Automatic stylized depiction is an important goal; however, in many environments

it is more important that artists have total control over the resulting work, which runs

counter to the goal of having the computer algorithmically determine where strokes

will be placed. The best way to give the artist full control is to provide him or her with

an interactive model of the media. Given such a realistic media simulation, existing

techniques can be used to automatically guide the virtual brush and place strokes to

generate a stylistic rendering automatically, as demonstrated by the work of (Curtis

et al., 1997) and (Sousa, 1999).

I therefore concentrate in this dissertation on the problem of how to simulate a

viscous paint medium and paint brushes realistically in real time, and in how to provide

the artist with an efficient human-computer interface that enhances the interactive

painting experience.

30

2.3 Modeling Natural Media

Many models for simulating natural media have been developed over the years. Ta-

ble 2.1 presents a summary of the features of many previous systems that specifically

modeled paint. I have included several of the early 2D painting programs that really

provided more of a “bitmap” style of painting than an approximation of any real

medium; nevertheless, their creators were clearly attempting to simulate the look and

feel of painting as nearly as they could, given the hardware available at the time.

The evidence is in the nomenclature they used. For example, Richard Shoup’s 1973

“SuperPaint” program (Shoup, 2001)1 and “Paint” by Alvy Ray Smith (Smith, 1978),

both provided the user with “brushes”, a “palette”, “canvas” and “paint”. The intent

to create something like real-world painting is clear, even though the “brushes” were

little more than 2D bitmaps stamped onto the framebuffer, and the “palette” was

simply a list of colors. (Smith, 2001) presents an entertaining history of other various

early painting systems and the individuals behind them.

(Lewis, 1984) was one of the first to suggest a method for giving strokes created

in painting programs more of the organic character of natural media. He chose not to

model a particular medium, but rather to synthesize textures that have spectral char-

acteristics similar to natural materials. The result was images that were significantly

more organic in appearance than the typical images of the day.

(Strassmann, 1986) provided one of the earliest models for a specific natural medium.

His “hairy brushes” for ink painting modeled the the amount of ink contained in each

bristle over the course of a stroke, and allowed a brush to deform over the course of a

stroke, as well. The input to the system was cumbersome, however, requiring the user

to specify spline control points, and features like paper texture or the mixing of ink

through diffusion were not modeled.

1The SuperPaint project was initiated in 1972 and completed in 1973.

31

P
a
in

ti
n
g

S
y
st

e
m

M
ed

ia
ty

p
e

B
ru

sh
B

ru
sh

d
y
n
am

ic
s

H
ap

ti
cs

G
ra

in
3D

C
an

va
s

P
al

et
te

C
ol

or
In

p
u
t

In
p
u
t

D
oF

N
ot

es

(S
h
ou

p
,
20

01
)

B
it

m
ap

2D
N

on
e

N
o

N
o

N
o

S
im

p
le

R
G

B
L
ig

h
t

p
en

2
(S

m
it

h
,
19

78
)

B
it

m
ap

2D
N

on
e

N
o

N
o

N
o

S
im

p
le

R
G

B
L
ig

h
t

p
en

2
(W

h
it

te
d
,
19

83
)

B
it

m
ap

2D
N

on
e

N
o

N
o

N
o

N
/A

R
G

B
-

2
(L

ew
is

,
19

84
)

B
it

m
ap

2D
N

on
e

N
o

Y
es

N
o

N
on

e
R

G
B

M
ou

se
2

(G
re

en
e,

19
85

)
B

it
m

ap
3D

R
ea

l
S
ta

ti
c

N
o

N
o

N
on

e
R

G
B

R
ea

l
b
ru

sh
6+

(S
tr

as
sm

an
n
,
19

86
)

In
k

1D
S
p
li
n
es

N
o

N
o

N
o

N
on

e
M

on
o

M
ou

se
2

(B
le

se
r

et
al

.,
19

88
)

C
h
ar

co
al

2D
B

it
m

ap
se

t
N

o
Y

es
N

o
N

on
e

M
on

o
T
ab

le
t

5
(P

os
ch

&
F
el

ln
er

,
19

89
)

B
it

m
ap

2D
N

on
e

N
o

N
o

N
o

N
on

e
R

G
B

-
2

(W
ar

e
&

B
ax

te
r,

19
89

)
B

it
m

ap
2D

S
iz

e,
C

ol
or

N
o

N
o

N
o

?
R

G
B

T
ra

ck
er

6
(W

il
li
am

s,
19

90
)

Z
/B

it
m

ap
2D

N
on

e
N

o
N

o
N

o
S
im

p
le

R
G

B
M

ou
se

2
(H

an
ra

h
an

&
H

ae
b
er

li
,
19

90
)

B
it

m
ap

2D
N

on
e

N
o

N
o

Y
es

S
im

p
le

R
G

B
M

ou
se

2
(P

h
am

,
19

91
)

In
k

2D
N

on
e

N
o

N
o

N
o

N
on

e
M

on
o

M
ou

se
2

(G
u
o

&
K

u
n
ii
,
19

91
)

In
k

2D
N

on
e

N
o

N
o

N
o

N
on

e
M

on
o

M
ou

se
2

(S
m

al
l,

19
91

)
W

at
er

co
lo

r
2D

N
on

e
N

o
N

o
N

o
N

on
e

M
on

o
M

ou
se

2
(C

o
ck

sh
ot

t,
19

91
;
C

o
ck

sh
ot

t
et

al
.,

19
92

)
O

il
(t

h
in

)
2D

N
on

e
N

o
N

o
N

o
S
im

p
le

R
G

B
M

ou
se

2
(H

su
et

al
.,

19
93

;
H

su
&

L
ee

,
19

94
)

M
u
lt

ip
le

2D
N

on
e

N
o

N
o

N
o

S
im

p
le

R
G

B
M

ou
se

2
(K

u
n
ii

et
al

.,
19

95
)

In
k

2D
N

on
e

N
o

Y
es

N
o

N
on

e
M

on
o

M
ou

se
2

(A
gr

aw
al

a
et

al
.,

19
95

)
B

it
m

ap
3D

N
on

e
S
ta

ti
c

N
o

Y
es

S
im

p
le

R
G

B
T
ra

ck
er

6
(C

u
rt

is
et

al
.,

19
97

)
W

at
er

co
lo

r
2D

N
on

e
N

o
Y

es
N

o
S
im

p
le

K
M

3
M

ou
se

2
(Z

h
an

g
et

al
.,

19
99

)
In

k
2D

S
iz

e
N

o
Y

es
N

o
N

on
e

M
on

o
T
ab

le
t

3
(L

ee
,
19

99
;
L
ee

,
20

01
)

In
k

3D
O

ffl
in

e
N

o
Y

es
N

o
N

on
e

M
on

o
T
ab

le
t

3
(S

ai
to

&
N

ak
a
ji
m

a,
19

99
)

In
k

3D
O

p
ti

m
iz

at
io

n
N

o
Y

es
N

o
S
im

p
le

K
M

3
T
ab

le
t

3
(W

on
g

&
Ip

,
20

00
)

In
k

3D
S
p
li
n
es

N
o

N
o

N
o

N
on

e
M

on
o

M
ou

se
2

(Y
u

et
al

.,
20

02
;
Y

u
et

al
.,

20
03

)
In

k
2D

S
iz

e
N

o
Y

es
N

o
N

on
e

M
on

o
T
ab

le
t

3
(C

h
u

&
T
ai

,
20

02
;
C

h
u

&
T
ai

,
20

04
)

In
k

3D
O

p
ti

m
iz

at
io

n
S
ta

ti
c

N
o

N
o

S
im

p
le

R
G

B
T
ra

ck
er

/T
ab

le
t

6/
5

(Y
eh

et
al

.,
20

02
)

In
k

3D
N

ew
to

n
Y

es
N

o
N

o
M

ix
in

g
R

G
B

P
h
an

to
m

6
(X

u
et

al
.,

20
02

;
X

u
et

al
.,

20
03

)
In

k
3D

O
ffl

in
e/

T
ab

le
N

o
N

o
N

o
S
im

p
le

R
G

B
M

ou
se

2
(C

h
an

&
A

k
le

m
an

,
20

02
)

In
k

2D
S
iz

e
N

o
N

o
N

o
N

on
e

R
G

B
T
ab

le
t

3
(G

u
o

&
K

u
n
ii
,
20

03
)

In
k

2D
S
p
li
n
es

N
o

Y
es

N
o

N
on

e
M

on
o

M
ou

se
2

(H
u
an

g
et

al
.,

20
03

)
In

k
2D

S
p
li
n
es

N
o

Y
es

N
o

N
on

e
M

on
o

M
ou

se
2

(L
in

&
S
h
ih

,
20

04
)

In
k

2D
S
iz

e
N

o
Y

es
N

o
S
im

p
le

K
M

3
T
ab

le
t

3
(M

i
et

al
.,

20
04

)
In

k
2D

S
iz

e
N

o
N

o
N

o
N

on
e

R
G

B
T
ab

le
t

3
(A

d
am

s
et

al
.,

20
04

)
M

u
lt

ip
le

3D
N

ew
to

n
Y

es
N

o
Y

es
M

ix
in

g
R

G
B

P
h
an

to
m

6
(L

ae
rh

ov
en

et
al

.,
20

04
b
)

W
at

er
co

lo
r

2D
N

o
N

o
Y

es
N

o
S
im

p
le

R
G

B
M

ou
se

2
(P

ai
n
te

r
8,

20
03

)
M

u
lt

ip
le

2D
B

it
m

ap
se

t
N

o
Y

es
N

o
M

ix
in

g
R

G
B

T
ab

le
t

5
C

M
Y

p
al

et
te

(A
rt

R
ag

e,
20

04
)

M
u
lt

ip
le

2D
B

it
m

ap
se

t?
N

o
Y

es
N

o
S
im

p
le

R
G

B
T
ab

le
t

5
(E

x
p
re

ss
io

n
3,

20
04

)
M

u
lt

ip
le

2D
S
iz

e
N

o
Y

es
N

o
S
im

p
le

R
G

B
T
ab

le
t

3
(Z

-B
ru

sh
,
20

00
)

Z
/B

it
m

ap
2D

?
N

o
Y

es
Y

es
?

S
im

p
le

?
R

G
B

T
ab

le
t

3
(D

ee
p

P
ai

n
t,

20
00

)
M

u
lt

ip
le

2D
B

it
m

ap
se

t?
N

o
Y

es
N

o
S
im

p
le

?
R

G
B

T
ab

le
t

3
T
hi

s
di

ss
er

ta
ti
on

:
(B

ax
te

r
et

al
.,

20
01

)
O

il
3D

N
ew

to
n

Y
es

N
o

N
o

M
ix

in
g

R
G

B
P

h
an

to
m

6
(B

ax
te

r
et

al
.,

20
04

a)
O

il
3D

N
ew

to
n

Y
es

Y
es

N
o

M
ix

in
g

K
M

8
P

h
an

to
m

/T
ab

le
t

6/
5

(B
ax

te
r

et
al

.,
20

04
b
)

O
il

3D
N

ew
to

n
Y

es
Y

es
N

o
M

ix
in

g
K

M
8

P
h
an

to
m

/T
ab

le
t

6/
5

(B
ax

te
r

&
L
in

,
20

04
)

O
il

3D
O

p
ti

m
iz

at
io

n
Y

es
N

o
N

o
M

ix
in

g
R

G
B

P
h
an

to
m

/T
ab

le
t

6/
5

T
a
b
le

2
.1

:
F
ea

tu
re

co
m

pa
ri

so
n

fo
r

a
se

le
ct

io
n

of
pa

in
ti
n
g

sy
st

em
s.

32

Since Strassmann’s “Hairy Brushes”, the ink used in traditional Chinese or Japanese

calligraphy has become a popular subject of investigation in NPR. The pictures in this

style, in Japanese called either sumi-e or suiboku-ga, are characterized by a few deftly-

placed strokes to convey the subject completely. The ink is very thin and tends to

diffuse into the paper in a complex way that depends upon the paper grain. Researchers

modeling oriental ink try to capture these effects. (Strassmann, 1986; Guo & Kunii,

1991; Kunii et al., 1995; Zhang et al., 1999; Lee, 1999; Lee, 2001; Saito & Nakajima,

1999; Saito & Nakajima, 2000; Wong & Ip, 2000; Yu et al., 2002; Yu et al., 2003; Chu

& Tai, 2002; Chu & Tai, 2004; Yeh et al., 2002; Xu et al., 2002; Xu et al., 2003). Many

of these references perform some sort of diffusion calculation to determine the spread

of the ink in the paper. They use either a cellular automata model like (Zhang et al.,

1999) or diffusion models based on partial differential equations (Xu et al., 2003). A

common approach for dealing with paper grain and its effect on diffusion, introduced

first in (Guo & Kunii, 1991), is to model the paper by laying virtual fibers down onto

the surface and then determining diffusion coefficients between adjacent cells based on

the number of fibers that connect them.

Tunde Cockshott, a painter turned computer scientist, developed the “Wet & Sticky”

model for paint (Cockshott, 1991; Cockshott et al., 1992), inspired by his own dissat-

isfaction with the “shallow view of the process of real painting” he saw in existing

painting programs. His basic model is a cellular automaton that exchanges units of

paint back and forth between adjacent canvas cells based on a set of rules and on the

properties stored in “particles” of paint. The overall concept is similar to some of the

ink models mentioned above, though the specific rules differ. His rules include transfer

of paint from cells that are more full to cells that are less full, and increased exchange

in the direction of gravity, and flow inhibition due to surface tension. The underlying

33

computational complexity was high for real-time implementation on machines of the

day, so a model for brushes or for interacting with the paint was never proposed.

The vision and goals of my dissertation are similar to those of (Cockshott, 1991).

Nonetheless, our focus and approach differ significantly. He focuses on the paint itself

and the “ambient behavior” of paints that run, drip, and diffuse on their own without

direct human intervention, whereas my focus is firmly planted in the critical point

of interaction between the human-controlled brush and the passive paint, and how

that human interaction influences the paint locally. In this respect my work can be

seen as complementary to that of Cockshott, who explicitly avoids questions of brush

modeling and active brush-paint interaction, deferring these issues to future work.

I focus precisely on those topics, and neglect the issue of modeling paint’s ambient

behavior. The two systems are complementary and could easily be used in conjunction

with one another.

The watercolor model of (Curtis et al., 1997) used a simplified physical model,

based in part on the shallow water equations, in order to recreate several very specific

features seen in real watercolor paintings: back-runs, dry-brush effects, diffusion, and

edge-darkening. Both (Curtis et al., 1997) and (Cockshott et al., 1992) describe a

philosophy of modeling “just enough” of the physics to get plausible behavior with

reasonable computational cost. To a large extent, that is the approach taken by this

dissertation as well. Recently, (Laerhoven et al., 2004b; Laerhoven et al., 2004a) have

begun to reimplement the work of Curtis et al. using a distributed parallel architecture

to enable the computation to proceed in real-time. The authors have indicated that a

version running on graphics processors (GPUs) is also under investigation.

Several recent commercial painting packages have also included natural media em-

ulations. Corel’s Painter (Painter 8, 2003; Zimmer, 1994) is able to achieve several

types of realistic-looking natural media, including thick paint, by clever use of sets of

34

2D textures, bump-maps, and compositing tricks. The paint model looks paint-like;

however, it lacks any real material model, and so the paint cannot be pushed around or

worked on the canvas like real paint. ArtRage from Ambient Design (ArtRage, 2004)

provides a thick paint model similar to that in Painter. Again, the paint looks fairly

realistic but does not behave realistically, and cannot be manipulated like real paint.

The Deep Paint program from Right Hemisphere (Deep Paint, 2000) appears to be

the closest to providing a simulation of thick paint, by allowing all brush effects to

optionally apply to a heightfield layer in addition to the color layer.

A related area is that of 3D paint systems, systems that can be used to paint onto

three-dimensional surfaces. (Hanrahan & Haeberli, 1990) were the first to present a

system to do this using 2D input and projectively mapping a 2D brush bitmap onto the

3D surface. The paper also presented the idea of painting various attributes other than

color, such as glossiness (specularity) or bumpiness. (Agrawala et al., 1995) presented a

method for painting a scanned surface by registering the scanned data in the computer

with the real object, and then painting on the real object with a tracked 6-DOF stylus.

The main problem reported was that one needed to divide attention between the real

object and the image on the monitor in order to paint. (Bandyopadhyay et al., 2001)

provided a solution to this problem by displaying the color directly on the real object

object using digital light projectors. Recently (Adams et al., 2004) presented a 3D

painting system for point-sampled models, with paint and brush models based on those

in (Baxter et al., 2001). The key novel feature of this system is its ability to dynamically

and adaptively resample the model to adequately represent any scale of paint stroke

detail. In terms of commercial products, Deep Paint 3D (Deep Paint 3D, 2000) provides

a more modern implementation of the projective painting techniques in (Hanrahan &

Haeberli, 1990).

Using “3D Paint” to mean something completely different, (Williams, 1990) pre-

35

sented a system for creating 3D objects by painting with height, or depth instead of

color. The commercial product ZBrush (Z-Brush, 2000) takes this idea further, allowing

for both painting with depth to create surfaces as well as painting existing surfaces with

attributes as in the 3D painting system of (Hanrahan & Haeberli, 1990).

Aside from paint media, many models for other natural media have also been

presented. (Bleser et al., 1988) presented a model for charcoal, implemented as a matrix

of bitmaps from which one is dynamically selected based on the pressure and tilt of

the stylus. A similar bitmap selection technique is also described in (Zimmer, 1998).

(Saito & Takahashi, 1990) presented the G-buffer, a framework for extracting various

geometric information from a model for use in creating many sorts of “comprehensible

renderings,” such as silhouette drawings. The concepts they present were built upon

by many of the subsequent NPR researchers, including (Winkenbach & Salesin, 1994;

Winkenbach & Salesin, 1996), who present a model for pen-and-ink line drawings.

Their pen-and-ink model dynamically performs crosshatching based on 3D lighting

calculations and a 3D model’s parameterization. Schofield’s Piranesi system combines

NPR rendering techniques with a strong component of interactive artistic control

(Schofield, 1994), resulting in a new kind of computer-based NPR medium as opposed

to a recreation or simulation of an existing medium. Sousa’s dissertation (Sousa,

1999) presents a carefully constructed model for pencil drawing based on micrograph

measurements of actual pencil marks on paper. (Sourin, 2001) presents a model

for metal embossing and woodcutting that creates cuts and features by modifying a

functional representation of a surface. In (Rudolf et al., 2003; Rudolf et al., 2004) a

method is described for simulating wax crayons that accounts for the semi-translucency

of real crayon as well as the wear on the crayon itself. (Wyvill et al., 2004) presents

a technique for simulating the cracks that appear in batik paintings, an Indonesian art

form.

36

Despite all of these models for paints and other media, prior to this dissertation

there has not been a fully interactive physically-based simulation of a thick oil-like

painting medium. As noted, many methods have been proposed for the thin ink style

of paint used in Oriental calligraphy and sumi-e painting. The watercolor simulation of

(Curtis et al., 1997) reproduced many effects observed in real watercolor quite closely,

but watercolor and ink are both very different from oil paint. The “Wet & Sticky”

paint presented by (Cockshott et al., 1992) incorporated diffusive and running effects,

behaviors that are really more characteristic of thinner paints.

2.4 Painting Interfaces

The interface of a painting program is an important consideration insofar as it is the

painter’s sole means of communicating intent to the program. An important part of

the interface is the input device used. If you consider just the handle portion of a

real brush, the part that the painter grasps, it has six degrees of freedom (DOF), as

does any unconstrained rigid body. By considering the bristles as well, one could count

a practically unlimited number of freedoms in the brush; however, for characterizing

the interface it is those degrees of freedom directly controlled by the user that matter.

Painters use all six degrees of freedom to their maximum advantage to create a wide

variety of strokes from a single brush.

Early paint programs, however, provided just 2-DOF input via a tablet or mouse,

allowing control only over the X and Y position of the brush on the screen (See

Table 2.1). It could be said that interacting with the computer through a 2-DOF

mouse is like to trying see the world through a soda straw. It is a very narrow channel

for communication when compared with the full capabilities of human hands. A 2-

37

DOF input device for painting severely limits the expressive potential and flexibility of

a virtual brush compared to that of a real brush.

Later tablet interfaces added a third DOF, a pressure sensor. In these systems the

pressure typically controls the size of the brush footprint, allowing the painter to create

strokes with more variability. Other tablets, including the most popular commercial

tablets available today, have added X and Y tilt sensitivity also for a total of 5-DOF

input (X,Y,pressure,X-tilt,Y-tilt). Compared with a 6-DOF interface these tablets lack

only the ability to twist the brush about its axis, and thus are fairly capable input

devices for painting. Still, current painting programs take little advantage of these

extra degrees of freedom.

Another class of input devices that have been used are spatial trackers. These are 6-

DOF input devices tracked in space using a variety of different technologies: ultrasound,

magnetic or electro-magnetic fields, or optical sensors. The chief problem with using a

tracker as a painting input device is that there is no force feedback. (Chu & Tai, 2002)

solve this problem by attaching tracking devices to a real brush and then calibrating

the position of the virtual canvas with a physical surface, but this has some drawbacks

as well. The main problem is that the actual brush may not be deforming in the same

way as the simulated virtual brush, and so the force feedback and visual representation

shown to the user can be completely out of synchronization.

Finally there are 6-DOF interfaces like the Phantom (Massie & Salisbury, 1994),

which in addition to 6-DOF input also offer program-controlled haptic (force feedback)

output (See Figure 2.1). With these input devices the program can ensure that the

haptic feedback presented to the user is consistent with the simulation state in the

computer. It also allows the brush characteristics such as stiffness to be modified on

the fly.

In the history of input devices for painting there is one that appears to have had

38

Figure 2.1: In my system, user input is obtained either through a 5-DOF Wacom�
tablet (left) or a 6-DOF Phantom� haptic interface (right).

little long-term influence, but that deserves special mention nonetheless. (Greene, 1985)

introduced a unique interface for painting called the “Drawing Prism”. This device used

a specially designed prism and camera setup to capture the contact footprint of real

objects with the surface of the prism in real time. In this way one could paint using any

real brush (or finger, or any other object) and the actual contact area of the bristles

on the surface would be used to determine where paint was deposited on the virtual

canvas. In some ways this is the ideal painting interface; however, it could not allow

for effects such as complex brush loading since it could only determine a monochrome

contact mask. A modern implementation of the drawing prism using color cameras

could possibly identify specific brush regions on a color coded brush thereby allow for

complex loading.

Chapter 3

Brush Modeling

“There is no item of greater importance to the successful execution of
a painting than a sufficient quantity of the very-highest-grade brushes
that it is possible to find. It is one department of the artist’s equipment
where no skimping or compromise should be allowed; he may go
without or use makeshift supplies of some items but poor brushes are
a severe handicap to good painting.”

It is with the above quote that Ralph Mayer introduces the subject of brushes in

The Artist’s Handbook (Mayer, 1991). Having the proper brushes is critical to good

painting. A good set of brushes can enable a competent artist to quickly create virtually

any effect he or she can imagine, from the intricate detail of cresting waves, leafy trees

and delicate flower petals, to wispy billowing clouds, and the subtly blended shifting

hues in a sunset. Digital artists can benefit greatly from having this expressive power

available to them in computer painting programs.

In this chapter, I will describe vBRUSH, a model for three-dimensional, flexible

virtual paint brushes, that provides painters with a realistic recreation of real-world

paint brushes on a computer. This brush model was originally presented in (Baxter &

Lin, 2004).

Though there are many types of brushes commonly used in painting (see Figure 3.1),

they share certain properties that make them effective tools for applying paint to a

surface in accordance with an artist’s intentions. Artistic references such as (Mayer,

40

Round Flat/Bright Filbert Blender Fan Fude

Figure 3.1: A variety of real brushes and an example of a vBRUSH modeled version
of each.

1991) describe desirable attributes of high-quality brushes with terms such as “elas-

ticity”, “durability” and “ability to maintain a point”. For a virtual brush, however,

the greatest challenge is capturing the most basic physical attributes such as stability,

passivity, interactivity, and proper reaction to friction, which are all taken for granted

in the physical world.

Brushes are generally very stiff dynamical systems, due to a high stress-to-mass

ratio, which leads to large accelerations, so it is difficult to simulate them with stability

and accuracy using time-stepping integration techniques, especially when friction must

be accurately accounted for (Witkin & Baraff, 1997).

The vBRUSH model simulates the dynamics of brushes using an optimization-based

framework, similar to (Chu & Tai, 2002; Saito & Nakajima, 1999). However, vBRUSH

incorporates a versatile brush construction methodology and introduces individual

bristle dynamics to achieve detailed bristle effects. The underlying dynamic model for

a brush is created from multiple optimization-based spine primitives. The geometry of

the brush head is then created out of a combination of subdivision surfaces and thin

polygonal strips. The deformation of the spines determines both the motion of the

subdivision surfaces as well as the strips. With this approach, brushes composed of a

41

subdivision surface and hundreds of strips can be simulated at interactive rates. The

key characteristics of the vBRUSH brush model include:

� A complete set of high-quality virtual 3D brushes for the digital studio, including

models for rounds, flats, brights, filberts, badger blenders, and a fan brush,

capturing the behavior of both Oriental and Western-style brushes;

� A geometric representation empowering easy creation of fine bristle features and

allowing for both smooth, clean strokes and rough, scratchy marks;

� A constrained dynamics framework capable of handling extreme deformations like

bristle splaying and modeling anisotropic friction and brush plasticity;

� Versatile modeling tools for enabling non-programmers to produce almost any

other shape or type of brush desired.

Several amateur artists have used the vBRUSH realistic virtual brush models to

create paintings exhibiting complex brush marks and fine bristle detail as shown in

Figures 3.11–3.13.

In order to give the artist full control over the virtual brush, I use input devices

with at least 5-DOF input, preferably 6-DOF. The input devices used to control these

brushes will be described in detail in Chapter 8.

The remainder of this chapter is organized as follows. I first review related work,

then describe my dynamic model for brushes, and finally the geometric model. I

conclude with demonstrations of the range of marks possible and paintings created

with the brush model.

42

3.1 Previous work

The first tool for interactively creating graphical figures on a computer was Ivan Suther-

land’s visionary 1963 SketchPad system (Sutherland, 1963). Though revolutionary,

this was a tool for creating technical illustrations and precise mechanical drawings,

not paintings, so it did not include any notion of a brush. However, it opened up

a whole new category of computer tools for image creation. According to Alvy Ray

Smith (Smith, 1997; Smith, 2001), the very first crude color painting program was

developed by Joan Miller at Bell Labs in 1969. It used a 3-bit color framebuffer. It

is not clear from Smith’s account when the concept of using a 2D “brush” to “paint”

pixels in a frame buffer came about, but it seems to have existed from very earliest

days of digital paiting. Certainly the concept of a brush was present in the subsequent

systems by Shoup, Smith and others, and over time the idea was expanded to include

features such as “z-paint” (using an additional depth value to modify marks), and

various blending and image processing operations as well. Most painting programs

today still use the same basic organization and conceptual model as Shoup, including

widely used programs like Adobe Photoshop(Photoshop, 2004). Cockshott (Cockshott,

1991) refers to all these as “Shoup model” painting programs, since the majority of the

core features of these programs were present in Shoup’s 1973 SuperPaint system(Shoup,

2001).

Computer painting programs have matured significantly since their debut, but most

still use this “Shoup model” and deposit paint on the surface using a two dimensional

brush that “paints” an image buffer by repeatedly stamping a fixed 2D bitmap.

Several researchers have endeavored to more accurately model the appearance of

real brush marks without developing a full 3D brush model by means of 2D heuristics.

Strassmann modeled a brush as a one-dimensional array of bristles swept over a trajec-

tory defined by a cubic spline curve (Strassmann, 1986). His work was able to account

43

for several effects achievable with an actual brush, such as varying color, width, and

wetness. In the area of automatic painterly rendering, (Hertzmann, 2002) and (Hays &

Essa, 2004) have used 2D bump maps to represent individual brush marks, and created

paintings automatically from images by overlapping many such marks. The bumpy

texture of these marks, however, comes from a predetermined bump map, not from any

dynamic physical model of brush bristles.

Wong and Ip (Wong & Ip, 2000) defined a complex set of interrelated parameters

to vary the density, opacity, and shape of a brush footprint in a way that takes into

account the behavior of a three-dimensional round calligraphy brush. The resulting

stroke appearances are guided by the plausible behavior of a brush, but are not actually

physically generated. The method as described is only partially interactive, and the

user input required to control the appearance of each stroke seems tedious.

The approach for brush modeling I present bears some similarity to the work of Saito

(Saito & Nakajima, 1999) on modeling a physical 3D brush for Japanese calligraphy

and sumie paintings. However, the technique presented in this dissertation is more

flexible in terms of brush shape, dynamics, and loading, and is able to take advantage

of 3D graphics hardware as well.

The “Virtual Chinese Brush” of Chu and Tai (Chu & Tai, 2002) delivers a very

convincing model for Chinese calligraphy that includes factors such as plasticity, tip

spreading, and “pore resistance” (the tendency of the bristles to get stuck on the rough

surface of the paper). Like Saito, Chu and Tai also used optimization for the brush

dynamics, but with a more elaborate internal structural model with lateral springs.

Their surface model is a swept surface of ellipses of diminishing radius. This is a very

good model for round, oriental calligraphy brushes, but it is not able to model the wide

variety of brush types used by western painters.

The Chinese calligraphy brush model in (Xu et al., 2003) represents the brush head

44

as a collection of individual NURBS tufts, which can dynamically and recursively split

into smaller NURBS tufts based on brush deformation. The dynamic model consists

of heuristics for modifying surface control parameters based on brush position history.

Realistic stroke results are achieved by a model-based technique in which a large set of

model parameters are trained using several real example strokes in order to generate a

particular type of mark.

Optimization has also been used in other areas of computer graphics for creating

physically-based animation. One area is cloth simulation (House & Breen, 2000),

mainly computing static drape. For cloth, these techniques have largely been super-

seded, because they do not handle inertial effects well, which are important in dynamic

cloth. Motion retargeting and editing is another major area where optimization is used

with much success, e.g. (Gleicher, 1998), although typically the problems are solved off-

line. (Witkin & Kass, 1988) also used a space-time optimization technique to generate

smooth physically-plausible character animations that interpolate key poses.

3.2 Introduction to Brushes

The brushes used in traditional painting take a wide variety of shapes and forms.

Fig. 3.2 shows the anatomy of a typical brush, which consists of a handle, ferrule, and

Figure 3.2: Basic brush anatomy

the head. The brush head is further subdivided into the belly and the point. Brush

heads are made with a variety of bristles, natural soft animal hair, including red or

black sable, badger hair, fitch or ox hair, hog or boar bristles, and synthetic materials.

45

Some of the most common styles for brushes used in oil-like painting (Mayer, 1991)

are:

� Rounds. Have a simple tubular shape with a semi-blunt point, allowing for a

great variety of strokes.

� Flats. Thinner and wider than rounds with bristles squared off at the point.

Flats are typically longer than they are wide.

� Brights. The same shape and construction as flats but typically shorter, with

width nearly equal to length.

� Filberts. Have a thicker collection of bristles that increase their ability to hold

paint. Filberts usually have oval-shaped heads. The shape of their tips is formed

by placing naturally curved bristles on the outer edges of the tip so that they

curve inward, which helps counteract the tendency of the tip to splay outward

with repeated use.

� Badger Blenders. Traditionally made of fine badger hair, round in shape, with

the bristles flaring out at the end rather than tapering to a point. Used mostly

for blending to create smooth color transitions.

� Fans. Sometimes used for delicate or wispy manipulations of wet paint, and also

used for blending paint, like the badger blender.

� Fude1. A round Japanese calligraphy brush typically made with longer hairs,

able to form a good point for fine lines, or create wide or scratchy strokes when

pushed harder or used on edge.

1Pronounced foo-day.

46

Figure 3.3: Some vBRUSH brushes, their spine models, and example marks made
with each.

There are many other types of brushes, such as liners, chisels, mops etc. The

vBRUSH approach can model any of these, the brushes above just represent some of

the most versatile and widely used varieties. Figure 3.1 shows images of each type.

3.3 Overview of Modeling Approach

To model a 3D paint brush requires developing both a geometric representation and

a model for its dynamic behavior. The requirements of an interactive painting system

place constraints on the design: the brush dynamics must run at interactive rates and

remain stable under all types of user manipulation.

vBRUSH incorporates an optimization-based model for brush dynamics that is

capable of simulating the wide variety of brushes that are used in painting with a

versatile, multi-spine modeling approach. The geometric modeling approach is a hybrid

surface-and-strip representation for the brush head. This approach allows vBRUSH

brushes to recreate both the smooth, neat strokes in which individual bristles play a

minor role, as well as the more random, scratchy strokes that result from the effects of

individual bristles.

47

x0, θ0, ϕ0

x3

l1

l2
l3

x1, θ1, ϕ1

x2, θ2, ϕ2

∆∆∆∆xc,3

@
t=

t0

@
t=

t1

Figure 3.4: A single brush spine structure shown at two time steps, t0 and t1.

Figure 3.3 shows the geometric structure used to construct each of the brushes

described in Section 3.2, as well as their deformation as they make contact with the

canvas.

3.4 Brush Dynamics

The transitory behavior of a typical brush subjected to an impulse force is very brief.

Stated another way, given an externally applied force system, a brush will reach

equilibrium very rapidly. Thus one can approximate the dynamics by solving a static

equilibrium problem at each time step.

The basic dynamic model in vBRUSH begins with a spine model composed of several

segments as in Fig. 3.4. The bending of each joint i in the kinematic chain is described

by two angle parameters, θi and φi. At every step the goal is to minimize the total

energy function:

E(Θ,Φ) = Es + Ef + Ed (3.1)

48

E Energy of system
Ef Energy lost to friction
Es Spring potential energy
Ed Energy lost to damping

θi, φi Joint angles
Θ,Φ Vectors of all joint angles

µ Coefficient of friction
xi Cartesian coordinates of joint i
li Local coordinates of the end of segment i

∆xc,i Change in contact point i
Fn,i Normal force at contact point i
Ki Stiffness of spring i
Di Damping constant of spring i

β(θi, φi) Total bending angle of spring i
xp A point on planar constraint surface (canvas)
n̂p Normal of planar constraint surface (canvas)

Table 3.1: Summary of mathematical notation for brushes.

where

Es(Θ,Φ) =
∑

i

Kiβ(θi, φi)
2/2 (3.2)

Ef (Θ,Φ) =
∑

i

µ|Fn,i|‖∆xc,i‖ (3.3)

Ed(Θ,Φ) =
∑

i

Di|∆βi| (3.4)

subject to

(xi − xp) · n̂p ≥ 0 (3.5)

Please refer to Table 3.1 and Figure 3.4 for a summary of the mathematical notation

used in this chapter.

49

3.4.1 Virtual Work and Optimization

The principle of virtual work can be used to solve for the static equilibrium of a system

via minimization. The virtual work done by all external active forces on a mechanical

system in equilibrium equals the corresponding change in the total potential energy

of the system for any and all virtual displacements consistent with the constraints

(Meriam & Kraige, 1992).

δEpotential = δWexternal (3.6)

or

δ(Epotential −Wexternal) = 0, (3.7)

which is to say the variation of the total energy with respect to an infinitesimal change

in configuration is zero. By integrating these equations and analyzing the derivatives

in the neighborhood of the critical points, one arrives at the conclusion that stable

equilibriums coincide with energy minima.

For a constrained system in which one cannot easily express the “consistent dis-

placements” in terms of a minimal number of degrees of freedom, one can express

the constraints using Lagrange multipliers and scalar constraint functions of the form

C(q) = 0. The augmented objective function to minimize is then given as

L(q) = E(q) +
n

∑

i=1

λiCi(q) (3.8)

with

Ci(q) = 0, 1 ≤ i ≤ n. (3.9)

Given an optimal solution, q∗, the unknown generalized constraint forces can then

be recovered with the expression
∑n

i=1 λi∇Ci(q
∗). The constraint forces need not be

50

(a) Euler ZYZ Bristle Angles

x

y

z

(b) Euler XYZ Bristle Angles

Figure 3.5: Angle parameterizations. I use the θ, φ of the XYZ angles because they
are singularity-free in the rest configuration (θ = φ = 0).

included directly in the energy function because they do no work, and hence do not

add or remove energy from the system.

The solution involves the following steps:

1. Move the brush handle from the initial position b0 to its new position b1, accord-

ing to user input from the input device.

2. Move all bristle spines rigidly with handle, not changing any joint angles.

3. Solve optimization problem for each spine, enforcing constraints at this new

position.

4. Repeat from Step 1.

Since I first rigidly translate the bristles with the handle, the optimization essentially

can be seen as a backward search for the closest configuration consistent with the

constraints and in which spring forces are equal and opposite to friction forces.

3.4.2 Spine Kinematics

My kinematic definition of a brush spine differs from that of (Chu & Tai, 2002)

in that I use angles from the Euler XYZ angle set (Fig. 3.5(b)) rather than the

51

ZYZ set (Fig. 3.5(a)). Since the amount of twisting that occurs in real bristles is

limited, my parameterization uses only the first two angles, θ and φ. All Euler angle

parameterizations for rotations have singularities, but where these singularities occur

differs. With ZYZ angles a singularity occurs at the point where the angles are all

zero, which is the rest configuration of the brush. Singularities are a problem for the

optimizer because gradients evaluated numerically at the singularity are essentially

noise. With XYZ angles the singularity is on the horizon at 90°, much less likely to

interfere.

Given this parameterization, the rotation matrix for a segment i + 1 with respect

to its parent i is given by

iRi+1 =

cφ sφsθ sφcθ

0 cθ −sθ

−sφ cφsθ cφcθ

(3.10)

where c and s are used as abbreviations for sine and cosine of angles. And the full

expression for a point p in terms of its parent frame is

ip = i+1p + iRi+1li+1, (3.11)

By composing such transforms recursively one can compute the Cartesian positions

xi of each joint in world space. Derivatives of these expressions are also needed for

the optimizer. For more details on the derivations necessary for analytical gradient

calculations in the optimizer, please see Appendix A.

52

Figure 3.6: The nomenclature used for parts of a typical brush.

3.4.3 Spring Energy

The simplest term in the energy function comes from the potential stored in the springs

(Equation 3.2). The energy is a function of the total deflection from the vertical. The

deflection angle can be computed as

β(θ, φ) = cos−1(cθcφ). (3.12)

Several factors make real brushes stiffer near the ferrule than the point (see Figure 3.6).

First, the individual hairs in a brush head are thinner at the tip than at the base, making

them naturally less stiff near the point. Second, the tight packing of the hairs within

the ferrule stiffens the bundle near the base. Finally, in some brushes, not all the hairs

extend all the way to the tip of the brush, also leading to less stiffness at the point.

To account for this variable stiffness, one can simply set the Ki values higher near the

base.

3.4.4 Friction Energy

For the frictional model (Equation 3.3), I use a modified Coulomb law. First, I consider

the frictional force to act only on joints that are in contact with the canvas. The force

has magnitude µ|Fn|, and this is approximated as a constant over the course of one

optimization. I also simplify the problem by assuming that the motion of the joint

over the surface can be approximated as a straight line. Given a change in surface

53

contact position ∆xc,i, the work done by the friction force can be written as shown in

Equation 3.3.

In analyzing the work done in a virtual displacement, the virtual work of dissipative

forces like friction must be treated as negative. Ignoring Ed for a moment, plugging

in −δEf for the external work in Equation 3.7 and Es for the potential energy one

gets δ(Es + Ef) = 0, as the equation of equilibrium. In order for this to be a stable

equilibrium it should be a minimum rather than a maximum of the energy function.

Technically, the frictional function does not meet the requirements for most numeri-

cal minimization techniques, since Ef is not differentiable at the point where ∆xc,i = 0,

and optimization routines rely on the differentiability of the objective function. This

characteristic can cause difficulty for some optimization techniques; however, an SQP

solver that approximates the second derivative of E with finite differences (a BFGS

Hessian approximation) works well enough in practice. When evaluating gradients,

vBRUSH reports 0 as the friction gradient at the apex of the cone. The BFGS finite

difference approximation of the Hessian tends to smooth out the second derivative

locally, which at worst allows the contact point to slip slightly when friction would

otherwise cause it to stick. The fix is to use set-valued derivatives (sub-differentials)

instead of ordinary differentials, but this introduces high overhead.

Stiction

The friction model above does not account for the frequently observed stiction effect in

which the coefficient of static friction, µs is greater than kinetic or sliding friction µk.

In order to incorporate this effect, I propose a simple solution. When in the sticking

state, first solve the optimization problem using µs. If the solution indicates ∆xc,i > 0,

then switch to the sliding state and rerun the minimizer using µk. When in the sliding

54

state, if ∆xc,i < ǫ then switch to the static state for the start of the next optimization.

Hysteresis can also be used in determining the transition thresholds.

Anisotropy

The tips of bristle hairs are more likely to get caught in the tooth of the painting

surface when pushed as opposed pulled over the paper. vBRUSH incorporates this

effect simply and efficiently by multiplying an anisotropy term in the calculation of the

friction. I have devised a simple anisotropy term that can be combined with Ef . The

advantages of this function are that it has C1 continuity and its analytical derivatives

can be efficiently computed. Let x̂ represent the unit vector x/‖x‖ in what follows.

The modified anisotropic energy function is given by:

Ef = (1− η)µ|Fn|‖∆xc,i‖ (3.13)

where

η = Cη max

(

0,dp ·
∆xc,i

‖∆xc,i‖

)k

, Cη ∈ [0, 1]. (3.14)

dp is the preferred direction, i.e. the direction of minimal resistance (the “pull”

direction) for the bristle. This expression resembles that of the intensity of a Blinn-

Phong of a specular highlight, and seems to work quite well as a model for anisotropic

friction, as well. Examples of the overall Coulomb friction energy for different values of

Cη are shown in Fig. 3.7. The Cη and k constants give one an intuitive way to control

the anisotropy. Cη = 0 recovers the isotropic case, and Cη = 1 removes all friction in

the preferred direction. The k determines how sharply focused anisotropy will be, just

as it does in computing specular highlights.

55

(a) The anisotropic term by
itself.

(b) Cη = 0.5 (c) Cη = 0.8

Figure 3.7: Anisotropic Coulomb frictional energy function. The function (a) is
subtracted from the function in Fig. 3.8(b) to get (b). (Note, orientation of the the
preferred direction is reversed in (a) to better display the geometry of the anisotropy).

(a) Spring potential, Es (b) Friction work, Ef

Figure 3.8: Some energy terms that make up the objective function. Note that the
horizontal axes of (a) are joint angles, while in (b) they are X and Y components of
∆xc,i for one joint.

56

3.4.5 Damping and Plasticity

Another type of friction that affects some brushes significantly is internal friction and

drag between wet bristles. vBRUSH models this as a constant resistance in joint space:

Fd,i = −Disgn(∆βi) (3.15)

and incorporates it as part of the overall energy as shown in Equation 3.4.

The effect of adding this internal friction term is that a deformed brush does not

return all the way to its starting point, since the damping forces are greater than the

spring bending forces for small angles. In effect, this works as a simple model for brush

plasticity. Plasticity is achieved by other means in (Chu & Tai, 2002), but using joint

friction is both simple to implement and perhaps more closely related to the actual

physical mechanism behind brush plasticity.

3.4.6 Derivatives

Most optimization methods, including the SQP method I use for brush simulation,

work best when at least first derivatives of the objective function and constraints can be

computed analytically. If they are very expensive to compute, it is possible to estimate

derivatives with finite differences, but this is not as reliable, and it requires multiple

evaluations of the objective function to approximate one derivative. For brush energy

optimization, the derivatives of Equation 3.1 with respect to all the joint parameters are

needed, and these can all be expressed in closed-form. Computationally, the analytical

derivative expressions are similar in cost to the objective function itself, and contain

many common subexpressions, which can be reused for greater efficiency. The full list of

derivatives needed for implementing the optimization routines is given in Appendix A.

57

3.4.7 Constraints

To prevent the joints of the brush spine from penetrating the canvas, vBRUSH subjects

each to an inequality constraint that expresses that the Cartesian joint position must

be outside the plane of the canvas, as given in Equation 3.5. Note that xi is a nonlinear

function of θj and φj for 1 ≤ j ≤ i, given by the forward kinematic Equations 3.10–3.11.

The SQP minimizer I use relies on an active set approach, in which inequality

constraints are treated as equality constraints while active, and simply ignored when not

active (Agrawal & Fabien, 1999). This approach is efficient in that the dimensionality

of the augmented objective function (Equation 3.8) is reduced when few constraints

are active, leading to smaller matrix equations to solve.

3.5 Geometric Modeling of Brushes

The vBRUSH geometric model for brushes can take advantage of both an explicit

surface representation as in (Baxter et al., 2001; Chu & Tai, 2002; Saito & Nakajima,

1999) but also a strip based method for representing the brush as individual hairs.

A brush can use either one of these or both. The surface-based representation has

the advantage of giving a solid, consistent footprint; however, it is difficult to capture

bristle spreading effects and the stippling effects created by individual bristles with just

a surface-based model.

3.5.1 Subdivision Surface

For the surface-based representation, I use a subdivision surface, the location of whose

control vertices are tied to the motion of the underlying dynamic brush skeleton. The

brush skeleton consists of a set of the optimization-based structures described in the

previous section. In my initial work on brush modeling (Baxter et al., 2001), I used

58

the interpolating Butterfly subdivision scheme since this made it easier to manually

place control vertices relative to the skeletal structure in order to achieve the general

deformation desired. However, interpolating subdivision surfaces can easily develop

unnatural high-curvature kinks. The degree of continuity achieved by approximating

schemes is generally superior to that of interpolating schemes.

In this work, I propose to use an approximating Catmull-Clark surface instead of an

interpolating Butterfly surface. The challenge of placing appropriate control vertices to

achieve a desired shape has been dealt with by creating an export tool for a popular,

free 3D modeling package called Blender(Blender, 2004). This package enables users to

visually and interactively create brush surfaces of any shape, and my exporting routines

allow users to specify the desired physical properties (stiffness, damping, and friction).

The control vertices that determine the shape of the subdivision surface are placed

using standard matrix skinning techniques. The skinning weights and brush spines can

be set up from within Blender using its built-in skeletal animation tools. My exporter

converts Blender’s data structures into those used by vBRUSH.

3.5.2 Bristle Strips

A typical real brush head can be composed of a few thousand hairs. The most accurate

model of a brush would involve simulating each one of these individually, including

full hair-to-hair collision and response, but this is not currently feasible in real time.

Nevertheless, the effects of individual bristles are important to capture. Fortunately, the

motions of individual bristles show a large amount of coherence—neighboring bristles

tend to move more or less in the same direction—so vBRUSH takes advantage of this by

simulating only a few brush spines (generally less than ten) that form a brush skeleton,

and interpolating as many as hundreds of other bristles from the motion of those spines.

Geometrically, each hair is most like a thin, tapered tube; however, tubes require

59

many vertices to specify and it is not clear that the added complexity would add any

character to the strokes produced. Instead I use strips of quadrilaterals as the primitive,

which require only two vertices per joint and are quick to render in modern hardware.

An alternative would be to use line strip primitives, which would only require one vertex

per joint, but line widths on graphics hardware can only be specified in image space as

an integral number of pixels. Thus the density of a set of line strips changes depending

on the resolution of the canvas being painted upon. If hardware allowed for true lines

with geometric widths, this would be the most efficient representation.

Paint Transfer:

Paint transfer will be described more fully in the next chapter, but in order to achieve

smooth paint transfer with bristle strips, there are a few special considerations that

affect how the geometry is managed.

First, when rendering the brush footprint, the flat side of the strips should always

face the canvas. In this respect the strips are like viewer-oriented impostors or bill-

boards, with the “viewer” being the canvas. vBRUSH performs this step on the CPU

during every paint transfer step. A small vertex program on the GPU could also be

used to perform this computation.

The second issue is rendering order. In a real brush, hair-to-hair collision interac-

tions prevent hairs on one side from collapsing through to the other side of the brush.

In order to avoid the cost of explicitly calculating this O(n2) interaction, vBRUSH

instead determines an approximate back-to-front rendering order with respect to the

canvas using a simple heuristic. It first calculates a principal bend direction for the

brush head as the average of all the brush spine tip deflection vectors:
∑N

i=1 ∆xi,tip/N

(see Fig. 3.9). It then sorts the strips by their root positions along the principle bend

direction projected onto the brush cross-sectional plane. In the difficult case when

60

7
6

5
4

3

2 1

sort order

Figure 3.9: Determination of rendering order for paint transfer. The average bend
direction of the spines determines the order in which bristles are sorted and rendered. In
the example above the seven bristles shown would be rendered according to the numbering
shown. This ordering ensures the brush will maintain consistent separation between
front and back sides of the brush during paint transfers.

all the hairs are bent in the same direction, and many are overlapping, this approach

performs quite well. When the spines are splayed out in different directions the ordering

may not be consistent with actual depth, but in that case there is little hair-to-hair

collision to begin with, so rendering order is not important.

Bristle Dynamics Interpolation:

In creating a new brush model, positioning hundreds or thousands of bristle strips

would be tedious, so I have devised an algorithm for automatic random placement.

First, I compute an oriented bounding box (OBB) around the root points of the brush

spines. From the length of the edges of the OBB, I determine whether sampling should

be performed over a 1D or 2D space. If 1D (i.e. the spine roots are all contained in a

very narrow bounding box), then I parameterize the best fit line and place strip roots

randomly along that line. If 2D, I compute a Delaunay triangulation of the brush spine

roots and then place strip roots randomly within those triangles.

At run-time, the geometry of an interpolated strip is computed by a convex weighted

sum of spine positions. Each spine is parameterized as pi(s), 0 ≤ s ≤ 1 such that pi(0)

is the root of the ith spine and pi(1) is the tip. Then an interpolated bristle is given

61

by:

pinterp(s) =
∑

i

wipi(s) (3.16)

where
∑

i wi = 1 and wi ≥ 0.

Given a randomly chosen root location pinterp(0), one needs to determine an ap-

propriate set of non-negative weights wi, which sum to unity and result in the desired

position. Since vBRUSH already uses a constrained SQP solver, it is convenient to use

minimization to compute this set of weights as well. One can encode the preference that

nearby spines should have higher weights than distant spines in the objective function.

I tried several objective functions and observed that minimizing the following weighted

least-squares function for wi yields good results:

∑

i

‖pinterp(0)− pi(0)‖
2w2

i (3.17)

subject to

∑

i

wi = 1 (3.18)

wi ≥ 0 (3.19)

pinterp(s) =
∑

i

wipi(s) (3.20)

The coefficients on the wi are small for spines near the interpolated bristle and large

for spines far away, thereby leading to the opposite trend in the wi values themselves.

That is, an interpolated strip is influenced most by the spine closest to it.

62

3.6 Implementation and Results

I have tested the implementation of the vBRUSH brush model on a 1GHz Pentium IV�

desktop, and incorporated it with the paint models to be presented in the next three

chapters. I implemented an object-oriented C++ SQP optimizer based on the C code

accompanying (Agrawal & Fabien, 1999). I have found 5 iterations of the optimizer

to be sufficient for a 3-joint brush spine. This takes about 100 microseconds, allowing

the simulation of approximately ten spines interactively. The cost of the interpolation

bristles is very small, allowing the use of up to 256 bristle strips interactively without

difficulty. The main limiting factor is the amount of texture memory used for mapping

paint attributes onto the bristles. The memory and system bandwidth consumed by

large brush textures can lead to a significant bottleneck; however, with the rapid growth

of GPU performance, I conjecture that this bottleneck will be alleviated in the near

future.

As a test of the effectiveness of the brush model I have attempted to recreate stroke

samples included as training materials for a popular decorative painting technique called

One-Stroke� (http://www.unctv.org/onestrokepainting/). The One-Stroke techniques

emphasize using the flexibility of the brush and its complex loading to create organic

shapes such as flowers and birds quickly and with a high degree of realism using very

few strokes. This type of painting was very difficult with previous painting programs

that lacked complex brush loading and highly flexible deformable 3D brushes.

In Figure 3.10, I compare the results of recreating the strokes with the vBRUSH

brush model versus results with the model presented in (Baxter et al., 2001). As can

be seen in Figures 3.11–3.13 the new brush model is capable of creating detailed bristle

marks that cannot be captured by a surface representation alone.

63

Figure 3.10: (Top row) A comparison of strokes made with the optimization-based
brush model versus that of (Baxter et al., 2001). Note the smoother path and width
variations in the new strokes (top row and left side, respectively). (Bottom) These
strokes are impossible to achieve with the prior brush model.

Figure 3.11: A painting created using both surface and strip based brushes.

64

Figure 3.12: A painting created with my new strip brush models. Notice the detailed,
scratchy bristle marks in the clouds and grass.

Figure 3.13: A painting created using my new brush models.

65

3.7 Limitations

The vBRUSH brush modeling and simulation technique outlined in this chapter is very

flexible and has been successfully used to model a wide variety of brushes. However

there are some limitations to the current implementation and some important areas

for possible future improvements. First, a few fairly straightforward extensions have

not yet been implemented. Springs with a bent resting configuration are not currently

possible, nor are collisions with more than a single plane. Adding these would extend

the generality of the current implementation, and should require little extra numerical

machinery.

An interesting area for future work is to implement automatic on-the-fly generation

of bristle strips based on the deformation of the brush. This would allow for better

smooth to scratchy transitions. The challenge is to create and destroy the bristles strips

in such a way that they do not create popping artifacts, perhaps by alpha blending them

in and out. Another area for future work is to somehow capture the effects of bristle-

to-bristle collisions, preferably without resorting to an O(n2) all pairs collision response

algorithm. This could be achieved by adding a brush volume preservation term to the

optimization that would push bristles outward when they start to collapse.

3.8 Summary

In this chapter I have presented a versatile model for virtual brushes that can reproduce

the wide range of effects and styles needed by the digital painter. The key features of

this model are:

� Dynamic brush deformation using quasi-static optimization based on the principle

of virtual work.

66

� The combination of subdivision surfaces and strips, which allows for both smooth,

detailed strokes, as well as rough scratchy brush work in which individual bristle

details can be seen.

� Weighted interpolation of strip bristles based on a small number of physically-

simulated spines, which has been shown sufficient to yield a realistic overall

deformation of the brush head.

� Brushes with hundreds of hairs that can easily be simulated interactively.

� Brush design accessible to non-programmers using a custom export script for an

off-the-shelf 3D modeling package.

Chapter 4

dAb Paint: A Simple Two-layer
Paint Model

If I could say it in words there would be no reason to paint.
— Edward Hopper

Having presented a method for modeling the paint brushes used in traditional

painting, I now proceed to the second major technical component of this dissertation,

techniques for modeling paint. I present three different paint models in this and the

following two chapters. As I describe the first paint model, dAb, in this chapter, I

will also be introducing a few fundamental concepts, like “bi-directional transfer” and

“footprint generation”, that will be referred to again in the later chapters without

further explanation.

As discussed in the overview in Chapter 2, all three paint models share the goal of

serving as a plausible digital stand-in for true physical paint. The three paint models

differ, however, in the extent to which they trade off physical principles for speed of

execution. As a result, they differ greatly in specifics of design and implementation.

There are two main categories of information presented in this chapter, both of

which were first presented in (Baxter et al., 2001), though the coverage of the topics

here has been expanded significantly. On the first subject, footprint generation, I

present a general treatment of techniques relevant to systems in which texture-mapped

68

virtual 3D objects are to be used as mark-making tools. In this dissertation that means

virtual paint brushes, but it could just as easily apply to pencils, or crayons, or chalk,

etc. In all of these cases there are similar operations necessary to determine the extents

and attributes (color, density, etc.) of the marks made on the paper or canvas, as

well as the extent and nature of the effect on the mark-making implement itself. For

instance, soft implements like pencils, charcoal, or crayons have a tendency to erode

away in the vicinity of contact, and it may be desirable to model this change in the

drawing implement itself. A paint brush can pick up paint from the canvas in areas

of contact. So a fundamental task in any of these systems is to compute these contact

areas, or footprints, not only on the canvas but also on the mark-making implement

itself.

The second subject of this chapter is the specific nature of the dAb paint model

itself. The dAb model is a simple, efficient two-layer model, suitable for interactive use

on most computer systems, but which is still capable of capturing a variety of paint-like

effects.

4.1 dAb Features

The dAb paint model incorporates partial drying and translucency, conservation of vol-

ume, and a bi-directional paint transfer algorithm. It supports the following operations

and techniques expected from acrylic or oil painting, while maintaining interactivity on

a wide range of hardware:

� Blending – Mixing of multiple pigments to obtain the desired color.

� Bi-directional transfer – Transferring paint not only from the brush to canvas,

but also back from the canvas to the brush.

69

� Complex brush loading – Filling different portions of the brush head with

varying amounts of different colors.

� Controlled drying – Controlling the blending of new paint onto previous layers

by allowing paint to partially dry.

� Glazing – Painting with translucent layers of colors over previous layers.

� Impasto – Painting with an appearance of thickness.

The remainder of the chapter will describe in detail how these effects are achieved.

In terms of implementation, the dAb model uses the main system CPU to perform

all the model-specific paint blending, but uses graphics hardware (the GPU) to compute

footprints. In designing the dAb paint model, care has been taken to reduce memory

consumption, and to avoid reliance on advanced hardware features like GPU fragment

programs. This was partly out of a desire for portability and partly just the simple

fact that at the time of dAb’s initial development (2000), no commodity graphics card

was capable of programmable shading or 32-bit color channels. Many GPUs sold today

still lack those features, or run them too slowly to be useful, especially those used in

mobile computing devices. Of the three paint models in this dissertation, dAb is the

only one that runs interactively on most current laptops.

4.2 Mathematical Description of Contact Footprints

The first major step in painting a stroke is to determine the contact area between the

brush surface and the canvas, and to establish a mapping between the texture space of

the brush and the texture space of the canvas. In this section I describe mathematically

what is meant by a footprint and develop notation that will allow description of the

necessary operations concisely.

70

Let Ω ⊂ R
3 be the surface of an object in 3-space for which there exists some

two-degree of freedom parameterization, Ω(α, β) (i.e. Ω is a 2-D manifold embedded

in 3-space rather than a volume). Then a texture parameterization can be thought

of as establishing a mapping T : Ω → R
2, from points on the object to 2D texture

coordinates1. These texture coordinates can then be used to index one or more attribute

maps2 A : R
2 → R

N to determine values associated with that point on the surface.

Given texture mappings TB and TC and attribute mappings AB and AC for the brush

surface and canvas surface, respectively, the ultimate goal is to update both the brush’s

and the canvas’ attribute maps in such a way that the final result mimics the physical

real-world transfer of paint between brush and canvas.

First, one must determine which portions of the brush and canvas are in contact.

Let the brush surface be given by ΩB ⊂ R
3 and canvas surface by ΩC ⊂ R

3. Then one

might attempt to define the contact surface as simply ΩB∩ΩC . The brush simulation is

designed to deform the brush surface when it comes in contact with the canvas surface

so they do not interpenetrate; however, due to various numerical issues it is best to

allow some tolerance in determining contact. In practice I define a non-commutative

approximate intersection operator such as, ∩ǫ, defined as A ∩ǫ B = {x : x ∈ A, ∃y ∈

B s.t. ‖x− y‖ < ǫ}, i.e. all points of A that are less than ǫ distance from B. One can

then define the portion of the brush in contact as ΩBC = ΩB ∩ǫ ΩC and similarly the

portion of the canvas in contact as ΩCB = ΩC ∩ǫ ΩB.

It is now possible to precisely define exactly what is meant by the contact footprint.

In fact there are two contact footprints of interest, the footprint in canvas texture

1In computer graphics, the parameterization is usually defined by associating explicit texture
coordinates with vertices of triangles and determining the texture coordinates over the remainder
of the 3D surface by barycentric interpolation. The end result is the same, however: every point on
the model surface is assigned a 2D texture coordinate.

2Or texture maps, in common parlance, though the map may not necessarily encode a surface’s
texture or color. It could encode translucency or viscosity or any other set of attributes.

71

space, defined by FC = TC(ΩCB), and the footprint in brush texture space, defined by

FB = TB(ΩBC). The canvas, ΩC , in my implementation of the dAb model, is a simple

rectangular subset of R
2, like [0, X]×[0, Y]. In this case, texture coordinates are related

to geometric coordinates by a simple translation, scale and axis-aligned orthographic

projection, TC(x, y, z) = (k1(x − x0), k2(y − y0)). Furthermore, the appearance of the

brush’s footprint in canvas texture space will coincide roughly with the the intuitive

notion of a “footprint,” that is, the 2D shape of a 3D object impressed on a surface.

Of course, it is not technically necessary for the “canvas” to be a flat surface; however,

this restriction makes implementation much simpler. Also note that for more complex

mapping functions, T , it is not necessary that footprints be connected (in the set theory

sense) even if the contact geometry Ω that generates them is a connected set. This is

because the texture mapping itself may be discontinuous. That is, it is possible that

∃p1, p2 ∈ Ω such that ‖p1 − p2‖ < ǫ but ‖T (p1)− T (p2)‖ > kǫ for all finite k ∈ R. (In

this case p1 may be located along a texture seam that intersects the segment connecting

p2 to p1.) Topologically, such situations can be unavoidable. For instance if the brush

is a sphere it is well known that no singularity-free parameterization of the surface can

exist.

Now, in order to determine what sort of paint transfer will take place between the

brush and canvas, it is necessary to compute a mapping that gives the brush texture

coordinate that is located at the point in ΩB closest to each point in ΩCB, the contact

surface on the canvas. To this end, let us define a function that takes canvas texture

coordinates and maps them to the closest brush texture coordinates: TCB : R
2 → R

2.

Given this mapping function, one can take a point from the canvas footprint, p ∈ FC ,

and determine the brush attributes in contact at that point, by using AB ◦ TCB(p),

where ‘◦’ denotes function composition.

Likewise, to determine how paint will be transferred from canvas to brush, one

72

needs TBC : R
2 → R

2 that maps from brush texture coordinates to the corresponding

canvas texture coordinates, allowing one to compute the canvas attributes at a point

p ∈ FB with AC ◦ TBC(p). The problem of determining brush and canvas footprints

thus reduces to computing TCB and TBC , or acceptable approximations thereof.

In practice, all of dAb’s attribute maps are discretely sampled texture maps rather

than continuous functions, but the problem of determining mappings remains similar,

except that values such as AC ◦ TBC(p) need to be determined by interpolation using

the nearest available samples in AC .

The main benefit of using a polygonal brush representation and texture mapping

to assign paint information is that it enables one to generate the contact footprint

simply and quickly using rasterization hardware. The GPU graphics pipeline is designed

specifically to generate rasterized 2D projections of texture-mapped 3D polygons as

rapidly as possible. The problem of footprint generation at a given instant can be viewed

simply as such a projection problem. This process will be described in Section 4.5.1.

The reverse problem of mapping canvas attributes to brush texture space is a bit

more complex, though still fairly straightforward. The reverse mapping is explained in

Section 4.5.3.

4.3 Paint Stroking Algorithms

The brush is simulated as described in Chapter 3. The result of the simulation is a

representation of the brush surface at each instant in the form of either a connected

polygonal mesh or a set of individual polygonal strips. In either case, the paint loaded

on the brush is mapped directly onto the polygons via standard texture mapping

(Catmull, 1974). The paint on the canvas is also stored as texture maps. The actual

73

representation of the paint and the detailed contents of the texture maps will be

described in the next section.

Although the brush geometry is only available at discrete time intervals, a painted

stroke should be continuous with no gaps. An obvious solution to prevent gaps is to

perform some kind of interpolation between successive brush geometries to connect the

footprints they generate. There are several ways to perform this interpolation. I have

developed a faster method (Algorithm 1), and a more accurate method (Algorithm 2).

Note that this interpolation problem is more complex than that handled by most

existing painting programs for two reasons: 1) The footprint shape is not constant,

nor is it even taken from a set of predetermined 2D shapes. Each footprint is generated

uniquely from intersection with a dynamically deforming 3D brush. 2) The brush

color is not a single value—the brush paint is represented as a distribution of color

and attributes over the surface of the brush, so the color and attributes must also

be interpolated. The faster method (Algorithm 1) provides strokes that appear to be

connected as long as the footprint geometry does not change dramatically between two

time steps. Algorithm 2 is more computationally intensive, but generates connected

strokes even for the difficult cases of a brush with large rotational motion or large

change in deformation between time steps. Examples are shown in Figure 4.1.

Pseudocode of the high-level algorithms for the two methods is given below. In the

faster method, a fixed 2D footprint is first generated, and then that fixed footprint

is blended along the stroke trajectory. In contrast, in the higher quality method, the

actual brush geometry is linearly interpolated between two sampled positions, and the

contact footprint is recomputed every step along the stroke path. A natural extension,

though one not currently implemented, would be to use a higher order interpolation,

e.g. cubic splines, to connect successive brush positions.

Note that if computational cost were not a factor, the ideal interpolation scheme

74

Figure 4.1: A comparison of the same stroke paths as drawn by the two stroking
algorithms. The strokes on the left were painted with Algorithm 1, those on the right
with Algorithm 2. The top two strokes were painted with a fast motion, while the bottom
two were painted more slowly. The insets show a 3× zoom of the indicated portions of
the strokes.

would be to execute the full physically-based brush deformation simulation at succes-

sively finer time intervals until the motion of all points on the brush was less than one

pixel in every time interval. This, however, is not computationally feasible with the

current brush dynamics model.

The following sections will describe the steps of these algorithms and the implemen-

tation of them in more detail.

4.4 Paint Representation

The two-layer dAb model separates each paint surface into a thinner outer layer and

a potentially much thicker under layer, referred to as the ‘surface’ and ‘deep’ layers,

respectively (See Figure 4.2). Both the canvas and brush surface layers are considered to

be completely wet. For the canvas, the deep layer represents the paint that is completely

dry, while for the brush, the deep layer represents the reservoir of wet paint contained

75

Stroke-Faster(brush, t1 , t2)

1 Determine mp1 , the anchor point of brush[t1]
2 Determine mp2 , the anchor point of brush[t2]
3 Generate fp, the footprint of brush[t2]
4 for pos ← mp1 to mp2 � Step so pos moves 1 canvas texel at a time
5 do Blend fp with canvas at pos

end
7 Update brush textures with blended fp

ALGORITHM 1: The faster stroking algorithm. Given a brush time sequence and
two times, this function computes one fixed footprint and blends that shape along the
stroke path.

Stroke-Better(brush, t1 , t2)

1 d ← max distance between corresponding points in brush[t1], brush[t2]
2 for α ← 0 to 1 � Step so brushα moves 1 canvas texel at a time
3 do
4 brushα ← Linear-Interp(α, brush[t1], brush[t2])
5 Generate fpα, the footprint of brushα

6 Blend fpα with canvas
7 Update brush textures with blended fpα

end

ALGORITHM 2: The higher-quality stroking algorithm. Given a brush time sequence
and two times, this function interpolates the 3D geometry of the brush between the two
times, regenerating the transfer footprint repeatedly each step of the way.

within the bristles. The wet surface layers are where all paint transfer between brush

and canvas occurs. Each paint surface (either canvas or brush) is represented as two

color textures plus an additional attribute texture. Each of the textures is stored as

24-bit RGB or 32-bit RGBA (See Table 4.1).

The dAb model moves paint between layers in three different cases, as illustrated

in Figure 4.2. First, paint transfer between the canvas surface and brush surface layers

occurs upon contact between the two. This is the main bi-directional transfer operation

that enables painting. Next, as the surface layer of the brush becomes depleted during

76

Reservoir

Surface

Wet

Dry

+

+

Replenish

Bi-directional
blend

Dry

Figure 4.2: The layers used to represent brush and canvas in the dAb paint model,
and the operations that move paint between layers. Drying moves wet paint from the
Wet layer to the Dry layer of the canvas. Bi-directional blending moves paint back and
forth between the outer layers of the brush and canvas. When the brush Surface layer
is low on paint, it is replenished from the Reservoir layer, unless the Reservoir layer is
empty.

painting, it is refilled from brush’s deep reservoir layer. Finally, drying the canvas

(Section 4.7) causes paint to move from the canvas’s surface layer to its dry layer, and

this occurs either on a timed interval or as requested by the user.

One additional RGB texture is used to cache the final rendered canvas, so that it

can be redisplayed quickly. For efficiency, the entire canvas is divided into tiles of size

32×32, and only tiles that have been modified by a painting stroke or by drying need

to be recomputed and uploaded to the graphics card.

Using 8-bit-per-channel textures to store all the paint information allows the dAb

paint model to work with the widest range of graphics hardware possible. The volume

of paint in each layer is stored in one channel of a 24-bit RGB attribute texture (see

Table 4.1). Since the paint volume of the brush surface is stored in just 8-bits, it can

only hold 255 “units” of paint. To allow the brush to hold more paint, each unit of

volume in the deep layer is treated as 32 units of surface paint. In order to allow values

77

Channel Canvas Palette Brush

Red Wet layer volume Wet layer volume unused
Green Dry layer embossing Shape mask Reservoir volume
Blue Dry layer relative heightfield Region code Surface volume
Alpha N/A N/A Footprint stencil

Table 4.1: Attribute textures used in the dAb model and the contents of each channel.

greater than 255 in the deep layer of the canvas, its volume (or height) is encoded using

a special relative height field scheme, which is described in Section 4.8.

4.5 Details of the Paint Stroking Algorithms

This section steps through the details of the core operations performed in Algorithms 1

and 2 in the order in which they are performed. These main steps are:

1. Generating the footprints on the canvas;

2. Bi-directional paint transfer and blending;

3. Updating the brush textures.

.

4.5.1 Generating Footprints on the Canvas

The footprint generation step (Algorithm 1, line 3; Algorithm 2, line 5) takes a polyg-

onal, texture-mapped 3D brush surface and determines the image-space 2D contact

region for paint blending. In other words, this step computes AB ◦ TCB described

in Section 4.2. Assuming a planar canvas, footprint generation can be accomplished

efficiently by using graphics hardware to rasterize the brush using its three different

texture maps: surface, deep, and attribute. Specifically, the brush is rasterized using

an orthographic projection, with the viewpoint located above the canvas, and the view

78

Figure 4.3: The footprint attribute textures as rendered to the canvas texture space.
The projected polygons of the brush mesh are shown in black, though these are not
rendered normally in the process of the algorithm. The top row shows a mesh brush’s
footprints for a brush loaded with a mixture of pink and green paint. From left to right:
brush attributes, surface color, and reservoir color. For brush attributes, green indicates
reservoir volume and blue indicates surface volume (Table 4.1). The second row shows
the same brush’s full textures. The third row shows the footprint textures of a non-mesh
brush, including a fourth footprint containing brush texture coordinates.

79

direction parallel to the canvas’ outward normal, n. Any portion of the brush within ǫ

of the canvas plane is considered to be in contact. To restrict the rasterization to that

portion of the brush geometry, a near clipping plane is set parallel to the canvas, ǫn

units in front of the canvas from the camera’s viewpoint. The brush is then rendered

with each of its texture maps and with the depth testing function set to farthest Z

(instead of the usual, nearest Z). The resulting footprints are then read back from the

frame buffer for use in blending. The top row of Figure 4.3 shows a set of these footprint

images.

When the brush is not a connected mesh, as is the case with the bristle strip

representation (Chapter 3), a slightly amended procedure is required. For reasons that

will be explained in Section 4.5.3, in order to update the brush textures of a bristle strip

brush in the end, a fourth footprint image—one with texture coordinates—is needed.

The bottom row of Figure 4.3 shows the set of four footprint images from a non-mesh

fan brush.

Before rendering each of the footprints, the framebuffer is initialized with an alpha

value of 0. The brush is then rendered with an alpha of 255. The result is that only

fragments that are part of the footprint have nonzero alpha. This alpha mask delineates

the actual shape of the footprint and is used later when updating the brush textures

(Section 4.5.3).

Though dAb only supports a planar canvas currently, to handle painting on a non-

planar canvas (i.e. a 3D object), a similar process could be followed by introducing

a temporary mapping plane in between the brush and canvas that approximates the

regions of contact ΩBC and ΩCB. An additional step is then required to remap the final

blended footprint back to canvas texture space, just as is currently done to remap the

canvas footprint back to brush texture space (Section 4.5.3).

80

Figure 4.4: (left) Bi-directional paint transfer is demonstrated by dragging three
brushes loaded with yellow paint and four clean, dry brushes through wet blue paint.
(center) After making the Mona Lisa’s paint wet again for the first time in centuries,
she has been given a make-over and the background defocused for dramatic effect using
bi-directional transfer to smear the paint. (right) “Mona Lisa Through a Veil”, created
by glazing over a dry Mona Lisa with with translucent white paint.

4.5.2 Bi-directional Paint Transfer and Blending

As a stroke is painted, paint from the brush is deposited onto the canvas, but at the

same time the brush picks up paint off the canvas. This bi-directional transfer operation

enables paint-like mixing effects as shown in Figure 4.4.

This section describes the blending operation (Algorithm 1, line 5; Algorithm 2, line

6) that serves as dAb’s bi-directional transfer mechanism. The key observation is that

once the 2D footprint textures have been created (previous section), one can blend the

canvas paint with the footprint paint as if the 2D footprints are the brush.

At this point, since the brush is now a 2D raster, the blending could be carried

out essentially like it is in any existing paint program, if so desired. dAb currently

implements one blending function, one that simulates the smudging and smearing

of real painting, but essentially any of the Shoup model blending modes (Shoup,

2001), or modes added by more recent descendants of the Shoup model, could be

used instead. The simple color deposition model used by dAb is in fact itself probably

81

not tremendously different from marking functions used in existing paint programs.

The main differences, however, are that 1) dAb allows modification of the color on the

brush during mark-making, not just the color of the canvas, and 2) the actual shape

of the footprint is derived from contact with a deforming 3D brush geometry. These

modifications make a vast difference in the degree to which the painting program begins

to feel like actual painting.

In dAb, blending only performs an exchange of paint between the surface layers of

brush (footprint) and canvas, as shown in Figure 4.2. The amount of volume transferred

between surface layers is dependent on the volume of paint within each layer. The

volume leaving each surface, Vl, is computed from the initial volume, Vi, and transfer

rate, R, over the elapsed time, T , by the equation, Vl = Vi + T ·R. The resulting paint

color, Cnew, is computed by the weighted portions of remaining volume and color,

Vr = Vi−Vl and Ci, and incoming volume and color from the other surface, V ′
l and C ′

i:

Cnew = (Vr · Ci + V ′
l · C

′
i)/(Vr + V ′

l)

In other words, the new color at each point is a weighted sum of the colors on brush

and canvas, with the respective volumes of paint serving as weights. The same equation

is used to update both the footprint paint and the canvas paint.

This linear weighted additive color mixing formula is easy to work with, and gives

predictable and generally expected results. For example mixing black with any color

makes a darker shade of that color, as expected. However, mixing equal parts of

something like saturated yellow, (255,255,0) in RGB, with saturated cyan, (0,255,255),

does not result in a saturated tint of green as would be expected from real-world

pigments, but rather a desaturated green (128,255,128). A purely subtractive model as

implemented in (Cockshott, 1991) or Corel Painter’s mixing palette (Painter 8, 2003;

Zimmer, 1994) would mix the two to get something closer to (0,255,0). The yellow

82

subtracts blue and cyan subtracts red, leaving only green. This would likely be more

intuitive for painters to work with.

In truth, however, the difference between RGB and real paint is not simply a matter

of additive versus subtractive color spaces. The color of a pigmented material like

paint is a complex combination of subsurface scattering and absorption, and accurately

modeling the color of pigmented mixtures is still an active area of research. The dAb

model, however, strives for maximal simplicity, and so, like most existing painting

programs, uses additive RGB mixing. The next two paint models I will present

use a more physically-based rendering scheme based on the Kubelka-Munk equations

(Kubelka & Munk, 1931; Kubelka, 1948; Kubelka, 1954; Haase & Meyer, 1992). This

rendering method is the subject of Chapter 7, and I will discuss color mixing issues

further there.

4.5.3 Updating Brush Textures

After determining how paint from the brush and canvas blend within the footprint, dAb

maps the resulting blended footprint paint back to the brush to update the brush’s

textures (line 7 of both algorithms). This also corresponds to the computation of

AC ◦ TBC described in Section 4.2. For a brush surface represented as a connected

polygonal mesh, there is a simple way to map the blended paint in the canvas footprint

back to the brush’s texture space. The key idea is to rasterize the brush mesh, but

with geometric vertex coordinates and texture coordinates swapped. More specifically,

one rasterizes using the brush texture itself as a destination buffer, and the buffers

containing the canvas space footprints as source texture maps. In terms of the rendering

commands issued, that means for each vertex in the brush mesh, use that vertex’s tex-

ture coordinate as a geometric coordinate, and use its projected 2D geometric coordinate

in the footprint as the texture coordinate. As long as texture space is diffeomorphic to

83

the geometric space, this generates the correct result for mapping the canvas footprint

back to brush texture space, and the rasterization hardware’s bilinear interpolation

performs the desired interpolation. The rendering should be performed with OpenGL’s

alpha test enabled so that portions of the footprint buffer that have alpha=0 do not

modify the brush texture.

When the brush is not a connected mesh, as is the case with the bristle strip

representation (Chapter 3), a different procedure is called for. The mapping from canvas

texture coordinates to brush texture coordinates is computed explicitly by rasterizing a

fourth brush footprint using texture coordinates as color (see Figure 4.3). The resulting

texture coordinate image gives the interpolated brush texture coordinate closest to

each canvas texture coordinate. Then the blended paint is mapped from the canvas

footprint back to brush space in software, using the texture coordinate footprint as an

index texture.

4.6 Rendering

After a stroke has been painted, all tiles through which the stroke passed are marked

dirty. When time permits, dAb lazily updates the the dirty tiles of the cached rendering

used to display the canvas to the user. Updating a tile involves optical composition of

the surface layer over the deep layer and embossing to give the canvas a 3D appearance.

This section describes those two operations.

4.6.1 Optical Composition

To allow for layering effects like glazing (illustrated in Fig. 4.4), the wet and dry layers

of the canvas are composited together, allowing the dry layer to partially show through

the wet layer. The volume of the wet layer, Vw, is multiplied by the optical thickness,

84

Ot, of the paint, and then used for alpha blending the wet and dry layer colors, Cw and

Cd. The displayed canvas color is computed as follows:

Cdisplayed = α · Cw + (1− α) · Cd; α = min(Vw ·Ot, 1). (4.1)

4.6.2 Embossing

When rendering the canvas dAb performs bump mapping using the height field (paint

volume) to give the canvas a 3D, impasto-like appearance. This bump mapping effect is

computed using a simple 3×3 embossing filter kernel applied to the paint height. The

embossing operation effectively encodes a fixed light position above and to the right of

the canvas. The filter kernel is:

0 −1 −2

1 0 −1

2 1 0

.

This technique is fast and efficient, and appropriate for use in interactive graphics.

After evaluating the kernel at each canvas pixel, dAb adds the resulting positive or

negative scalar, multiplied by a user controllable “bumpiness” parameter, to all three

color channels and clamps the result to yield the final rendered color for the canvas.

In addition to computing the embossing effect due to the wet layer’s volume, dAb

also adds an embossing contribution from the dry layer’s height. To make this operation

efficient, dAb stores the post-filtering embossing values for the dry layer in a channel

of the canvas’ attribute texture (Table 4.1). These values need only be recomputed

when the dry layer changes, which only happens during a drying operation. Since the

embossing is a linear operation, when drying, it is possible to compute the embossing

85

Figure 4.5: Partial drying is demonstrated by the yellow paint that has been painted
over blue color stripes of 0%, 25%, 50%, 75%, and 100% wetness (left to right).

due to the just the incoming paint volume and add this onto the stored embossing value

per pixel.

To compute the lighting, dAb adds the dry layer’s embossing contribution to the

wet layer’s contribution to get the total lighting effect. The dry layer embossing value

is stored in as an 8-bit signed format giving it a range of [−127, 128].

4.7 Drying the Canvas

The dAb paint model also supports controlled drying as shown in Fig. 4.5. Partial

drying is accomplished by moving a fraction of paint from the completely wet canvas

surface layer to the completely dry deep layer.

When paint volume is transferred from the wet layer to the dry layer during drying,

the composited color of the paint should not change. The color of real oil paint changes

very slightly as it dries, but the lack of a dramatic shift in color is one of its more

desirable properties (Mayer, 1991). To enforce color constancy, one can use the optical

blending function (Equation 4.1) and solve for the new dry layer color. Given a volume,

86

δα, to be removed from the wet layer, set the pre-dry and post-dry composite colors

equal and solve for the new dry layer color, C ′
d. The result is

C ′
d =

α · Cw + (1− α) · Cd − α′Cw

(1− α′)
; α′ = α− δα.

4.8 Relative Height Field

In the attribute texture of the canvas’ dry layer (Table 4.1), dAb also uses one 8-bit

channel to store a relative height field that allows a practically unlimited amount of

volume to be accumulated over the course of multiple drying operations. The relative

height field is not used in the runtime system, but is saved with the canvas so that

the full height field of the canvas can be reconstructed offline if desired (for creating a

printout on a 3D printer, for instance.)

Let h(i, j) be the value stored in the relative height field for column i and row j.

Let absheight(i, j) be the absolute height of that same row and column. The relative

height field is then recursively defined as follows:

absheight(0, 0) := 0

absheight(0, j) := h(0, j) + h(0, j − 1)

absheight(i, j) := h(i, j) + h(i− 1, j).

This is a simple and efficient means of encoding the height with reduced memory

overhead compared to a full 32-bit per pixel representation. It does, however, impose

a limitation on the maximum height difference between adjacent pixels.

87

4.9 The Palette

The dAb system was the first to introduce the virtual palette as an interface for color

mixing and performing complex brush loading. Rather than requiring the user to

select color from a fixed list, or pick colors by number, the user simply picks pure

colors from paint wells and mixes them together to get the desired tones. The overall

interface, including the palette, will be discussed more in Chapter 8, but there are

several implementation issues that are more appropriately discussed here.

The dAb palette is implemented as a special type of canvas. It uses the two-layer

model just like the canvas, however it has a few special properties. First it supports

three different modified brush transfer modes: normal palette mode, paintwell mode,

and brush cleaner mode. Which region of the palette uses which mode is determined

by a region code stored in the palette’s attribute texture (Table 4.1).

First, the normal palette mode: this mode is different from the standard canvas in

that contact with the palette causes the brush’s deep reservoir layer to be refilled. This

does not happen with the normal transfer algorithm used on the canvas. The palette

also never loses paint volume, so that the brush can be refilled as often as desired

with a particular user-created mixture on the palette. Next, regions of the palette in

paintwell mode have permanent color. The brush gains paint when in contact with a

paintwell, but the the paintwell never loses paint or has its color modified. Finally,

the brush cleaner regions: these regions are also non-modifiable, like the paintwells,

but instead of refilling the brush, they empty out the brush’s surface and deep layer

volumes, cleaning the brush so it can be used on the canvas with a dry-brush technique.

Together these three modes enable the user a wide range of options for how load

their brush with just the blend of color desired.

dAb does not perform any embossing on the palette, since it is meant for mixing,

not painting pictures. It does, however, allow the palette to have a non-rectangular

88

Figure 4.6: The dAb virtual palette. (left) Tucked away to the left of the canvas.
(right) After sliding into full view for color mixing. Paintwells appear along the left
edge, and the brush cleaner in the lower right. The remainder of the area is “normal
palette”.

shape through the use of a shape mask in the palette attribute texture (Table 4.1). The

shape mask is used as an alpha channel when rendering the palette, which enables it

to take on a more aesthetic, rounded appearance, more like a real artist’s palette (see

Figure 4.6).

4.10 Implementation and Results

The dAb paint model was implemented in C++ using the OpenGL graphics API. dAb

divides the work between the CPU and GPU, generating footprints using graphics

hardware, but performing the actual blending and compositing operations in software.

For efficient execution, all of the CPU operations were implemented using fixed point

arithmetic. As a consequence of this division of labor, the dAb paint algorithm will

run on any graphics hardware that supports the basic OpenGL 1.1 specification.

I tested the performance of the two stroking algorithms on several machines, to

demonstrate the effectiveness of the algorithm over a wide range of system capabilities.

The results are summarized in Table 4.2.

89

Performance (106 Texels/sec)
Path 1 Path 2

System1 System2 System3 System1 System2 System3

Algorithm 1 2.39 5.84 8.39 1.62 5.22 7.58
Algorithm 2 0.97 1.17 2.93 0.96 1.47 3.39

Table 4.2: Measured performance of the dAb paint stroking algorithms, in millions of
canvas texels updated per second, for two example brush paths. The additional readback
from graphics memory required by Algorithm 2 makes it significantly slower in every
case, as expected. System1 is a 1.4GHz Intel Pentium M laptop with 512MB RAM, and
an NVIDIA GeForce FX Go5200 with 32MB of RAM on an AGP 4x bus. System2 is
a 2.53GHz Intel Pentium 4 with 1GB RAM, and an NVIDIA GeForce FX 5900 Ultra
with 256MB of RAM on an AGP 4x bus. System3 is a 3.40GHz Intel Pentium 4 with
2GB RAM, and an NVIDIA GeForce FX 6800 Ultra with 256MB of RAM on an AGP
8x bus.

Many artists have tried dAb, and some of the images they created can be seen

in Figure 4.7. The paintings demonstrated in the last chapter were also created with

the dAb paint model. Many visiting groups of school children have also tried it and

always seem to enjoy themselves. dAb was demonstrated to a large audience at the

Creative Applications Lab in SIGGRAPH 2001; it has also been demonstrated at

Pixar Animation Studios; and in 2002 it was shown at Intel’s annual research fair in

Beaverton, OR where it was voted “best project”. Since 2004, SensAble Technologies

has been using dAb as a demonstration of their haptic technology at trade shows;

and since its creation in 2001 it has been demonstrated to hundreds of visitors to the

computer science department of UNC Chapel Hill.

4.11 Limitations

The dAb paint model is simple, fast and enjoyable to paint with; however, the model

has its limitations. The primary issue with dAb as a thick impasto model is that

thickness is only accumulated onto the canvas’ deep layer after drying, and it is only a

visual thickness, created by embossing, so it cannot be pushed around or manipulated

90

Andrei State Eriko Baxter Lauren Adams

Lauren Adams Rebecca Holmberg Rebecca Holmberg

Rebecca Holmberg Rebecca Holmberg William Baxter

Sarah Hoff Rebecca Holmberg Rebecca Holmberg

Figure 4.7: Paintings created by various artists using dAb. The paintings shown in
the previous chapter were also created with the dAb paint model.

91

by the painter, nor does the brush react any differently to it. This limitation was the

main motivation for developing the paint models described in the next two chapters.

The color model is another issue, as the colors do not mix or glaze like real paint

colors do. A much improved rendering scheme is the subject of Chapter 7.

4.12 Summary

In this chapter I have presented the dAb paint model. The main contributions of this

chapter are:

� A general mathematical description of attribute mapping operations for comput-

ing footprints.

� Specific bi-directional footprint computation algorithms, which leverage rasteriza-

tion hardware, for both connected, closed mesh objects and for meshes with holes

or gaps. These algorithms form the connection between the 3D brush models of

Chapter 3 and the paint models of this and Chapter 6.

� Two algorithms for painting smooth, connected strokes, one offering better per-

formance, and the other better quality.

� A simple, interactive 2-layer paint model that captures many of the characteristics

of paint using a minimal amount of memory and computation.

The next two chapters will present paint models that improve upon dAb in several

ways.

92

Chapter 5

Stokes Paint: 3D Volumetric Paint

Painting is easy when you don’t know how, but very difficult when
you do.
— Edgar Degas

This chapter presents Stokes Paint, the first painting system to be based on a full

3D volumetric fluid model for viscous paint. The fluid behavior of the paint is based

on the 3D Stokes equations. In contrast to the dAb model, this Stokes Paint model

enables physically-based interaction with the paint and multiple active, wet layers. The

result is a system that, while much more computationally intensive, allows for realistic

pushing, squishing, and scraping of paint to create paintings in styles similar to impasto1

or encaustic2. For rendering, Stokes Paint incorporates the real-time Kubelka-Munk

reflectance model that will be described in Chapter 7.

As a paint model, Stokes Paint supports similar operations to the dAb model:

blending, bidirectional paint transfer, controlled drying, glazing and impasto. The

main features of the Stokes Paint model that are responsible for the improved material

characteristics listed above are:

� A true volumetric 3D fluid representation.

1Impasto is a painting style in which paint is applied thickly with little additional medium.

2In encaustic painting, molten wax serves as the painting medium.

94

� Physically-based fluid motion derived from the Stokes differential equations.

� Multiple layers of paint all active (wet) simultaneously.

I have integrated the Stokes Paint paint model into the painting system framework

developed originally for the dAb system, to demonstrate the interactive capabilities of

the viscous fluid paint model. Although at this time the system aspects of Stokes Paint

are less developed than the other two paint models (dAb and IMPaSTo, to be described

in the next chapter), the integration nonetheless serves as a powerful proof-of-concept

demonstration of the potential for fully 3D digital painting based on fluid simulation.

This chapter consists of two main parts. The first part discusses the details of the

numerical method I use to solve for the fluid behavior of the paint. The second part

of the chapter is specifically about the issues involved in integrating this fluid model

into a proof-of-concept painting system. Though much of the previous work related

to computer based painting has been discussed already in Chapter 2, the area of fluid

simulation was not covered there. I will review the fluid related research literature

briefly before proceeding to the primary topics of this chapter.

5.1 Previous Work in Fluid Simulation

Many researchers have investigated simulations of fluid for computer graphics. I present

a brief summary of the most relevant related work below. In this chapter we are

interested particularly in fluid simulation techniques that are 1) interactive, 2) suitable

for high viscosity, 3) can handle a free surface boundary, and 4) describe the entire

volumetric flow rather than just the surface motion. It will be seen that none of the

previous work addresses all of these concerns adequately for viscous painting.

Kass and Miller (Kass & Miller, 1990) used the linearized shallow-water equations

to simulate surface waves. The method is fast, stable and interactive, but cannot handle

95

viscous flow, and only simulates the surface height. Subsurface flow is not computed.

O’Brien and Hodgins (O’Brien & Hodgins, 1995) combined a particle system with

shallow-water equations to simulate splashing of low viscosity fluid. (Hinsinger et al.,

2002) presented a method for the interactive animation of ocean waves.

Chen and Lobo (Chen & Lobo, 1995) used the 2D Navier-Stokes equations, taking

pressure resulting from the solution to be proportional to height to get the third

dimension. The method is interactive, though using pressure as height is a fairly gross

approximation of the behavior of 3D fluid. Also, since the method is fundamentally

2D, the subsurface flow and mixing are unknown.

Desbrun and Cani presented an interactive particle-based technique for simulating

a range of materials from highly deformable solids to fluid-like substances (Desbrun

& Cani, 1996), and Muller, et al. also proposed an interactive particle-based method

using Smoothed Particle Hydrodynamics (SPH) to simulate fluids with free surfaces

(Muller et al., 2003). The drawback to both methods for viscous paint simulation is

that they perform poorly when the particles are spread too thinly, which is one of the

more important operations necessary in a paint simulation.

Foster and Metaxis (Foster & Metaxas, 1996) used an explicit marker-and-cell

(MAC) method based on (Harlow & Welch, 1965) to simulate low viscosity free-surface

liquid. Being an explicit method, it is subject to the CFL and viscosity timestep

restrictions (∆t < O(∆x) and ∆t < O(∆x2), respectively), making it unsuitable for

use in interactive applications.

Curtis, et al. (Curtis et al., 1997) used a form of the shallow water equations in their

watercolor simulation. Their explicit formulation is subject to timestep restrictions and

is inappropriate for very viscous or very thick layers of fluid.

Stam (Stam, 1999) introduced the first unconditionally stable solver for the Navier-

Stokes equations to the graphics community. The solver’s use of implicit backwards-

96

Euler integration for viscosity allows for stable treatment of high viscosity fluids, but

the method does not address the complications or stability issues introduced by the

presence of a free surface boundary condition.

(Fedkiw et al., 2001) used incompressible, inviscid Euler equations to simulate

smoke. Recently, (Foster & Fedkiw, 2001; Enright et al., 2002) have presented con-

vincingly accurate particle level set methods for low-viscosity free surface flow, but

these methods are quite computationally intensive, requiring minutes per frame for

simulation.

Carlson, et al. (Carlson et al., 2002) presented simulations of melting and flowing

of high-viscosity fluids based on the MAC method. While their method treats viscosity

implicitly, advection is still performed explicitly, making it subject to the CFL timestep

restriction. Also their method for handling the free surface boundary conditions is

not explicitly discussed and likely subject to a timestep restriction as well, making

interactivity difficult to achieve.

Goktekin et al. (Goktekin et al., 2004) present an extension to (Enright et al.,

2002) that allows for simulation of visco-elastic and viscous fluids. Their results are

impressive, but like other particle level-set methods, reported simulation times are as

high as one minute per simulation timestep, making the method currently far from

practical in an interactive setting.

The most closely related work, at least in terms of goals, is that of (Cockshott et al.,

1992), already mentioned in Chapter 2. He presents a cellular-automata model for the

dripping and flowing behavior of runny liquid paint on a canvas. The method was not

interactive on the 2MHz processors available at the time, though it likely would be

today with processors that are 1000 times faster. The fluid model Cockshott presents,

however, recreates the behavior of a fairly low viscosity fluid. Furthermore he does not

97

propose any approach for how a brush should interact with this paint model to create

a painting system.

5.2 Governing Equations

Paint is a complex material, composed of millions of tiny powdered pigment particles3

suspended in a small amount of medium such as linseed oil. As a consequence of

their composition, paints can have both liquid- and solid-like properties. Oil paint, for

example, as it comes straight out of the tube, does not begin to flow until its internal

yield stress has been exceeded by shear stress. When squeezed out, it initially maintains

a rigid cylindrical shape, despite the action of gravitational forces. After enough of the

material emerges, however, gravitational forces create enough shear stress to exceed the

yield stress, and it begins to deform in a fluid-like manner.

From that simple example it is clear that paint is not a typical fluid. In fact, it is

a member of the general class of materials known as a non-Newtonian fluids. A non-

Newtonian fluid is one in which the viscosity varies depending upon shear rate. The

behavior described above is sometimes known as “viscoplasticity”. Other viscoplastic

fluids include drilling mud, toothpaste, and blood (Subramanian, 2003). Another non-

Newtonian property of paint is “shear-thinning”, that is, its viscosity decreases as

shear rate increases. For painting this is a desirable property in that the paint will flow

smoothly when sheared by a brush, but after the shear stress is removed, it returns to

a higher viscosity so it no longer flows easily (Subramanian, 2003).

The momentum equation for a general non-Newtonian fluid can be written

∂u

∂t
= −(u · ∇)u−

∇p

ρ
+

1

ρ
∇ · σ + F (5.1)

3The size of the pigment particles used in paints range from 0.1-50µm, with 5µm being the
mean(Callet, 1996).

98

where u is the fluid velocity field, p is the pressure field, ρ is the density, and F is

an external force per unit mass such as supplied by gravity. The stress tensor, σ,

determines the relationship between stress and strain in the fluid. In a Newtonian fluid

the stress and strain are linearly related, but in a non-Newtonian fluid this relationship

is non-linear, and in particular the shearing components of the stress tensor become

dependent on the rate of shear. Thus the effective viscosity of a non-Newtonian fluid

is also a function of shear rate.

Developing a model that accurately and fully models the viscoplastic, non-Newtonian

nature of paint is a daunting challenge, even more so if the model must also be

interactive. Both (Carlson et al., 2002) and (Goktekin et al., 2004) present simulation

techniques for handling particular types of fluids with some solid-like behaviors, the

former by modeling solids as very high viscosity fluids, the latter by using a viscoelastic

model of the material. Both techniques are able to generate high-quality animations

offline, but for painting, an interactive technique is needed.

Instead of trying to explicitly model the non-Newtonian nature of the paint, I have

created a three-regime model. The first regime is simply a solid-like regime, in which

the paint is static. This is the case for undisturbed paint applied to the canvas. The

second is the high-viscosity regime, which is the subject of the majority of this section.

The third regime is the shear-thinned regime, which is active in the immediate vicinity

of the brush and which represents the reduced-viscosity state of the paint after the

brush applies shearing forces. This is implemented using a filtering operation discussed

in Section 5.4.4.

Stokes Paint simulates the high-viscosity fluid regime of paint using the 3D incom-

pressible unsteady Stokes equations:

∂u

∂t
= ν∇2u−∇p (5.2)

99

where ν, the kinematic viscosity, is now a constant. For convenience, constant den-

sity is assumed, since most familiar viscous paints are approximately homogeneous.

Equation 5.2 is coupled with the equation of continuity,

∇ · u = 0, (5.3)

which enforces incompressibility and the conservation of mass. The Stokes equation is

a simplification of Navier-Stokes applicable for highly viscous (low Reynold’s number)

fluids. The simplification comes primarily from dropping the advection term, (u · ∇)u,

from the full Navier-Stokes equations, and from the assumption of constant viscosity.

As mentioned, the Stokes equations are a reasonable approximation of Navier-Stokes

for low Reynolds number flows. The Reynolds number is a dimensionless constant that

roughly describes the ratio of inertial forces to viscous forces in in fluid. For Stokes

to apply, the Reynolds number should be less than 1. One can calculate the Reynolds

number of a typical painting scenario to verify that this is the case. The formula for

the Reynolds number is

Re =
V L

ν
,

where V is a characteristic velocity, L is a characteristic length, and ν is the kinematic

viscosity of the fluid. The viscosity of typical oil paints directly out of the tube is over

10,000 centiStokes (cSt) 4, though as noted, the actual value can be higher depending

on the rate of shear. One centiStoke is 10−6m2/s. A swift stroking motion may move

at about 0.3 m/s, and the size of a typical paint brush head is on the order of 0.01m.

4It is difficult to obtain much information about the fluid dynamic properties of artistic paints;
however, viscosities of similar materials like toothpaste, or molasses can be found more readily. For
example (Carlson et al., 2002) lists 10,000 cSt as the viscosity of toothpaste, and various other sources
list viscosities for molasses as about the same.

100

The result is

Re =
0.3m/s · 0.01m

10, 000 · 10−6m2/s
= 0.3,

which is is a fairly conservative estimate of what will probably be the maximum

Reynolds number. Brushes are frequently smaller, motion slower, and the viscosity

higher, meaning lower Reynolds numbers. So one can conclude that the Stokes approx-

imation is reasonable for the purposes of painting.

5.3 Numerical Method

The Stokes Paint solver uses a staggered 3D grid as in (Harlow & Welch, 1965; Foster

& Metaxas, 1996; Griebel et al., 1990) and others, with the vector components such as

velocity stored on cell edges, and scalar quantities (including color channels) stored at

cell centers.

The Stokes Paint model uses a hybrid phase-field/volume-of-fluid technique to track

the free surface and is stable for any size of timestep. The numerical solver I have

developed has the following characteristics:

� Stable implicit viscosity step with semi-Lagrangian update of surface and color,

and free surface boundary treatment;

� Hybrid linear system solver combining incomplete Cholesky preconditioned con-

jugate gradient method with successive over-relaxation;

� Real-time performance suitable for interactive applications.

The numerical method used to solve the fluid flow equations is a fractional step,

Chorin projection method similar to some previous methods, e.g. (Foster & Metaxas,

1996; Stam, 1999; Carlson et al., 2002). A provisional velocity field, u∗, is first

101

computed to capture the effect of the viscous term, ν∇2u. This step uses a stable

backwards-Euler integration step. A Poisson problem to find a pressure field, p, is then

solved for to make u∗ discretely satisfy the incompressibility constraint, Equation 5.3.

Once obtained, the new pressure, p, is used to compute the final divergence-free velocity

field, u.

The above three-step temporal discretization scheme can be written succinctly as

follows:

u∗ = un + ∆t[ν∇2u∗] (5.4)

∇2p = ∇ · u∗/∆t (5.5)

un+1 := u∗ + ∆t∇p (5.6)

where the superscripts on u refer to the time step at which the variables are to be

evaluated. Stokes Paint uses boundary conditions to model the forces applied by the

artist through the brush.

To model and track the evolution of the free surface—the interface between the fluid

and air—Stokes Paint uses a hybrid method which is similar to phase-field methods

or the volume-of-fluid method of (Hirt & Nichols, 1981) in that every cell in the

computational domain is assigned a scalar value between 0 and 1 denoting the phase

of the contents, either air or fluid. For the purpose of placing boundary conditions on

the simulation, a cell is treated as fluid if its phase value is greater than one half. The

precise location of the surface is taken to be the phase = 0.5 isosurface, though this

is used only for rendering. The method for extracting the isosurface is discussed in

Section 5.3.5. Unlike some previous free surface methods, each step of this numerical

method is stable, allowing the solver to take large time steps and maintain interactivity.

102

5.3.1 Viscosity

Stokes Paint solves for the effect of viscosity using an implicit Euler update (Equa-

tion 5.4), which is unconditionally stable (Stam, 1999; Carlson et al., 2002). The

spatial discretization of Equation 5.4 leads to a system of equations, Ku∗ = un,where

K = I−ν∆t∇2
D and ∇2

D is the standard 7-point (3D) Laplacian stencil in matrix form.

The system is actually three independent systems of equations, one for each velocity

component, u∗, v∗, and w∗. Expanding the compact matrix notation above out into its

constituent linear equations, the system of equations for the u∗ component is:

Kcu
∗
i,j,k + Kx(u

∗
i−1,j,k + u∗

i+1,j,k)

+Ky(u
∗
i,j−1,k + u∗

i,j+1,k)

+Kz(u
∗
i,j,k−1 + u∗

i,j,k+1) = un
i,j,k

(5.7)

where
Kc = 1 + 2ν∆t(1/∆y2 + 1/∆x2 + 1/∆z2)

Kx = −ν∆t/∆x2

Ky = −ν∆t/∆y2

Kz = −ν∆t/∆z2

Written as a matrix, K is a D3 ×D3 matrix, where D is the number of samples on

each dimension of the 3D grid, but the matrix is very sparse, containing only O(D3) non-

zero entries, making it amenable to solution with the conjugate gradient method. I use

the conjugate gradient method with an incomplete Cholesky preconditioner. Pseudo-

code algorithms for the conjugate gradient method as well as the preconditioner can be

found in (Golub & Van Loan, 1983). An excellent description of the conjugate gradient

method is available in (Shewchuk, 1994).

The sparse matrix multiplies required by the conjugate gradient solver can be

103

implemented simply by applying the matrix stencil to the grid, i.e. evaluating the

right hand side of (5.7), at each (i, j, k) on the domain. For example:

for k = 0 to DEPTH

for j = 0 to HEIGHT

for i = 0 to WIDTH

if (i,j,k) in domain

then uout(i,j,k) := K_c * uin(i,j,k)

+ K_x (uin(i-1,j,k)+uin(i+1,j,k))

+ K_y (uin(i,j-1,k)+uin(i,j+1,k))

+ K_z (uin(i,j,k-1)+uin(i,j,k+1));

would compute the product K ∗ uin. The check in line 4 to see if the grid cell is in the

domain is used when handling domains with irregular geometry, as is the case with a

rough-surfaced canvas. For the implicit viscosity solver, this check is true if the cell in

question is a fluid cell.

5.3.2 Pressure Solver

Given the tentative velocity field, u∗, the next step is to find a pressure field such that

the divergence of u∗−∆t∇p is near zero by solving the Poisson problem (Equation 5.5).

For low viscosity flows, inertial forces dominate (i.e., advection) so there is a high degree

of temporal coherence in the velocity field. Consequently, a small number of iterations

of successive over-relaxation (SOR) per timestep is sufficient to yield realistic-looking

results (Foster & Metaxas, 1996). However, in very viscous flow, momentum spreads

out quickly, creating large velocity gradients and low temporal coherence. Thus, it is

necessary to use more solver iterations to enforce incompressibility as viscosity increases.

After experimenting with several different schemes, I have found a particularly effective

approach to be a combination of both conjugate gradient (CG) and SOR. My SOR

104

solver steps are identical to those in (Foster & Metaxas, 1996; Griebel et al., 1990). I use

between 10-15 iterations of CG with an incomplete Cholesky preconditioner, followed

by 3 or 4 iterations of SOR. The residual after applying CG tends to have a fair amount

of high frequency content since CG is a “rougher”, in the terminology of (Shewchuk,

1994). A few iterations of SOR applied after CG is particularly effective since SOR

acts as a “smoother”. I show examples of typical residuals after several iterations of

CG and SOR in Figure 5.1. In my tests, the CG/SOR combination was quantitatively

more effective per CPU second than either technique alone. Comparisons were made

by calculating convergence ratios for each technique given the same initial conditions

and dividing the result by the computational time required. A multigrid solver is

another viable option for the solution, though the rules for handling the interpolation

and restriction operations in the presence of complex boundaries can be difficult to

implement.

Figure 5.1: Comparison of error residuals in the Poisson equation for pressure
after several iterations of (left) conjugate gradients (CG) with incomplete Cholesky
preconditioner versus (right) SOR. Note the low-frequency nature of the SOR residual
compared to that of CG.

105

5.3.3 Boundary Conditions

Each stage of the numerical method must be coupled with appropriate boundary

conditions. For the diffusion step, the no-slip Dirichlet velocity boundary conditions,

u = 0, are used at wall boundaries, and the free velocities on the fluid-air interface

are set to discretely satisfy the continuity equation (5.3). The boundary conditions

are enforced by setting the value of “ghost cells”, which lie just outside the domain.

For Dirichlet boundary conditions the ghost values on an edge along the interface are

simply set to zero. Values just off the interface are set so that (ughost +uneighbor)/2 = 0,

as shown in Figure 5.2. For details on implementing these types of boundary conditions

(Griebel et al., 1990) is highly recommended.

Pressure (p)

p1,0p0,0

p1,1p0,1

=p1,1

=p1,1

=p1,0

=p1,0=p0,0

=p0,0

=p0,1

=p0,1

Velocity
(u,v)

=0

=0

=0

= -u0,1

u0,1 u1,1

= -u1,1

Y Velocity(v)

v1,0v0,0

=0 =0

v1,1 = -v1,1

= -v1,0

Figure 5.2: Setting pressure and velocity boundary conditions

For the pressure Poisson equation, Neumann boundary conditions are required,

∂p/∂n = 0, where n is the boundary normal. These are implemented by copying the

pressure value just inside the domain to the ghost cell just outside, before every CG or

SOR iteration. Thus on the face of a boundary cell in the positive x direction we have,

for example, (pinside − pghost)/∆x = 0, which is the finite difference approximation

to the above boundary condition.

106

5.3.4 Interaction

Rather than adding forcing terms to the Stokes equations to implement interaction

with the fluid, one can achieve greater control of the fluid by setting Dirichlet velocity

boundary conditions at the fluid surface. The velocities of surface cells adjacent to the

virtual brush are simply set to the brush’s velocity. This is similar to the approach

used for interaction with smoke in (Fedkiw et al., 2001).

5.3.5 Free Surface

Unlike previous approaches, my method for handling the free surface of the fluid is

stable even at high viscosity. Stokes Paint represents the surface implicitly as the level

set of a fluid phase function, φ(i, j, k), with the interface defined to lie on the φ = 0.5

isosurface. Insofar as the surface is defined using the level set of an implicit function,

this approach is similar to that of (Foster & Fedkiw, 2001; Enright et al., 2002), but

unlike those level set approaches, in Stokes Paint the implicit function is not required

to be a signed distance function.

The free surface should obey the no-stress conditions, which state that no momen-

tum can be transferred across the interface (Hirt & Shannon, 1968; Nichols & Hirt,

1971; Griebel et al., 1990):

p− 2ν(∂un/∂n) = 0 (5.8)

ν(∂un/∂m + ∂um/∂n) = 0 (5.9)

ν(∂un/∂b + ∂ub/∂n) = 0 (5.10)

where n,m, and b are the surface normal, tangent and binormal, and uq is the directional

derivative of u in the q direction, ∇u · q. These terms have the effect of slowing down

surface waves (Hirt & Shannon, 1968; Nichols & Hirt, 1971). This retardation of

107

propagation speed increases with increasing viscosity. At very high viscosity, the free

stress forces essentially damp out surface waves instantly. If the free stress conditions

are ignored, as in (Foster & Metaxas, 1996), fluids of high viscosity will move unre-

alistically because the surface cells will tend to retain too much momentum. (Hirt &

Shannon, 1968; Nichols & Hirt, 1971) and others incorporated the above free stress

terms by solving them for pressure and enforcing that value as a boundary condition

on the free surface. However, this approach is unstable for high viscosities.

The source of the instability can be seen by writing out the finite difference ap-

proximations for the equation above on surface cell edges. For example, the typical

discretization for a surface cell with only one empty cell in the positive x direction is

pi,j = ν(ui,j−ui−1,j)/∆x (Griebel et al., 1990), where the p value is located at the center

of the cell and the u values are on the right and left edges. As viscosity, ν, becomes

large, it is clear that any small fluctuation in velocity values will be magnified into a

large positive or negative pressure boundary value. The large pressure in turn leads

to a large velocity adjustment in the next time step, resulting in an unstable feedback

loop.

Fortunately there is a simple solution. Instead of explicitly incorporating the above

free-stress equations, or omitting them entirely, I approximate their effect for very

viscous fluid by simply zeroing out the surface velocities at the end of every time step.

This is a reasonable approximation for the type of paint media I am interested in, and

it eliminates the surface instability. With the exception of this important modification,

my handling of the free surface boundary conditions is just as in (Foster & Metaxas,

1996; Griebel et al., 1990).

108

5.3.6 Scalar Advection

After solving for the velocity field u = (u, v, w), I advance both the phase values and

any other material properties, such as color, on the 3D grid using the advection equation

for a scalar, s:
∂s

∂t
= −(u · ∇)s.

I advect using the stable semi-Lagrangian method presented in (Stam, 1999). Specifi-

cally, I update the 3D scalar fields by tracing characteristics with an Euler integration

step backwards in time:

x∗ ≡ x−∆t[u(x)]

fn+1(x) = fn(x∗).

In general, the source location, x∗ = (x∗, y∗, z∗), will not lie at the center of a cell,

so the result is computed using trilinear interpolation of the eight nearest cells. If in

backtracking a boundary is crossed, the value of the scalar at the boundary is used.

As a final note, during advection of the color field, a color being advected from a

cell with zero φ value is taken to have the brush color.

5.3.7 Summary of Method

Here I present a compact summary of all the steps from beginning to end of one time

step.

1. Set boundary velocities to zero (viscous stress approximation)

2. Compute u∗ from the implicit diffusion equation

3. Set pressure boundary values according to Neumann boundary condition.

4. Solve pressure Poisson equation

109

5. Set surface boundary velocities using continuity equation

6. Advect the phase values and color/pigments.

7. Extract surface mesh from phase, and compute surface normals.

5.4 Paint System Integration

The previous section presented the details of the fluid model and the numerical tech-

nique used to solve for the flow. In this section I will discuss all the aspects of integrating

the fluid model with painting system, including interaction with a 3D brush, drying,

and rendering.

5.4.1 Voxelizing the Brush

For depositing paint on the canvas using the brush I have implemented some simple

heuristics similar in spirit to those used in dAb, but adapted to the volumetric nature

of Stokes Paint.

Stokes Paint starts with a mesh-based brush model as used in dAb, but at the

beginning of each time step the brush mesh is rasterized onto the voxel grid and these

voxels are tagged as temporary wall boundaries. The velocity at these wall boundaries

is set to the brush velocity to cause the nearby paint to move with the velocity of the

brush, as was mentioned in Section 5.3.3.

5.4.2 Brush-Canvas Paint Transfer

For simplicity, in the current system the brush is assumed to have only a single color;

however, as in dAb, that color is bi-directionally blended with the color of the paint

it touches to allow the brush to “pick up” paint from the canvas in addition to just

110

depositing paint. The amount of color change depends on the number and the color of

voxels of paint in contact with the brush.

The brush color is used to update the color of any voxels it comes in contact with

according to a linear blending equation. Specifically, for each brush voxel the color of

the corresponding canvas voxel is updated according to:

Cnew = (1− stainpow) · Cold + stainpow · Cbrush,

where Cnew and Cold are the new and old colors of the canvas voxel, Cbrush is the color

of the brush, and stainpow is the brush’s staining power parameter, between 0 and 1.

This color update is applied to both fluid voxels and empty voxels. The empty voxels

need to be colored as well because the paint’s surface color for rendering is determined

by linear interpolation between the two closest voxel colors. The value of stainpow is

a user-controlled parameter that determines how much influence the brush color has

over the canvas paint color.

The brush deposits fluid on the canvas by modifying the phase field values of some

canvas voxels. A näıve approach would be to add φ to all the voxels the brush touches.

Unfortunately the result of such a procedure is a brush that appears to discharge paint

into mid-air. This could be the basis for an interesting and novel 3D painting system,

but it does not generate physically plausible results. In reality it usually requires some

friction to pull viscous paint off of a brush. So instead, the brush should only deposit

paint where contact with the canvas or other paint creates the friction necessary to

cause paint deposition. After experimenting with several paint deposition rules to try

to achieve this behavior, I arrived at the following simple heuristic. For a brush voxel

111

in canvas cell (i, j, k), the φ value of the canvas cell is updated using:

φ↓ = max(φ(i, j, k − 1), φ(i, j, k))

φnew(i, j, k) = clamp

(

gain rate ∗
1

2
(φ↓ + φ(i, j, k)), 0, 1

)

,

where gain rate is a number slighly greater than unity. With this multiplicative update

rule, if the brush is in the middle of empty voxels (all φ = 0), then φ stays zero, and

no paint is deposited; however, if a brush voxel is above a fluid voxel with a φ close to

1, then the canvas voxel is updated with slightly more φ than the average of the two,

so that the φ increases and the canvas voxel is gradually turned into a fluid cell. The

solid voxels on the surface of the canvas are initially set to φ = 1 so that paint will

also deposit onto bare canvas. The computation of φ↓ ensures that a fluid voxel over

an “air bubble” is not drained of paint by this operation.

The brush also picks up color from the canvas. Since Stokes Paint currently only

supports a single color for the brush at a time, the new brush color is determined by

a summation over all of the canvas voxels the brush occupies, to arrive at an average

canvas color weighted by the φ in each canvas cell. The equations used are as follows.

Let brushvox be the set of voxels occupied by the brush:

112

φbrush
tot =

∑

brushvox

1 (5.11)

φcanvas
tot =

∑

brushvox

φ(i, j, k) (5.12)

Ccanvas
sum =

∑

brushvox

φ(i, j, k) ∗ C(i, j, k) (5.13)

dstFactor = φbrush
tot ∗ (1.0− brushperm) (5.14)

srcFactor = φcanvas
tot ∗ brushperm (5.15)

Cbrush
new =

Cbrush
old ∗ dstFactor + Ccanvas

sum ∗ brushperm

(dstFactor + srcFactor)
(5.16)

where the variables have the following meanings:

� φbrush
tot : the total volume of the brush.

� φcanvas
tot : the number of paint-filled cells occupied by the brush.

� C(i, j, k): The color of the canvas in cell (i, j, k).

� Cbrush
new : the new color for the brush

� Cbrush
old : the previous color of the brush

� brushperm: the artist-controlled parameter between 0 and 1 that determines the

permeability of the brush, i.e. its susceptibility to influence from the canvas color.

5.4.3 Brush Controls

There are a few parameters that control the bi-directional paint transfer operation,

which are under the artist’s control. Two have already been mentioned, but I summarize

them below, and provide a short description of each:

113

� Stain power: (stainpow) Controls how much the brush color stains the canvas

paint.

� Brush permeability: (brushperm) Determines how much the canvas color

influences the brush color. If zero, the brush color is permanent, as in most

painting programs.

� Maximum deposition: Determines the maximum thickness of paint that can

be deposited by a single stroke.

� Eraser mode: This is a binary parameter that when “on” causes the brush

to erase paint rather than deposit it. The mechanism behind this effect is

straightforward: the brush simply reduces φ in voxels it occupies rather than

increasing it.

Other operations are possible, but these are a few that have proven to be useful to

the artists who tested the Stokes Paint system.

5.4.4 Paint filtering

As mentioned in Section 5.2, Stokes Paint approximates the non-Newtonian shear-

thinning behavior of paint using three regimes. The third regime is a lower viscosity

mode in which the paint flows fairly easily after being subjected to shear stress from

the brush. This is achieved using filtering operations directly on the φ values of the

canvas in the immediate vicinity of the brush.

The paint filtering operations are also useful for the purpose of maintaining a well

defined and continuous surface. There are two complementary reasons to filter. First,

numerical diffusion of the interface introduced by advection leads to an ill-defined

surface. Second, sharp discontinuities in the phase values lead to inaccurate normals.

Essentially one desires the phase field to always approximate a smoothed step function.

114

To achieve this, I have developed a curvature-driven smoothing filter to reduce sharp

features, and a gradient-driven steepening filter to force flat regions towards either 0

or 1.

By curvature-driven, I mean the filter is applied only in regions of high curvature. In

order to achieve this, one must be able to calculate the curvature of the surface. Mean

surface curvature can be computed directly from the phase values as the divergence of

the normals, κ = ∇ · n (Osher & Fedkiw, 2002), which can be written:

κ = (φ2
xφyy − 2φxφyφxy + φ2

yφxx

+φ2
xφzz − 2φxφzφxz + φ2

zφxx

+φ2
yφzz − 2φyφzφyz + φ2

zφyy)/|∇φ|3,

where subscripts denote partial derivatives. The standard discretization of this equation

using central differencing is second-order accurate.

For curvature-driven smoothing, I use a seven-point blurring kernel (which can be

seen as causing a kind of paint diffusion). This kernel updates each phase value as a

weighted convex combination of itself and its six neighbors, with a weights that depend

on curvature:

φ′
(i,j,k) =

φ(i,j,k) + cs

∑

(l,m,n)∈neighbors φ(l,m,n)

1 + 6cs

,

where cs is the smoothing amount. I have found a good choice to be cs = clamp((|κ| −

80)/100, 0, 1/6).

To repair smearing artifacts with gradient-driven steepening, I use a function of

the form φ′ := φ + (φ − 0.5) ∗ cp to push φ values toward the extremes of 0 and 1. I

have found a good choice for the push factor in conjunction with the above smoothing

function to be cp = max((200 − |∇φ|2)/2000, 0). Note that because of the choice of

thresholds, this steepening operation will only operate on the smooth regions of the

115

field, while the smoothing operation above only operates on very steep regions, so that

neither undoes the work of the other.

The filtering reduces visual artifacts and serves to recreate some of the effects of

surface tension and gravity that apply in the lower-viscosity regime, effects that are

not modeled in the numerical method for the high-viscosity regime.

5.4.5 Surface Extraction

For rendering, one needs to compute an approximation of the isosurface and its normals.

The phase-field technique represents the full 3D topology of the fluid; however, in the

case of interactive painting, a height field representation is generally acceptable for

displaying intermediate results to the artist, and is much less costly to extract than a

full isosurface. After a painting is finished, a complete 3D isosurface extraction method

such as Extended Marching Cubes can be used. For interactive display, however, I

obtain a height field from the phase values in a straightforward manner by computing

one height value for each column of cells in the grid. I use a simple linear search to find

the uppermost fluid cell then interpolate to estimate the isosurface location to sub-cell

accuracy. Searches on successive columns can be accelerated by starting the search at

the height computed for the previous column.

Once the surface location is determined, the surface normals can be computed from

that extracted height field surface by finite differences, but more accurate normals can

be obtained by directly computing the gradient of the phase field. The normal is simply

n = ∇f/|∇f |, which can be computed with second order central differences. The two

normals computed at the cell centers closest to the fluid surface are interpolated to

yield the normal for rendering that cell.

116

5.4.6 Drying

Like dAb, Stokes Paint is able to dry. Drying is accomplished by tagging cells in the

simulation as no longer being part of the fluid, but rather part of the fixed boundary,

and their φ values are set to 1.0, as is required for all boundary cells. Since changing

φ values near the surface will also cause the exact location of the surface (φ = 0.5

level-set) to change, the second step of drying is to adjust the φ values of the cells just

above the dried cells so that the surface extraction operation will still yield the same

location for the surface.

5.4.7 The Canvas

It is desirable to model the rough texture of canvas and to capture the effect it has

on painted strokes. The currently means of representing such surface texture is simply

via the voxel representation of the boundary. To model a rough canvas, voxels can be

set as “air” or “wall” appropriately in order to approximate any given heightfield. One

can also enhance the appearance of texture by setting the canvas’ surface color using

an image with lighting already pre-factored into the color.

5.4.8 The Palette

As in dAb, paint on the palette in the Stokes Paint system behaves differently from

paint on the canvas. In fact, to reduce the overall memory requirements of the Stokes

Paint system, the palette is implemented as a 2D paint surface. The paint blending

operation used on the palette is quite similar to that used in dAb, with the exception

of the brush only possessing a single color. Just as in dAb, the palette uses a special

type mask texture to delimit different areas of operation: modifiable normal palette or

indelible paint well. Finally, also as in dAb, the palette never runs out of paint.

117

5.5 Results

I have tested my implementation of this viscous Stokes-based fluid paint model on a

2.5GHz Pentium IV machine. When used for two-dimensional flow, the Stokes portion

of the viscous free surface paint simulation runs at 64× 64 resolution at over 70 frames

per second with rendering of tracer particles. In three dimensions, the above system

can compute the flow on a 32 × 32 × 16 grid at 20 frames per second. The Stokes

calculations are by far the most expensive aspect of the painting computations, and

in particular the pressure and implicit viscosity conjugate gradient solvers. The cost

of surface filtering is relatively small in comparison. Since the method is stable, the

time step does not need to be reduced even when the fluid undergoes rapid motion. In

contrast, a simulation restricted by the CFL or viscosity timestep conditions would not

be able to keep the simulation synchronized with wall clock time, since it would have

to take many smaller sub-steps when fluid velocity is large.

In order to make interactivity feasible, the fluid simulation is windowed to calculate

flow only in the immediate vicinity of the brush. The active window follows the brush

around as it moves. This optimization is reasonable since a very viscous fluid essentially

only moves in regions in which it is agitated. I render the results by extracting a height

field and normal map from the fluid as described in Section 5.3.5. For computing the

color of the paint and displaying it to the artist, Stokes Paint uses the Kubelka-Munk

(Kubelka, 1954) rendering method described in Chapter 7.

Several paintings created by artists with Stokes Paint are shown in Figures 5.3 and

5.4. The latter also shows a zoomed in example of some thick, impasto marks produced

by the fluid model.

118

Eriko Baxter Eriko Baxter

Figure 5.3: Paintings created by artist Eriko Baxter using Stokes Paint.

5.6 Limitations

Stokes Paint has proven successful in providing painters with an interactive thick,

impasto-like digital painting medium; however, there are several limitations and areas

for improvement. First, the paint is currently not conserved, in large part because

of the semi-Lagrangian advection of the paint. A conservative advection scheme could

help here. Overall, however, the most significant issue currently is the model’s relatively

coarse resolution, which makes it unsuitable for very thin layers of material, or capturing

very fine details. The current Stokes Paint system captures the gross physical behavior

of paint well, just not the details. However at finest detail level I suspect the physical

behavior is not as important, and not as noticeable to the human visual system, so I

believe there is potential to augment the bulk physical model provided by Stokes Paint

with lighter weight “detail behaviors” based on 2D methods, to create a paint model

that combines the best attributes of a 3D fluid painting system with a 2D system.

Another way of looking at the problem of resolution, though, is not as a resolution

119

John Holloway

Haolong Ma Andrea Mantler

Haolong Ma Eriko Baxter

Figure 5.4: One close-up image of some sample thick strokes in blue and red, and
some more paintings created by various artists using Stokes Paint.

120

problem, but a computational resource problem. The current maximum resolutions are

dictated by the need for interactive speed. As the speed of computer systems improve

in the future, so too should the maximum feasible resolutions, making Stokes Paint

a more attractive approach as time progresses. In the mean time, one might seek a

method for simulating paint that strikes a balance between the simplicity of dAb and

the heavy physically-based approach of Stokes Paint. Such a paint model is precisely

the subject of the next chapter.

5.7 Summary

In this chapter I have presented the Stokes Paint model. It is the first truly volumetric

3D model for viscous paint to be demonstrated in an interactive painting system. It

combines a 3D Eulerian solver for the viscous Stokes equations with surface filtering

techniques in order to give the painter a physically-based approximation of the behavior

of real non-Newtonian paint. Though Stokes Paint is significantly more computationally

intensive than dAb, with windowing it is able to operate at acceptable speeds on current

systems, and more importantly, it is able to offer the artist a virtual digital medium

that can be pushed and spread and otherwise manipulated much more like real paint

than is possible with dAb or other existing painting systems. Though the prototype

system is still just a proof-of-concept, the gallery of sample paintings already created by

users, and the reactions of those users themselves, clearly attest to the artistic potential

for such fluid-based painting systems.

Chapter 6

IMPaSTo: A Realistic, Efficient
Paint Model

IMPaSTo is an interactive model for viscous paint media based on simplified physics,

tailored for use in real-time painting systems. The three-dimensional paint surface is

represented in “2.5D” using multiple height fields, with pigment concentrations and a

volume (or height) stored at every pixel. The simulation uses a conservative advection

algorithm that preserves both overall paint volume and pigment mass even when the

paint is spread thinly. The surface painted upon is also represented with a height field,

which the paint algorithm incorporates into its calculations to achieve realistic stroke

texture over rough canvas or paper (see Figure 6.1). IMPaSTo allows for one wet layer

of paint at a time and an unlimited number of dry layers, which can be accumulated

to create optical layering effects.

The IMPaSTo paint model in many ways represents a combination of the best

features of both dAb and Stokes Paint. Like dAb, IMPaSTo uses an efficient, layered

2D representation of the paint, and like Stokes Paint, the paint motion is based directly

on physical principles. Compared with Stokes Paint, IMPaSTo offers significantly better

resolution on current hardware both in X and Y, as well as in paint thickness. When

compared with dAb, it offers significantly more realistic viscous paint behavior (see

Figure 6.6). IMPaSTo also uses the Kubelka-Munk rendering technique that will be

122

Figure 6.1: Marks demonstrating the 3D canvas texture. The canvas surface is
represented as a height field, and the IMPaSTo paint deposition algorithm takes this
height into account.

described in the next chapter, to achieve realistic mixing and compositing of paint

colors.

The artists who have tried IMPaSTo have been enthusiastic about it. John Holloway,

a painter by training, has written down his impressions after working with IMPaSTo

over the span of a year. His comments are included in full as Appendix B.

6.1 IMPaSTo Overview

The list of painting features supported by IMPaSTo is similar to that of dAb. All of

these effects are demonstrated in Figure 6.2.

One significant difference between IMPaSTo and its predecessors (both dAb and

Stokes Paint, as well as other previous painting systems) is that IMPaSTo uses the

graphics processor (GPU) to perform all of the paint simulation, as well as the rendering

of the paint, rather than the CPU. By leveraging the parallel nature of the GPU, many

individual brush-canvas transfer and paint rendering calculations can be performed

123

Figure 6.2: Examples of painting features supported by IMPaSTo. From top to bottom, left
to right. Bi-directional transfer: paint on the canvas changes the color of the brush as the
curvy stroke proceeds from top to bottom; Complex brush loading: these strokes were made
by brushes loaded with a mixture of paints; Controlled drying: from top to bottom the stripes
have wetness 32%, 42%, 56%, 75%, and 100%. The thinner curvy strokes were made by
dragging a dry brush through the wider strokes; Blending: Cadmium yellow and cobalt blue
are blended to create green; Glazing: The painted flower on the left was dried and then thin
glazing layers applied to change the shading; Impasto: Paint strokes are laid down thickly on
the canvas; and Scumbling: The paint applied on the left was dried and then white paint was
brushed lightly over the surface to catch just the peaks of the previous layer.

124

simultaneously, leading to responsive, interactive performance on current systems, and

also freeing the CPU for use in brush simulation and haptic feedback calculations.

The IMPaSTo interface gives the user many of the digital advantages one would

expect, such as the ability to undo and redo changes at the touch of a button, and to

save and manage multiple revisions. In addition, the user can instantly dry paint, or

keep paint wet as long as desired, and can change the paint opacity at any time even

after finishing the painting.

6.2 Paint Dynamics Principles

With the IMPaSTo dynamics algorithm, my goal was to develop the model from the

start with specific paint behaviors in mind, and then to design an efficient algorithm

around those principles. The general physical properties of paint interacting with a

brush that I identified as critical to painting are listed in Table 6.1. While I did not

conduct a formal, broad survey of painters in order to arrive at this short list, it is the

result of several years of collaborations with painters and a distillation from several

years of my own experience working with dAb and Stokes Paint. It should not be

considered to be an exhaustive list of the properties desired of paint, but rather a

proposed list of minimal requirements necessary for a paint model to have a substantial

physical feel.

Figure 6.3 is a diagram of the steps in the algorithm I have developed to achieve the

paint behaviors in Table 6.1. The core components of the algorithm are a conservative

advection stage and carefully designed paint transfer rules. I describe each stage in

detail below. The IMPaSTo paint model also allows for an unlimited number of layers

of dry paint to be accumulated. I will describe the algorithm for the drying process

later in the chapter.

125

1. Paint moves in the direction pushed

2. Paint is conserved (neither created nor destroyed)

3. Brush-canvas paint transfer requires physical contact
and is greater when the brush is moving.

4. The more paint is loaded on a brush, the more will be
deposited on the canvas

5. The more paint is on the canvas the more will be picked
up by the brush.

Table 6.1: The five general physical principles that govern the IMPaSTo physical paint
model.

Compute
Cell Brush
Velocity

Advect
Volume and

Pigment

Deposit
Volume and

Pigment

Pick up
Volume and

Pigment

Compute
Penetration

Mask

Brush Mesh
and

Motion

If early exit (Occlusion query)

Stage 1 Stage 2 Stage 3 Stage 4 Stage 5

Figure 6.3: Steps in 3D paint simulation. Each of the above boxes is implemented
using one or two fragment programs on the GPU. After computing the penetrations I
use the occlusion query to determine if any canvas fragments were in contact with the
brush, and exit early if not.

126

6.3 Paint Representation

IMPaSTo was designed around a 2.5D representation. Part of the motivation for

returning to a layered representation, like that of dAb, was lessons learned from Stokes

Paint, in which the cost of supporting a 3D grid proved to be a limiting factor on

the canvas resolution with current hardware. Though a 2.5D representation cannot

support true arbitrary 3D features such as bubbles or fold-overs, it can offer a reasonable

approximation. Figure 6.4 shows a cross section of an actual, physical painting done in

the impasto style by one of the masters of the technique, Claude Monet. Though there

are some small features that do not pass the single-valued function test, from this it can

be seen that a stack of height fields can still provide quite a reasonable approximation.

There are several inherent advantages to a layered representation, as well. In a 3D

grid, as was used in Stokes Paint, the minimum thickness of a layer is fixed. However,

the light energy transmitted through a pigmented or dyed medium tends to have an

exponential relationship with thickness. The well known fog equation is an example of

this type of exponential relationship. As will be seen in the next chapter, the Kubelka-

Munk equations also contain terms that are exponentially related to thickness. For that

reason, it would be ideal if the thickness representation were logarithmic, so that equal

steps in thickness would correspond roughly to equal changes in color transmission.

By using a floating point representation of thickness, IMPaSTo approaches this ideal,

since floating point numbers are, in fact, a logarithmically spaced encoding of the real

numbers.

As for storage of the paint, all of the relevant data to represent paint—including

thickness, pigment concentrations, etc.—is stored in 2D textures. Table 6.2 lists all

of the textures used, with the exception of a few temporaries for holding intermediate

results. In the implementation of IMPaSTo, one canvas or brush cell is represented by a

127

Texture Use Channels Dim

base canvas reflectance R 8 canvas
painting reflectance (temporary) R 8 tile
painting RGB composite R 3 (4) canvas
painting pigment concentrations I R 8 canvas
painting thickness/paint volume (base/dry/wet) I R 3 (4) canvas
brush penetration on canvas (base/dry/wet) I 3 (4) footprint
brush velocity (x,y,z) I 3 (4) footprint
brush pigment concentrations I R 8 brush
brush RGB composite R 3 (4) brush
brush paint volume I R 1 brush
paint undo buffer I 4 *

Table 6.2: Textures used in the GPU implementation. ’I’ indicates use in paint
interaction and dynamics (this chapter); ’R’ indicates the texture is used in rendering
(Chapter 7). The “Channels“ column gives the number of channels used by IMPaSTo
for each texture. If more than that number are allocated due to hardware restrictions,
the actual number allocated is shown in parenthesis. The “Dim” column indicates the
dimensions of the texture, whether it is canvas-sized or brush-sized, etc. The size of
the undo buffer is not given, since it can be as large as desired—the size determines the
number of actions that can be undone.

single texel of a texture. I have used half-precision floating point for all of the textures,

except some of the small intermediate textures required in the rendering computations.

6.4 Paint Motion

In this section I present IMPaSTo’s approximation of the physics of paint motion. Paint

motion is driven and dominated by boundary conditions. On the one side is the paint’s

boundary with the moving brush, and on the other, the boundary with the stationary

canvas. I simplify the actual physics of the situation by taking these boundary velocities

to be the dominant terms, and deriving paint velocity in a straightforward manner from

them. IMPaSTo concentrates its numerical efforts on accurately moving, or advecting,

paint according to the determined velocity field. The conservative advection scheme in

IMPaSTo addresses one of the limitations of Stokes Paint that was noted in the previous

128

Figure 6.4: A microscopic cross-section taken from Monet’s Water Lilies. Note
the clearly stratified structure of layers. IMPaSTo represents this type of struc-
ture using a “2.5D” stack of height fields. (©2004 The Museum of Modern Art,
http://www.moma.org)

chapter. First I will detail the advection scheme and then describe how I compute the

velocity field.

6.4.1 Advection

The first two of the desired paint features listed in Table 6.1 are handled by our

conservative advection algorithm, which is Stage 3 in the overall paint pipeline (Fig-

ure 6.3). Much research exists on conservative numerical solutions to hyperbolic partial

differential equations. The standard text on the topic is (LeVeque, 1992). I present a

basic variation of one such method here for solving the advection PDE.

The advection problem is as follows. One is given a scalar quantity q, such as the

concentration of a pigment, and one wishes to determine how that quantity evolves over

time under a specified velocity field v. Mathematically, the problem can be expressed

as finding the solution to the partial differential equation:

∂q

∂t
= −(v · ∇)q. (6.1)

129

In one dimension the problem reduces to just

∂q

∂t
= −v

∂q

∂x
, (6.2)

and if v is constant, the solution is just q(x, t) = q(x− vt, 0), i.e. the initial quantities

at time 0 are just translated by vt. Upon extension into higher dimensions, the solution

is not so simple, even for time-invariant velocity fields, and so numerical methods are

required.

In a conservative numerical scheme for a hyperbolic conservation law, one constructs

a flux function F that represents how much of the conserved quantity leaves and enters

each cell of the computational grid. By ensuring the flux lost by one cell is always

gained by another, one can guarantee the method will be conservative. A numerical

solution to the 1D advection problem can be written in terms of flux as

qn+1
i = qn

i +
∆t

∆x
(F (qn

i−1/2)− F (qn
i+1/2)) (6.3)

The q values are stored at cell centers (denoted as i), and are interpreted as cell average

values. The total amount of q in the cell initially is thus qi∆x in 1D or qi,j∆x∆y in 2D.

The fluxes are computed at cell edges (denoted as i±1/2) and represent the amount

of material crossing that cell boundary, with positive fluxes denoting flow in the +x

direction.

I diverge from the typical staggered grid formulation above and instead use a cell-

centered, or collocated, grid, where both velocity and advected quantities are defined

at the center of each cell. The numerical scheme I use is then as follows, explained first

in 1D for simplicity (see Figure 6.5). Given a discrete velocity field vi defined at cell

centers, translate each column of q by vi∆t. The total amount in cell i initially is qi∆x,

and an amount qi|vi∆t| leaves the cell under the velocity field, leaving qi(∆x− |vi∆t|)

130

behind. Note that in order for cell i to not lose more flux than it originally possessed,

one must have ∆x−|vi|∆t > 0. This imposes a limit on the maximum velocity possible,

namely |vi| < ∆x/∆t, commonly known as the CFL condition. Cell i may also gain

flux from its neighbors. The amount gained from cell i − 1 is either 0, if vi−1 < 0, or

qi−1vi−1∆t otherwise. A similar expression exists for flux gained from cell i + 1.

Figure 6.5: Conservative advection flux computation in 1D. Cell i + 1 gains a flux of
qi|vi|∆t from cell i, and cell i loses the same.

The same basic scheme can be carried out in higher dimensions. For instance, in

2D, given a cell-centered velocity vi,j = (u, v) one can treat the column of q as moving

by u∆t in the x direction and v∆t in the y direction and determine flux donated to

other cells just as was demonstrated above in the 1D case.

As mentioned, IMPaSTo represents paint as a stack of height fields. I use a 2D ad-

vection scheme, and handle the third dimension by treating the volume of paint in each

cell as another scalar to be advected along with pigment concentrations. That is, the

height field is advected according to the fluid velocity just like pigment concentrations.

I have found one modification to the above algorithm to be useful. With the

algorithm just as described above, it is quite possible to completely advect paint off of

a particular canvas cell. This gives the canvas the appearance of being heavily sized1.

1Size is an animal based glue used to seal the surface of a canvas.

131

To model a canvas surface with more adhesion and absorption, I simply do not allow

the advection step to remove all the paint in a cell. The computed flux quantity is

clamped to leave at least a parameter-defined minimum quantity behind. Using this

parameter, the artist can control the amount of “virtual size” to apply to the canvas

(though in the underlying simulation it is more a matter of adding anti-size).

6.4.2 Computing Velocity

The preceding description of our advection calculation was predicated on the a priori

knowledge of a velocity field to use. In real painting this velocity field comes from

several sources. As mentioned, the main sources are the friction and constraint forces

imposed by the brush on the one side of a layer of paint, and by the stationary canvas

on the other. Any viscid fluid will have zero slip (tangential) velocity at the interface

between the fluid and a solid boundary. So during a paint stroke, within the thin layer

of paint trapped underneath the brush, the paint in contact with the brush has the

brush’s velocity, while paint in contact with the canvas has the canvas’s velocity. Since

paint is a continuum, all possible velocities between zero and the brush speed must

exist within the layer of paint. Thus as a first approximation, a reasonable 2D velocity

to assign the paint is 1/2 of the of the brush’s tangential velocity relative to the canvas

surface. This kinematic brush velocity, vb, is the first component of the total velocity

used. This velocity only applies to cells in the canvas surface that are in contact with

the brush as determined in Stage 1 of the computation pipeline (Figure 6.3).

But paint is not just two-dimensional, and although painting a stroke is primarily a

motion in the 2D canvas plane, the out-of-plane motion and vertical force of the brush

are also important. Paint is an incompressible fluid and it is affected by internal pressure

forces. For instance, when a force is applied downward from above, the pressure field

that develops internal to the paint induces a flow in the direction of the negative pressure

132

gradient. In other words, it causes the paint to flow outward in any unconstrained

direction. To model this “squishing” behavior I use a simple heuristic. First, for every

cell in the 2D paint grid where the brush penetrates the heightfield surface, I compute

the amount of penetration, p (done in the first stage, Figure 6.3). Next I compute the

2D gradient of the penetration amount, ∇p, and define a heuristic “pressure”-driven

velocity to be a constant times that value, vp = −c∇p. This pressure driven velocity, vp

is then simply added onto to the brush velocity vb to get the total velocity at each cell

of brush-canvas contact. Note that this can be seen as an approximation of the pressure

term on the right hand side of the full Navier-Stokes equations for fluid motion:

∂v

∂t
= −(v · ∇)v + ν∇2v −∇p + F, ∇ · v = 0 (6.4)

where I substitute amount of penetration for the amount of internal pressure, assuming

the two to be roughly proportional.

When laying down a stroke, IMPaSTo moves the brush along the stroke path no

more than one cell width at a time to ensure that vb does not violate the CFL condition.

Also, after adding in vp, the final x and y velocity components are clamped to be within

[-1,1], to prevent unusually large values of vp from causing a violation of the CFL.

6.5 Paint Transfer

The paint transfer algorithm is responsible for determining how much paint moves from

the brush to the canvas and vice versa. Each of the remaining desiderata in Table 6.1

is handled via the transfer algorithm (Figure 6.3, Stages 4 and 5).

The first assumption I make is that at any given cell where brush-canvas contact

is occurring, the transfer flow is uni-directional. That is to say, if paint is being

deposited onto the canvas at a particular cell, it cannot also be loading into the brush

133

simultaneously. Note that since this is a per-cell determination, it is still possible that at

any given instant some parts of the brush are loading paint, while others are depositing

paint. The direction of the flow is determined by whether there is more paint on the

canvas, ac, or more paint on the brush, ab. Rather than the full amount of paint in the

canvas cell, I define ac to be the full volume times the fraction by which the brush is

determined to be penetrating the paint surface in Stage 1 (Figure 6.3). In this way, one

can still deposit paint on the surface of a thickly covered canvas by brushing lightly.

Algorithm 3 gives the full calculation used. First, no paint is transferred if the

brush is not in contact. Then, the direction of flow is determined by whether ab or

ac is greater, and the base amount of flow is computed as a fraction of either ac or ab

depending upon the direction. The base transfer amount is then modified in several

important ways. The transfer is gently cut off to zero when ac is nearly equal to ab to

prevent developing unstable oscillations of the paint transfer back and forth. Next I cut

off the transfer amount gradually if the brush velocity is below a threshold, to account

for the need for some sliding friction to “pull” paint out of the brush. Without this, the

brush appears to ooze paint unnaturally. Finally, the transfer amount is clamped to a

maximum value to make the paint transfer more even. The pseudocode of Algorithm 3

shows all of these steps and includes parameter values I have found to work well. To

put the constants in context, the paint thickness for a thin painting is typically around

0.001 units and around 0.1 for a thicker style. Velocity is in terms of cells per timestep,

so 1.0 is the maximum possible velocity component, according to the CFL condition.

When paint is transferred either direction, or is moved by the advection algorithm,

I compute the new pigment concentrations on the affected brush or canvas cells by a

simple volume-weighted average.

134

(xbc, xcb)← ComputeBrushTransferAmount(ac, ab, v)

� let ac be amount of paint penetrated in canvas cell
� let ab be amount of paint on corresponding brush cell
� let v be tangential velocity of brush
� let xbc be the amount transferred from brush to canvas
� let xcb be the amount transferred from canvas to brush
� let XFER FRACTION = 0.1
� let MAX XFER QUANTITY = 0.001
� let EQUAL PAINT CUTOFF = 1/30
paintDiff ← ab − ac

equalPaintCutoff ←
clamp(|paintDiff |/EQUAL PAINT CUTOFF, 0, 1)

velocityCutoff ← smoothstep(0.2, 0.3, ||v||)
xferDir ← sign(paintDiff)
if xferDir > 0

then amt← ab

else amt← ac

end
amt← amt ∗XFER FRACTION

amt← amt ∗ equalPaintCutoff ∗ velocityCutoff
amt← clamp(amt, 0,MAX XFER QUANTITY)
if xferDir > 0

then (xbc, xcb)← (amt, 0)
else (xbc, xcb)← (0, amt)

end

ALGORITHM 3: The paint transfer algorithm

6.6 Paint Drying

The IMPaSTo paint model supports the drying of wet paint in order to allow the user

to build up paintings out of many layers of paint. The process IMPaSTo supports is

similar to that of dAb and Stokes Paint, which is different from the drying of actual

paint. In IMPaSTo wet paint is always completely wet, and dry paint is completely dry.

However, these are the two extremes that are typically desired by the artist. Given a

layer of wet paint IMPaSTo allows fractional drying of that layer as a percentage of the

overall thickness. So if the user elects to dry the paint by 25 percent, IMPaSTo creates

135

a new dry layer out of the bottom quarter of the wet layer, leaving 3/4 of the wet paint

in tact.

While the memory and processing requirements to support an unlimited number of

wet layers of paint would be prohibitive, it is possible to support as many dry layers

as virtual memory will hold, since they are static, and for the purposes of painting a

stroke, can be treated the same as the static base canvas texture. Thus IMPaSTo only

needs to know their combined thickness, which can be computed just once and stored in

a texture. IMPaSTo must also maintain the combined reflectance of all the dry layers

for use by the rendering algorithm, which will be discussed in detail in Chapter 7.

When a new layer is dried, the combined thickness and reflectance information is

just a function of the current composite thickness and reflectance, and the thickness and

pigment concentrations of the new dry layer. The computation involved in updating

the reflectance will be discussed in more detail in the next chapter, and is the same

process that will be shown in Figure 7.8. Note that even though the runtime system

does not need the dry layer’s pigment information once a drying operation is complete

(just its reflectance), IMPaSTo must store the pigment data nonetheless for use when

changing the lighting spectrum.

6.7 The Palette

The IMPaSTo palette is very similar to that of dAb. A special type-code texture

differentiates the various palette regions: normal palette, paint well, and brush cleaner.

Like the other palette implementations, the IMPaSTo palette never runs out of paint.

Currently IMPaSTo conserves the somewhat limited graphics memory by using a palette

with lower resolution than the main canvas. Other than that, and the qualities just

mentioned, the palette acts just like an IMPaSTo canvas. The fragment programs used

136

to implement the palette paint behavior are the exact same programs used by the

canvas, with just a few minor modifications implemented via conditional compilation

preprocessor directives.

6.8 Brush Modes

I have implemented several different brush modes that give the painter a greater range

of stylistic choices when painting. Most of these modes are just simplifications of the

full IMPaSTo paint dynamics pipeline (Figure 6.3). For instance, by disabling writes

to the brush volume texture, it is simple to create a brush that never runs out of paint.

The following is a list of the brush modes implemented in IMPaSTo and a short

description of how each affects the brush transfer and interaction with the paint:

� Normal: The standard, full painting pipeline as shown in Figure 6.3.

� No push: The advection stage is disabled, so that paint can be transfered to the

canvas or picked up by the brush, but the brush cannot push the paint.

� Sponge: Update to the brush volume texture is disabled. This causes the brush

to act similar to a high capacity sponge in that, when it is full, it can deposit

paint indefinitely, but when it is empty, it can absorb paint indefinitely.

� Sponge, no push: A combination of the “no push” and “sponge” modes.

� Paint Marker: In this mode, the amount of paint transferred from the brush

to the canvas is determined by a simple “marker flow” parameter that is under

artist control.

� Paint Sampler: This mode emulates the “eye dropper” tool common to many

painting programs. In paint sampler mode, the canvas is not modified at all, but

137

the brush color is changed to whatever canvas color it comes in contact with.

Each texel of the brush performs the color sampling, so the sampler mode can be

used to load a complex blend of paint onto the brush.

� Fill: This coats the entire canvas with a thin layer of paint using the average

color currently loaded on the brush.

� Eraser: In fact there is no eraser mode, but there is a single key that clears the

brush of all paint. If this key is held down as the brush is moved over the canvas,

the effect is that paint is “sucked into” the brush, much like a paint vacuum

cleaner.

Though none of these supplementary modes is really necessary to create paintings,

they can make achieving certain effects simpler, if the artist is interested in taking the

time to learn them.

6.9 GPU Implementation

I have implemented the IMPaSTo algorithm using NVIDIA GPUs and the Cg language

for vertex and fragment programming. All of the relevant data is stored in textures

as described in Section 6.3, and these textures are operated on by fragment programs.

In my implementation, one canvas or brush cell is represented by a single texel of a

texture. In the GPU implementation, each of the stages in Fig 6.3 is performed by one

or two fragment programs.

The same issues with generating footprints and attribute mappings, as discussed in

Chapter 4, are relevant to IMPaSTo as well. IMPaSTo generates the mappings in the

same way as dAb; however, the operations are all implemented in fragment programs,

so that no readback from graphics memory to system memory is ever necessary.

138

Computing the brush to canvas mapping really is a rasterization problem, making

this part of the problem an ideal fit for the GPU. To implement this on the CPU

one would essentially have to write a software rasterizer. The rest of the algorithm

also maps well to the GPU since all of the operations (e.g. penetration gradient and

advected flux) can be formulated locally so that they depend at most on their immediate

neighbor fragments.

Another detail worth mentioning is the tiling implementation. Most image manip-

ulation programs use some form of tiling to speed up operations. For undo as well as

for rendering computations, I break the painting up into tiles of size 64×64. When a

brush stroke is about to modify the data in a tile, the original data must be backed up

somewhere to provide the ability to undo the action. In dAb and Stokes Paint, which

ran mostly on the CPU, this undo information was stored in system memory, but for

a GPU-based implementation, copying to system memory introduces an unacceptable

penalty due to the slow read-back from the GPU memory. Instead I allocate one

additional “undo texture” in the graphics card memory and dynamically allocate undo

tiles out of it. I am thereby able to use fast texture-to-texture copies on the GPU

to save the necessary undo data for each tile. The use of tiling also speeds up the

rendering computation tremendously, because only dirty (that is, modified) tiles need

to be updated.

One other important reason to use tiling is for cache coherence. If the entire

image buffer is laid out linearly in row-major order, then the memory access pattern in

updating a brush footprint on the canvas will have poor cache coherence. The brush

may only touch 30×30 pixels, which could fit in the cache fine, except each of the

30 rows in the footprint are spread widely in memory, and the cache will likely pull

in much unrelated data from the same rows in trying to access the entire footprint.

The problem just gets worse the wider the canvas. If instead the canvas is stored as

139

tiles, then only the tiles through which the brush passes need to be in the cache, and

normal locality-of-reference schemes for caching data will perform well. Fortunately,

most GPUs automatically store textures in a tiled manner for efficient localized access,

so the author of a GPU painting program need not worry. This is one aspect of coding

a painting system that is actually simplified by using the GPU.

6.10 Results

I have tested the IMPaSTo viscous paint model implementation on a 2.5GHz Pentium

IV machine with an NVIDIA GeForceFX 5900 Ultra graphics card. Note that the

CPU speed is not critical for interactive response, and IMPaSTo has also been used

successfully on CPUs of less than 1GHz. The time required to draw a stroke is almost

completely dominated by the physical paint model, since the cost of the optical model is

greatly reduced by the tiling and lazy evaluation. For a brush footprint of approximately

26×26, the paint simulation pipeline shown in Fig. 6.3 is able to run about 116 times

per second, processing an average of 77,000 canvas cells per second (i.e. texels/sec).

For a larger brush footprint of about 88×88, the IMPaSTo pipeline can only run 68

times per second, but texel throughput increases to 519,810 canvas cells per second. At

these speeds, IMPaSTo is able to keep up with the user for strokes of moderate speed.

For faster strokes the input data is buffered and the stroke lags slightly behind the user.

The improved texel throughput for bigger brushes is a strong indication that much of

the time is spent in per-pass setup overhead and GPU context switches.

I have integrated the IMPaSTo model with the painting system framework created

initially for dAb. It provides the user with a large canvas, and, similar to Stokes Paint,

runs the fragment programs only in the bounding rectangle of the region of brush

contact. As in dAb and Stokes Paint, tiling is used to speed up rendering. I mark

140

Figure 6.6: An example of the paint motion generated by the IMPaSTo model when
the brush interacts with the paint on the canvas.

the canvas tiles through which a stroke passes as dirty and recompute reflectances and

relight the canvas on a tile-by-tile basis as needed when time permits.

The many figures in this chapter show examples of various styles, effects and

paint textures that the IMPaSTo paint model is capable of creating. These paintings

demonstrate the range of paint-like effects the model is capable of achieving. Most of

these paintings were created by amateur artists within a couple of hours, without much

training or elaborate instruction.

A simple example of the type of paint motion achieved by the IMPaSTo paint model

is shown in Figure 6.6.

6.11 Limitations

There are currently several limitations to the paint simulation approach presented in

this chapter. First, the maximum resolution IMPaSTo is able to achieve on current

hardware without sacrificing interactive performance, though improved compared with

Stokes Paint, is still limited due to computational costs. However, I believe that many

speed-ups to the GPU implementation are still possible at many levels, and at the same

time GPU performance continues to increase as well. Beyond the computational cost;

141

Andrea Mantler William Baxter Heather Wendt

John Holloway John Holloway John Holloway

Eriko Baxter Eriko Baxter Eriko Baxter

William Baxter John Holloway John Holloway

Figure 6.7: Paintings created by various artists using IMPaSTo.

142

however, there is the issue of GPU memory capacity and support for large textures.

The maximum GPU memory currently available is 256MB, which amounts to just 64

channels of 32-bit floating point data at a resolution of 1024x1024. The maximum

texture size supported by current GPU drivers is 4096×4096, which could have only

4 32-bit channels. The current set of textures used by IMPaSTo requires 20 channels

of data for the canvas (though 16-bit precision does suffice for most of that). It can

be seen then that memory size restrictions are a consideration. In order to have a

larger canvas, some sort of paging scheme would be required, which is not currently

implemented.

One example a possible speed-up is the use of multiple render targets (MRT) on

more recent GPUs. These GPUs allow more than one texture to be updated in a

single pass. I could reduce the number of redundant computations in the current

implementation by using this feature. The advection step in particular could benefit,

as it currently recomputes sampling weights from scratch for each texture that must

be advected. Instead, with MRT only a single advection pass would be necessary. I

also have yet to put any significant effort into aggressively limiting the precision of

calculations wherever possible. Most values are using 16-bit floats currently, but some

could function with just 8-bits of fixed precision. Such reductions in data size can offer

benefits both in terms of reduced computation as well as reduced bandwidth usage.

The main limitation of the dynamics model itself is that it does not incorporate

any notion of gravity. This means that it is possible for paint to pile up in physically

impossible ways, such as a thin vertical column of fluid. In real paint this behavior

would certainly exceed the yield limit of the paint, causing it to flow. One way to

capture this effect would be to include a diffusion model, as was used by (Cockshott

et al., 1992), to cause paint to flow from cell to cell when a height gradient threshold

143

is exceeded between those cells. In fact most of Cockshott’s autonomous dripping and

diffusing model could be incorporated into IMPaSTo if desired.

Another limitation of the dynamics is that the simple local pressure approximation

cannot guarantee that the fluid will flow in the proper direction. For instance, given

a brush shape with a concavity, the pressure approximation will cause fluid to move

to the center of the concavity where it will just accumulate. This is due to the fact

that the pressure approximation I propose uses no global information. With a full

Poisson solver for pressure, information can propagate globally rather than just to the

neighboring cell. However, a Poisson-solver is a fairly expensive operation, and the

approximation in IMPaSTo is fast, and works quite well for convex brushes.

6.12 Summary

In this chapter, I presented IMPaSTo, the third in a series of interactive paint models

for the oil- or acrylic-like paints used most commonly in fine art painting.

I have presented

� Five principles of paint motion that represent a set of necessary conditions for

any physical paint model.

� A physically inspired dynamics approximation for paint that follows the five

principles.

� A paint dynamics model featuring a conservative, paint-volume preserving advec-

tion scheme, and realistic brush-canvas paint transfer rules.

� A GPU implementation of the dynamics model, which allows IMPaSTo to run at

excellent speeds on recent graphics cards.

144

Finally, I have graphically demonstrated the wide range of effects of which the

model is capable, both through specific images of particular effects as well as through

the gallery of paintings created by artists with the IMPaSTo system. Through these

demonstrations, I have shown that this paint model is truly capable of serving as a

realistic interactive digital impasto medium for painting.

Chapter 7

Paint Rendering

I have tried to express the terrible passions of humanity by
means of red and green.
— Vincent van Gogh, on his painting The Night Café

The previous chapters have described three approaches to modeling the motion

of paint. Chapter 4 also presented a simple additive linear color model for mixing

and layering paint. In this chapter, I will describe techniques to achieve much more

realistic rendering of paint in real-time. The techniques are based on the Kubelka-Munk

pigment mixing and layer compositing equations (Kubelka & Munk, 1931; Kubelka,

1948; Kubelka, 1954). For accurate color manipulation, I propose to sample reflectances

using eight color components, rather than the standard three samples of real-time

graphics, and to compute RGB colors from those samples using Gaussian quadrature.

Additionally, I describe methods for measuring real paint samples with a spectro-

radiometer and obtaining Kubelka-Munk parameters from those measurements via

quadratic optimization.

A rendering method for paint should be able to compute RGB colors for display

based on several factors: the color and intensity of light sources, the canvas reflectance

and texture, the pigments in the painting, their concentrations, and the geometry of

each layer of paint. In general, since light is a function of wavelength, a complete

146

and accurate description of the color must not ignore this fact. My rendering method

encompasses all of these factors.

The paint rendering method I present in this chapter has the following features:

� Accurate rendering of pigmented mixtures based on the Kubelka-Munk diffuse

reflectance equations(Kubelka & Munk, 1931; Kubelka, 1948; Duncan, 1940).

� Accurate rendering of translucent glazes of paint based on Kubelka’s layer com-

positing equation (Kubelka, 1954).

� Paint coefficients measured from real-world oil paints.

� Novel eight-channel custom color space based on Gaussian quadrature.

� Full-spectrum lighting allowing a painting to be re-lit by any full-spectrum illu-

minant.

� Real-time realization using programmable fragment shaders on graphics hard-

ware.

Together these features combine to deliver a more realistic interactive paint rendering

system than has ever been presented previously.

The next few sections give an overview of paint, color science and other relevant

previous work. Then I describe my rendering technique in detail and finally demonstrate

some results achieved by my paint rendering techniques.

7.1 Paint Composition and Optical Properties

Paint is made by mixing finely ground colored pigments with a translucent vehicle.

Linseed oil is the vehicle typically used in oil paints, while in acrylics it is a polymer

emulsion. Both are nearly neutral in terms of coloration. The pigment particles are

147

suspended in the medium and are the factor primarily responsible for a paint’s color.

Pigments are generally either inorganic compounds, such as the titanium oxide used

in titanium white, or organic compounds, such as anthraquinonoid, which is used in

alizarin crimson.

The sizes of pigment particles typically used in paints range from 0.1–50µm (100–

50,000nm)(Callet, 1996). The size of the particles makes a significant difference in the

optical properties of the paint as a whole, as does the ratio of the index of refraction

of the particles to the index of the medium. With large particles, light reflects and

refracts much as with any macroscopic surface. As the particle size goes below about

10 times the wavelength of the incident light (4000–7000nm), however, scattering effects

begin to become significant. Many mathematically sophisticated theories of scattering

exist, such as Mie theory, which can predict how the distribution of scattered light

changes both due to particle size and the relative indexes of refraction. High scattering

is desirable especially in white paints, because more scattering means increased opacity,

or hiding power, so that fewer coats are necessary to cover the surface. According to

Judd and Wyszecki, the optimal particle size for scattering is about 160–280nm, about

0.4 times the wavelength of visible light (Judd & Wyszecki, 1963, p.381).

7.2 Overview of Color

This section gives a brief introduction to color science and colorimetry. More extensive

treatments can be found in texts such as (Evans, 1948; Wright, 1958; Judd & Wyszecki,

1963; Wyszecki & Stile, 1982; Hall, 1989). Kenneth Fishkin’s dissertation also presents

a good overview of color science topics important to computer graphics researchers

(Fishkin, 1983).

Visible light is electromagnetic radiation with a wavelength in the range of about

148

400nm to 700nm. All color we see is the result of this radiation stimulating the special

color receptor cells in our retinas, called cones. Humans have only three distinct types

of cone, called S, M, and L, which, roughly speaking, are good at sensing blue, green,

and red light, respectively. In actuality, there is a large amount of overlap in the spectral

sensitivities of the three types of cones as can be seen in Figure 7.1.

Given a light stimulus, the overall degree of excitation of cones in the eye is

essentially given by the integral of the light at all wavelengths across the spectrum,

weighted by the sensitivity functions:

∫ ∞

0

P (λ)S(λ)dλ, (7.1)

∫ ∞

0

P (λ)M(λ)dλ, (7.2)

∫ ∞

0

P (λ)L(λ)dλ, (7.3)

where P is the spectral power distribution of the stimulus, and S, M and L are the

sensitivity functions for the three types of cone. The color perceived depends on the

relative excitation of each type of cone. Color vision is a very complex phenomenon,

and many psychophysical factors can influence the perception of color. These factors

are beyond the scope of this dissertation, so from this point on it will be assumed that

the perception of color can be completely described by Equations 7.1–7.3.

A result of the trichromatic nature of our vision is that the entire range of perceiv-

able colors can be compactly described using just three numbers rather than infinite-

dimensional spectral distributions (Judd & Wyszecki, 1963). A tristimulus color space

can be defined, for instance, by a triplet of numbers that represent the intensities of

three colored lights. Let r̂, ĝ, and b̂, be the spectral energy curves associated with the

three lights. The lights can be of any colors, so long as they all appear to be different

colors to an observer. Each light individually excites the S, M, and L cones to differing

149

350 400 450 500 550 600 650 700 750
0

0.2

0.4

0.6

0.8

1

Normalized Spectral Sensitivities

S
e

n
s
it
iv

it
y
 (

%
)

Wavelength (nm)

Figure 7.1: The relative spectral sensitivities of the cones in a typical human
retina. From left to right, the S, M, and L cone sensitivities. (Data courtesy:

http://cvrl.ioo.ucl.ac.uk/database/data/cones/linss2 10e 1.txt)

degrees1. Given these three lights, we can create new spectra by combining them with

different intensities, say R, G, and B, respectively. Lights work additively, so the final

spectrum created will be Rr̂ + Gĝ + Bb̂, and this will be perceived as a new color. By

varying the values of R, G, and B, many different colors can be produced. A natural

question to ask then is, given a particular target color, what values of R, G, and B

are required to generate the same color response in an observer? In general the exact

spectrum of the target cannot be duplicated by changing R, G, and B; however, the

color sensation can be. This is known as the color matching problem. The standard

experimental setup for determining color matching functions is to have subjects control

the intensities of three lights in order to match the color of a sample, and repeat this

many times with many different samples and subjects, then average the results to arrive

at color matching curves for a “standard observer”. Given the color matching curves,

say r̄(λ), ḡ(λ), and b̄(λ), which describe how much of each light is required to match a

1Note, as an aside, that because the sensitivity functions overlap, it is not possible to create a
stimulus that excites only one type of cone. In mathematical terms means that the cone sensitivities
do not form an orthogonal basis for perceived color.

150

particular reference stimulus P (λ), we can compute R,G, and B:

R =

∫ ∞

0

P (λ)r̄(λ)dλ

G =

∫ ∞

0

P (λ)ḡ(λ)dλ

B =

∫ ∞

0

P (λ)b̄(λ)dλ

Unfortunately, when using combinations of visible lights there are always some colors

that cannot be reproduced exactly. To match certain visible colors, negative amounts

of one or more of the lights will be required, regardless of the lights chosen. Since

negative light is not physically possible, these colors cannot be matched with a three-

light setup. This issue of unrealizable colors does not nullify the utility of color spaces

defined by triplets of visible primaries—color television sets and computer monitors are

a prime demonstration of the contrary. However, it does create inconveniences when

performing color calculations.

To eliminate the inconveniences associated with negative values in tristimulus color

spaces, the CIE (Commission Internationale de l’Éclairage) in 1931 defined a set of non-

negative color matching functions, and associated non-negative tristimulus values2. The

matching functions x̄,ȳ,and z̄, are shown in Figure 7.2. Note that all three functions are

non-negative across the spectrum, ensuring that integrals of light intensities weighted

by these functions will always be non-negative as well. The drawback of having a color

system in which all visible colors can be represented with non-negative numbers is that

the three primaries no longer correspond to physical colors. The color coordinates of a

2In 1964, the CIE defined an updated, alternate set of color matching functions using slightly
different assumptions, which is what is shown in Figure 7.2.

151

stimulus P (λ) in this XYZ color space (also known as CIEXYZ) is:

X = k

∫ ∞

0

P (λ)x̄(λ)dλ

Y = k

∫ ∞

0

P (λ)ȳ(λ)dλ

Z = k

∫ ∞

0

P (λ)z̄(λ)dλ. (7.4)

The scale factor k is given by

k =
100

∫ ∞

0
H(λ)ȳ(λ)dλ

,

where H(λ) is the spectrum of the white light illuminating the scene. For reflective

materials with reflectivity R(λ), use P (λ) := H(λ)R(λ). The CIE chose the ȳ color

matching function to be identical to the human luminous efficiency function, which

means that Y encodes the luminance of a color. The scale factor, k, is defined such

that for an ideal diffuse reflector (the brightest and whitest color possible) Y will have

a value of exactly 100. Having the values scaled to lie nominally within the range of

0–100 is mostly a convenience for human users. Many computer programs alternatively

scale XYZ to lie on the range [0,1].

A natural way to discretize Equation 7.4 is to define a discrete sequence of wave-

lengths, λi ≡ λ0 + i∆λ for 0 ≤ i < N − 1. Then use a simple Riemann sum to

approximate the integral:

X = k
N−1
∑

i=0

P (λi)x̄(λi)∆λ

Y = k
N−1
∑

i=0

P (λi)ȳ(λi)∆λ

Z = k

N−1
∑

i=0

P (λi)z̄(λi)∆λ, (7.5)

152

400 450 500 550 600 650 700
0

0.5

1

1.5

2

T
ri

s
ti
m

u
lu

s
 V

a
lu

e
s

Wavelength (nm)

_
x

λ

_
x

λ

_
y

λ

_
z

λ

Figure 7.2: The CIE (1964) 10-degree standard observer color matching
functions used to compute XYZ color coordinates. (Data courtesy:

http://cvrl.ioo.ucl.ac.uk/database/text/cmfs/ciexyz64.htm)

where

k =
100

∑N−1
i=0 H(λi)ȳ(λi)∆λ

.

There are other ways to discretize integrals besides a Riemann sum, such as Simpson’s

rule or Gaussian quadrature. The latter will be mentioned again later in the chapter.

Another important tool for color analysis is the chromaticity diagram. Chromaticity

coordinates give hue and saturation information independent of luminance. The XYZ

chromaticities are given by:

x = X/(X + Y + Z)

y = Y/(X + Y + Z)

z = Z/(X + Y + Z).

As can readily be seen, x + y + z = 1, so there are actually only two independent

values. The chromaticity diagram is generally created by plotting just the first two

coordinates, (x, y). By plotting the chromaticities of spectral delta functions δ(λ0− λ)

for 380nm < λ0 < 700nm, one obtains the horseshoe-shaped spectral locus shown in

153

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

y

x

380

480

492

500

520

540

560

580

600

620
760

Figure 7.3: The CIE (1964) 10-degree standard observer chromaticity diagram. (Data

courtesy: http://cvrl.ioo.ucl.ac.uk/database/text/cmfs/ciexyz64.htm)

Figure 7.3. The spectral locus contains the purest, most saturated colors possible,

while the interior contains less saturated colors. Points exterior to the locus do not

correspond to visible colors.

7.2.1 Metamerism

There are many spectral curves that can result in the same perceived color, as was

mentioned above in the context of color matching with colored lights. The lights may

combine to create a matching color without creating the exact same spectrum as the

target. This phenomenon is known as metamerism. All that is required is that two

spectra have the same integrals with respect to the eye’s sensitivity functions. To

achieve accurate color matching, metamerism must not be ignored. Most of the colors

we see are a result of reflected light. In terms of computing XYZ coordinates, the

stimulus, P (λ) of Equation 7.4 becomes the product R(λ)H(λ), of reflectance R times

154

the light H. It is possible, then, for two materials with reflectances R1(λ) and R2(λ)

to have identical XYZ coordinates under light source HA(λ) but to have different XYZ

coordinates under light source HB(λ). Such metamerism can cause difficulties when one

tries to match a new batch of paint to existing paint for which the formula is unknown.

The match may look perfect in the lights of the paint store, but look quite different

under the incandescent lights at home.

Significantly, there is no way for a 3-component color representation to capture

this effect. (Johnson & Fairchild, 1999) go so far as to argue that for color-sensitive

applications, a full-spectrum color model is necessary. I propose a practical compromise

later in this chapter to balance between the need for full-spectrum data and the need

for efficiency in a real-time rendering system.

7.2.2 Color Space Transformations

Given two tristimulus color spaces defined in terms of color matching functions, there

exists a simple 3×3 transformation matrix that will convert between the two spaces.

For instance, there is a 3×3 matrix that will convert from XYZ coordinates to RGB

coordinates. This is the transformation necessary in order to display XYZ colors on a

monitor. However, the RGB color resulting from the transformation may be invalid. If

the color is not in the gamut of the target color space, one or more of the components

will be negative. Another issue is luminance overflow. The magnitude of the color in

one or more channels may be greater than the maximum reproducible luminance of the

display device.

The problem of displaying such out-of-gamut colors is an important issue for a

realistic painting system, since many commonly used real-world pigments fall outside

the gamut of existing monitors. Therefore, a gamut mapping algorithm is required.

Simple solutions such as clamping color values to [0, 1] generally perform poorly. Such

155

methods can change hues and create noticeable discontinuities in smooth regions of

color. Gamut mapping is an active area of current research in graphics. I revisit this

topic later in the chapter.

7.3 Overview of Color Mixing Models

I have already referred to additive color mixing in the discussion of color matching

above. But there are several different models for how colors mix in the real world.

Not every type of color or colorant in the real world mixes in the simple linear way

lights do. Mixing paints to create new colors is a fundamental operation in painting, so

it is important to have a reasonable mathematical model for mixing. (Fishkin, 1983)

describes four mixing models, additive, averaging, subtractive, and pigmented, which I

summarize here.

7.3.1 Additive Mixing

As already mentioned, colored lights mix additively. Given several lights described by

RGB intensities Ci = (Ri, Gi, Bi), if all lights illuminate the same diffuse white surface,

the resulting color will be:

C =
∑

i

Ci.

The light intensities are simply added together. With additive mixing, red light (1, 0, 0)

mixed with green light (0, 1, 0) results in yellow light (1, 1, 0). When two colors are

mixed additively, the chromaticity of the result always lies on the straight line segment

joining the chromaticities of the two source colors on the chromaticity diagram. When

three colors are involved the result always lies in the triangle defined by the three

source colors, and in general when N colors are combined, the resulting chromaticity

is always a convex combination of the N chromaticities, and thus lies within the N-gon

156

convex hull of the N colors. The chromaticity diagram makes it immediately clear

why mixtures of three visible light sources can never reproduce all visible colors—it

is geometrically impossible for a triangle inscribed within the spectral locus shown in

Figure 7.3 to simultaneously circumscribe it.

7.3.2 Average Mixing

Suppose now that instead of both lights illuminating the same area, the areas illumi-

nated by each light are interleaved such that every point on a surface is only illuminated

by one light or the other. If each light covers exactly half the total area, it is clear that

the intensity (flux per unit area) from each light leaving the surface is only half as great

as it would be otherwise. Assuming that the interleaving of the light areas is at a scale

below the eye’s resolving power, then the apparent color will be the average of the two

light colors. If several lights mix together in this way, each covering a fraction fi of the

surface, then the color will be

C =
∑

i

fiCi

where
∑

i fi = 1. More practically, this is the same type of mixing achieved when

a half-toning printing process is used. It is also the type of mixing used in the dAb

system of Chapter 4, so one could say that the dAb model treats two paints mixed

together as if their relative volumes represent areal coverage.

7.3.3 Subtractive Mixing

In subtractive mixing each colorant removes light of a particular color. Consider the

case of dyes, which are a common example of a subtractive colorant. Each dye has a

transmittivity (or reflectivity) that can be described in terms of three components, Ti =

(Ri, Gi, Bi), with each component value between zero and unity. The light transmitted

157

through (or reflected off) the surface is the product of the light color and Ti. The

combination of several dyes yields a mixture whose transmittivity(reflectivity) is the

product of the constituents3:

T =
∏

i

Ti.

With subtractive mixing, fully saturated cyan (0, 1, 1) mixed with saturated yellow

(1, 1, 0) results in saturated green (0, 1, 0).

In actuality, using just three wavelengths is an approximation to the true physical

behavior. The actual result is given by the product of full-spectrum wavelength-

dependent transmittance(reflectance) functions Ti(λ). In other words:

T (λ) =
∏

i

Ti(λ).

Then the resulting RGB color can be obtained by integrating against the RGB color

matching functions, or XYZ color matching functions followed by an XYZ to RGB

linear transformation. It should be clear mathematically that in general for a light

spectrum H, transmittances T1 and T2, and one of the color matching functions like r̄:

∫ ∞

0

H(λ)T1(λ)T2(λ)r̄(λ)dλ

6=

(∫ ∞

0

H(λ)r̄(λ)dλ

)

·

(∫ ∞

0

T1(λ)r̄(λ)dλ

)

·

(∫ ∞

0

T2(λ)r̄(λ)dλ

)

.

Thus the result of subtractive mixture in terms of RGB components is not the same

as that performed across the full spectrum. Mixtures of subtractive colorants generally

fall on curved segments in the chromaticity diagram.

Dyes, colored filters, photographic emulsions, and other materials that mix subtrac-

3Thus, multiplicative mixing would probably be a more apropos name, but the term subtractive
color has stuck.

158

tively, selectively absorb light but do not cause any significant scattering. The amount

of light absorbed depends on the concentration of the dye, c, the thickness of the layer

of dye, d, and the per-wavelength absorption coefficient of the dye, K(λ). Given these

parameters, the transmittance, T (λ), through a dyed layer of material, like a filter, is

accurately modeled by Beer’s Law over a wide range of parameter values:

T (λ) = e−cK(λ)d,

or, equivalently,

ln(T (λ)) = −cK(λ)d.

For combinations of dyes one uses the product of the transmittance of individual layers:

T (λ) =
∏

i

e−ciKi(λ)di .

So if one is working in terms of logarithms the exponents are simply added together

(or subtracted, since they are negative):

ln(T (λ)) =
∑

i

−ciKi(λ)di,

which is possibly where the term “subtractive” originates (Poynton, 2002).

7.3.4 Pigment Mixing

Finally, some materials such as paints, plastics, and textile colorants contain pigment

particles, which both scatter and absorb light. The difficulty in modeling the interaction

of light with such a material is that light can enter the material and be scattered and

reflected and refracted internally multiple times before ultimately re-emerging or being

absorbed. A few possible light paths are shown in Figure 7.4. There are several

159

. .

..

Figure 7.4: Paint consists of pigment particles suspended in an optically neutral
medium. Light can take many paths on its way through the paint. It can be simply
reflected off the surface according to Fresnel reflectance; it can enter into the medium
and scatter multiple times before exiting; or any time it encounters a pigment particle
it could be absorbed.

approaches to dealing with the complexity induced by this multiple scattering. The

Monte Carlo approach, used frequently in nuclear physics, is to actually trace paths of

many individual photons through the material and develop a probabilistic model of the

distribution of light energy. Another approach is to assume the effect is isotropic and

use diffusion models as in the BSSRDF model (Jensen et al., 2001).

Another approach was presented by the German scientists Paul Kubelka and Franz

Munk in 1931 in the form of a simple set of differential equations to describe the

transport of light in pigmented materials (Kubelka & Munk, 1931). The model is

based on the assumption of a homogeneous layer of medium that is infinite in extent.

By symmetry, then, all lateral flux can be ignored, since it will be exactly balanced

out by an equal and opposite flux. Thus the model examines just the flux balance in

1D, perpendicular to the surface. The model describes the material properties in terms

of just two wavelength-dependent parameters: an absorption constant, K(λ), and a

scattering constant, S(λ). The resulting analytical solutions to Kubelka and Munk’s

differential equation have found wide scientific utility in areas as diverse as the study

of paint, paper, textiles, and skin, as well as in art conservation and planetary science.

160

They have also been used in computer graphics to a limited extent (Haase & Meyer,

1992; Curtis et al., 1997; Rudolf et al., 2003; Baxter et al., 2004b).

Kubelka extended the 1931 work in two subsequent articles. He first presented

simpler hyperbolic solutions to the the differential equation of transport presented in

original article, allowing for simpler computation of the reflectance and transmittance of

semi-opaque layers (Kubelka, 1948). Later he presented a simple method for computing

the reflectance and transmittance of several different layers composited on top of one

another(Kubelka, 1954). I use both of these results in the real time paint-rendering

system presented in this chapter (middle part of Equation 7.6, and Equation 7.11).

Additionally I also make use of the work of (Duncan, 1940; Duncan, 1962) who showed

that the absorption and scattering coefficients for mixtures of paints can be obtained

by the sum of the fractional amounts of absorption and scattering from each pigment

present (right hand side of Equation 7.6). In other words the scattering and absorption

coefficients of a mixture are a convex combination of the scattering and absorption

coefficients of the constituent pigments.

7.4 Previous Work

There is a large body of previous work spread across several areas that is relevant

to this chapter. Researchers have been studying ways to represent, manage, and

reproduce color on the computer for a long time. I have already given an overview

of much of this background material in the previous sections of this chapter. Another

category is painting programs, which have been rendering paint one way or another

since their inception. A third category is previous work related to the the Kubelka-

Munk equations.

Alvy Ray Smith’s original “Paint” program (Smith, 1978) offered perhaps one of

161

the first 2D methods for simulating the look of painting. A paint rendering model that

offers the look of thick, viscous paint with bump-mapping can be found in (Cockshott

et al., 1992). Cockshott’s system performs color mixing in HSV space. Corel Painter

(Painter 8, 2003) is a commercial product that features a variety of digital natural

media. Painter seems to use an additive or averaging color model most of the time,

but it provides a mixing palette that appears to use a subtractive, CMY dye model for

color mixing rather than an additive, RGB color model. This is probably the method

discussed in (Zimmer, 1994). Painter also associates heightfields with the canvas and

renders this as bumpiness. Most painting programs that perform color mixing use an

additive or averaging model.

(Oddy & Willis, 1991) presents a “physically-based” color model that incorporates

a variety of blending modes intended to mimic the behavior of real-world filters and

pigments. The “beta channel” is proposed as a generalization of the alpha channel to

recreate various effects, and three additional channels of color are added to represent

the medium color of a material separate from its pigment color. Though the model

aims to mathematically model the differing optical behaviors of pigments and filters,

it is really more of a mathematical abstraction than an accurate model of the physical

optical behavior of materials.

The Kubelka-Munk equations have been used in a variety of rendering contexts

in computer graphics. (Haase & Meyer, 1992) demonstrated the utility of the K-M

equations for rendering and color mixing in both interactive and offline applications,

including a simple “airbrush” painting tool. (Dorsey & Hanrahan, 1996) used K-M

layer compositing to accurately model the appearance metallic patinas. (Curtis et al.,

1997) used the K-M equations for optically compositing thin glazes of paint in their

watercolor simulation, and (Rudolf et al., 2003) used the same form in their wax crayon

162

simulation. None of these implementations offers the true real-time rendering desired

in an interactive application, however.

Outside of computer graphics, Kubelka-Munk theory has had widespread appli-

cation. Scientists interested in industrial uses of paint have long used the Kubelka-

Munk equations as a tool, see e.g. (Callet, 1996) for a recent example. In the field

of planetology, remote measurements of reflectance properties can tell a scientist a

great deal about the composition of a planet’s surface (Hapke, 1993), and for that

reason the Kubelka-Munk diffuse reflectance model has proven useful to planetologists.

(Johnston-Feller, 2001) describes how K-M theory can be used in art conservation and

the restoration of museum artifacts like paintings. Johnston-Feller describes how K-M

theory can be used as a tool both to non-destructively identify pigments and also to

calculate pigment concentrations for color matching. Recently Poirer presented a model

for the coloration of human skin based on the Kubelka-Munk equations (Poirier, 2004).

General references on reflectance spectroscopy like (Körtum, 1969) and on color science

like (Judd & Wyszecki, 1963) list many more references to applications of K-M theory.

7.4.1 Color Samples for Kubelka Munk

As mentioned, the Kubelka-Munk (K-M) model has been used previously in graphics in

order to render pigmented materials that exhibit subsurface scattering and absorption.

Although both (Curtis et al., 1997) and (Rudolf et al., 2003) use K-M to simulate artistic

media, they both used simpler rendering during user interaction, and then added the

more accurate colors as a post processing step. (Haase & Meyer, 1992) used a custom

four-wavelength representation of the K-M parameters based on Meyer’s previous work

(Meyer, 1988), while the others worked in standard three-wavelength RGB space.

Meyer’s four-wavelength color encoding was developed to be both more accurate

than RGB and still efficient enough for execution on the computers available when it

163

was written (Meyer, 1988). This encoding was based on integrating against the human

visual response functions in ACC color space. He used Gaussian quadrature in order

to find four abscissas wavelengths that when integrated against, would reduce color

error compared to standard RGB models. However, Johnson and Fairchild point out

that under some lighting conditions, any trichromatic color space such ACC will give

incorrect results. They suggest using full-spectral color representations and present a

real-time full-spectral rendering system capable of per-vertex diffuse lighting (Johnson

& Fairchild, 1999).

In order for artistic media to be properly simulated, colors must blend properly.

Furthermore, artists must see the results of their actions continuously in order to react

to the new output and produce painterly works. Also, an artist may desire to preview

how colors will appear under different lighting conditions. In order to satisfy all of these

conditions, I use a novel eight-component color representation that combines Meyer’s

use of Gaussian quadrature, Johnson’s use of full spectral data, and Kubelka-Munk

color mixing.

7.5 Measuring the paints

In order to obtain realistic parameters corresponding to real paint media, I measured

several standard oil paint colors that are common to an artist’s palette. See (Gair,

1997), for example, for a list of standard oil pigments. Samples of each paint were

applied to acetate sheets and flattened with a palette knife to obtain a smooth surface.

Each sample was thick enough to achieve complete hiding (i.e. zero transmittance of

light through the layer). Different mixtures of the paints with each other in measured

ratios were also prepared. The light energy reflected off of the samples was then

measured using Photo Research’s Spectra Scan PR-715, a spectroradiometer. In this

164

manner, 101 reflected energy values in the visible spectrum (380-780nm) with 4nm

spacing were obtained for each sample. The measurement rig was set up as in Figure 7.5,

with the light source at approximately a 60-degree angle from the sample’s normal. The

angle was chosen first to minimize the amount of specular reflection measured, and,

second, because this geometry is significant in that the assumptions of K-M theory are

only exactly satisfied for incident radiance that is either uniform and isotropic or in

parallel rays at a 60 degree angle (Kubelka, 1948). I used a reflectance standard made

of Fluorilon FW in order to measure the output of the light, and a neutral density filter

to attenuate the light reflected by the standard to a level measurable by the PR-715.

The attenuation of light intensity by the neutral density filter was determined by taking

two measurements of a darker paint sample that was in a range to be measured both

with and without the filter. Given the measurements with and without filter, the effect

of the filter could be determined, and was then factored out of the light measurement

to obtain the true light spectrum. Finally the curves giving light energy reflected off

the samples were divided through by the the energy reflected off the diffuse reflectance

standard. The resulting curves represent the reflectances of the paint samples, the

fraction of incoming light per wavelength diffusely reflected.

Figure 7.5: Our setup for measuring paint reflectances. Each paint was placed in
turn at the target location, indicated in red. Several measurements were made per paint
sample and averaged.

165

400 450 500 550 600 650 700 750
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

Pigment Reflectances

Wavelengths (nm)

R
ef

le
ct

an
ce

 (
0
..
1
)

Cobalt Blue

Alizarin Crimson

Yellow Ochre

400 450 500 550 600 650 700 750
0

2

4

6

8

10

12

Kubelka-Munk K Values

Wavelengths (nm)

K
 -

 A
b
so

rp
ti

o
n
 (

N
o
 U

n
it

s)

Cobalt Blue

Alizarin Crimson

Yellow Ochre

400 450 500 550 600 650 700 750
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

Kubelka-Munk S Values

Wavelengths (nm)

S
 -

 S
ca

tt
er

in
g
 (

N
o
 U

n
it

s)

Cobalt Blue

Alizarin Crimson

Yellow Ochre

Figure 7.6: Some results from measuring real oil paints. The left graph shows the
measured reflectances after factoring out the spectrum of the incident light source (dotted
lines), and the computed reflectances after solving for K and S values (solid lines). The
right two graphs show the Kubelka-Munk absorption (K) and scattering (S) coefficients
computed from the measured reflectance data.

7.6 Converting to Kubelka-Munk

Using the reflectance curves computed from the paint measurements, I calculated the

K-M absorption and scattering (K and S) coefficients for each paint sample at each

wavelength. Given mixtures 1 < i < M of the pure pigments 1 < j < N , one can use

the following equation taken from K-M theory (Kubelka & Munk, 1931; Duncan, 1962;

Haase & Meyer, 1992):

(

K

S

)

mix,i

=

∑

j Kjcij
∑

j Sjcij

=
(1−R∞,i)

2

2R∞,i

. (7.6)

This relates the reflectance of mixture i, R∞,i, to the absorption and scattering values

of each constituent pigment, Kj and Sj, and their relative concentrations, cij. Pigments

not involved in a particular mixture are assigned zero concentration. The dependence

on wavelength is assumed in the above equation and those that follow; for brevity the

λ will be omitted.

From Equation 7.6 the next step is to assemble a linear system (for each wavelength)

166

of the form

A

K

S

=

(

C −QRC

)

K

S

= 0 (7.7)

where C = {cij} is an M×N matrix containing the paint concentrations, and QR is

an M×M diagonal matrix, containing the right-hand sides of Equation 7.6 along the

diagonal. The unknowns, K and S, are both N×1 vectors.

In general, for M > 2N , the zero vector is the only solution, since the equations

will have zero nullity (full column rank). Instead, what is desired is a least-squares

solution that minimizes AT A, subject to a constraint that enforces non-triviality of the

solution. This can be enforced using a simple equality constraint on one of the variables,

say Sk = 1 for some k. It is further required that each Kj and Sj be positive. Together

these requirements specify a simple quadratic program (QP) that can be solved using

a standard QP solver. I made M = 71 measurements of different mixtures involving

N = 11 different paints, including the N measurements of the pure pigments alone. I

chose to enforce Sk = 1 for k corresponding to Titanium White. Note that regardless

of how the equations are solved, it is always necessary to choose some value arbitrarily,

since K and S always appear in ratio. Figure 7.6 shows the measured reflectances,

computed K and S values, and reflectance computed from those K and S values for

three of the paint samples, calculated as just described.

7.7 Lights, Sampling and Gaussian Quadrature

Color should be treated as accurately as possible, but it is not feasible to store the full

101-wavelength K and S samples on a per-pixel basis or to compute the K-M model

per-pixel on all of this data in an interactive system. Both the memory required to

store 202 coefficients at every pixel, as well as the computation required to convert

167

these values to RGB would be prohibitive in a real-time system. In fact, the fragment

program would even exceed the allowable instruction length of some GPUs.

Figure 7.7: A comparison of the same painting created in IMPaSTo under two different
light sources. On the left, the painting is illuminated by a 5600K bulb. On the right, it
is illuminated under CIE Fluorescent Illuminant F8. Graphs of the light spectra are in
blue, the 8 sample wavelengths chosen by IMPaSTo in red, and the CIE XYZ integrating
functions are shown in black for reference.

I thus turn to numerical integration for a way to reduce the amount of wave-

length data required in per-pixel calculations. Fortunately, most naturally-occurring

reflectance spectra, including those of common paint pigments, are fairly smooth func-

tions, and are thus well approximated by polynomials of moderate degree. I take

advantage of this by using a Gaussian quadrature numerical integration scheme (War-

nick, 2001) to compute the final conversion of per-wavelength K-M diffuse reflectances

to RGB for display.

My system stores the original 101 K and S samples for all paints, energy spectra

168

for the lights, and base reflectances for the canvas and palette. Upon choosing one

specific light spectrum (e.g., the CIE Standard Illuminant D65), an automated Gaus-

sian quadrature engine finds eight sample wavelengths and weights using a weighting

function based on the XYZ color-matching functions combined with the light’s energy

spectrum. Specifically the XYZ weighting function used is simply the sum of the three

XYZ color-matching curves. This ensures that more importance is given to the regions

of the spectrum that have the most influence on the overall XYZ coordinates. After

the eight sample wavelengths are chosen, each of the complete spectra are reduced to

just these chosen wavelengths (See Fig. 7.7).

Since the weighting function is guaranteed to be nonnegative, Gaussian quadrature

will return sample wavelengths and weights internal to the integrating region. In this

way, wavelengths are chosen that are influential to both the final integration function

(based on the human visual system) and the lighting environment. For instance, if a

bluish light is selected to illuminate the canvas, the system will choose eight wavelengths

that are biased more towards the blue end of the spectrum.

There are several reasons to settle upon eight as the number of sample wavelengths.

The goal is to maximize accuracy while minimizing memory usage and computational

cost. Duncan has conducted studies of the accuracy of the Kubelka-Munk equations

and recommends a minimum of seven samples for reliable color prediction, and ideally

twice as many samples if feasible (Duncan, 1949). His work did not use a quadrature

technique for integration, however, so it is likely that using eight samples with Gaussian

quadrature is already more accurate than eight samples with a more näıve integration

technique. In terms of speed and efficiency, the vector nature of GPU fragment

processors makes for efficient handling of the eight samples. Many GPU operations

can be carried out in parallel on four components at a time, making eight components

only slightly more computationally expensive overall than 5,6,or 7 components. For

169

memory utilization, the eight samples can be stored compactly in either two textures

or in one floating point texture packed as half-precision floating point.

7.8 Rendering Pipeline and GPU Implementation

I use fragment shaders written in NVIDIA’s Cg programming language to calculate the

overall RGB reflectance of the painted canvas, the palette, and the brush bristles. As

was shown in Table 6.2, I use two textures that, with their eight channels, represent

the concentrations of the eight pigments simultaneously allowed at any pixel, and then

another texture as the thickness for the paint on that texel in that layer.

A multi-pass approach allows for several layers of pigment to be stacked on top of

each other. The rendering pipeline closely follows the stages of Figure 7.8. Each stage

is implemented as a separate fragment program. The first three fragment programs

Composite
Reflectance

(Rtot)

Compute
Reflectance &
Transmittance

(R & T)

RGB
Rendering of

Canvas

Pigment
Concentrations

& Volume

Convert
to RGB

Calculate
Pigment Mix

(K/Smix)

If not last layer

R & TK/Smix RtotStage 1 Stage 2 Stage 3 Stage 4

Figure 7.8: Steps in Kubelka-Munk rendering. I begin with per-layer pigment
concentrations and volume (per-pixel thickness). Stage 1 computes the absorption
and scattering coefficients (K/Smix) for a layer of paint using Equation 7.6, then
Stage 2 uses this to compute the reflectance and transmittance of that layer, according
to Equations 7.8–7.10. Stage 3 uses Equation 7.11 to composite the single layer’s
reflectance with the reflectance of all layers beneath it. I repeat Stages 1–3 for each
layer from bottom to top, and finally in Stage 4 I convert the result to RGB according
to the current light spectrum and other lighting parameters.

calculate the final reflectance of any one layer of paint. Stage 1 calculates K/S and S

for the pixel by using Equation 7.6, which maps well to graphics hardware (dot products

and 4 channel adding). Stage 2 calculates the reflectance and transmittance for this

170

one layer using the following (Kubelka, 1948; Curtis et al., 1997):

b =
√

(K/S)(K/S + 2) (7.8)

R =
1

1 + K/S + b coth(bSd)
(7.9)

T = bR csch(bSd). (7.10)

where d represents the thickness of one layer of paint. Stage 3 calculates the reflectance

of this layer composited on top of the previous layers using

Rtot = R +
T 2Rprev

1−RRprev
. (7.11)

These three stages use the eight wavelengths chosen via Gaussian quadrature, and are

iterated over once for each layer of pigment. In my implementation, only the wet paint

is represented as pigments in the runtime data, requiring these multi-pass iterations.

As paint dries, its reflectance is calculated and added into the base canvas. To change

the light spectrum when dry layers are present, I do as many passes as are necessary

in order to “bake” the dry paints into the base canvas’ reflectance, and then need only

perform these calculations once for the wet paints. Stage 4 uses the weights derived via

Gaussian quadrature and the XYZ integrating functions in order to transform these 8

wavelength values first into XYZ space and then via a 3×3 matrix into RGB space for

display.

7.8.1 XYZ to RGB conversion

As mentioned in Section 7.2.2 some XYZ colors can lead to out-of-gamut values when

transformed to RGB space. The two cases to deal with are negative values, which

171

are undisplayable hues (i.e. more saturated than is possible to achieve on the display

device), and luminance overflow, which is the case with colors too luminous to display.

Gamut mapping techniques can be either local or global. Local methods consider the

value of each color to be transformed independently, whereas global methods consider

the actual gamut spanned by all of the colors in an image. I have chosen to use local

methods simply because they are much more computationally efficient.

For negative color components, (Fishkin, 1983) recommends a clamping procedure

in RGB chromaticity space that preserves the hue of the color, but reduces its saturation

to a displayable level. RGB chromaticities are given by:

r = R/(R + G + B)

g = G/(R + G + B)

b = B/(R + G + B),

and just as with XYZ chromaticities, r + g + b = 1. The chromaticity of any neutral

color (any shade of gray) is therefore (1/3, 1/3, 1/3). The basic idea is to clip the line

segment that connects the out-of-gamut chromaticity value, (r, g, b), and white to the

triangular gamut of displayable colors. The pseudocode below is a refined version of

that presented by Fishkin. The key observation is that the most negative component

is the one that determines the factor t by which the segment’s length must be reduced,

and this can be determined simply by looking at the chromaticities’ projection on that

axis alone, which means one short function can handle intersections with any of the

three edges of the chromaticity triangle:

float3 clampRGBChromaticities(float3 RGB)

float minc = min(RGB.r, RGB.g, RGB.b)

if (minc < 0)

float sum = RGB.r + RGB.g + RGB.b

float3 rgb = RGB/sum

172

float t = (1/3)/(1/3 - minc)

float3 white = (1/3,1/3,1/3)

rgb = white + t*(rgb-white)

RGB = rgb * sum

endif

return RGB

This procedure works well, but exhibits some issues common to most local gamut

mapping methods. For one, the onset of clipping is discontinuous, which can be

noticeable if it occurs in the middle of a gentle color gradient. For luminance overflow, I

use simple clipping to the RGB unit cube, though, in practice, overflow is best prevented

by appropriate setting of the light intensity.

Finally, no discussion of color space transformation today would be complete with-

out mention of the International Color Consortium (ICC). The ICC was formed in

1993 by eight industry vendors in order to develop and promote color interchange

standards. An ICC compliant color management system (CMS) uses vendor-provided

ICC color profiles to manage the transformation between various device color spaces

and the intermediate ICC “profile connection space” (PCS). The PCS is just a device-

independent color space based on either CIEXYZ or CIELAB with a CIE D50 white

point. The PCS also specifies the number of bits to be used in encoding colors along

with other implementation details that are not specified by the CIE. The ICC defines

four rendering intents for gamut mapping: relative colorimetric, absolute colorimetric,

perceptual, and saturation. Each preserves different aspects of the source color space

when mapping it to the destination gamut. These are intents, however, not actual

algorithms. The actual implementation depends on the vendor of the CMS, and was

intentionally left open to allow for future algorithms. An ICC profile for an output

device, and for a specific rendering intent, contains essentially a large lookup table,

mapping colors in the PCS to colors in the device space. One such lookup table must

be specified for each rendering intent on each device. More information about the ICC,

173

including technical details of the latest ICC profile specification, ICC.1:2003-09 (version

4.1.0), can be found at http://www.color.org.

It would be desirable to make use of the ICC profiles in the final XYZ to RGB

stage of my paint rendering algorithm. However, this is not as straightforward as it

might seem, since profiles are designed more or less as black boxes that are accessed via

the color management system by requesting transformation of individual colors. Such

a system does not seem well suited for use in real-time rendering with programmable

shaders. It is, however, an interesting area for future work.

7.8.2 Glossy and Specular Reflection

The K-M equations assume no interface between the pigmented material and sur-

rounding environment (typically air), and thus do not model glossy surface reflection,

just diffuse reflection. In a real paint sample, some fraction of the incoming light is

immediately reflected off the surface. This phenomenon is due to the differing indexes of

refraction between the environment and the medium in which pigments are suspended

(e.g. linseed oil). The Fresnel equations give the reflectance ratio, ρ, based on the two

indexes of refraction, n1 and n2, where n2 is the optically denser medium. For light

perpendicular to the interface, the Fresnel equation reduces to:

ρ =

(

n2 − n1

n2 + n1

)2

.

For air (n1 = 1.0003) and linseed oil (n2 = 1.5), ρ is about 4%. Light reflected off

the surface of a dielectric (non-metal) in this way is not influenced by the color of the

material, meaning glossy reflections and specular highlights have color of the light, not

the surface. Since the K-M calculations only give the diffuse reflectance, I complete the

lighting computation with per-pixel dot-product bump-mapping and specular highlights

174

Scanned
Paint

8 Samples
IMPaSTo

3 Samples
RGB w/ K-M

3 Samples
RGB Linear

101 Samples
Riemann Sum

Figure 7.9: The left column shows graded mixtures of Yellow Ochre and Prussian
Blue under a 5600K light. The right four columns show computer simulations of the
mixtures using different numbers of sample wavelengths and differing techniques. As
can be seen, linear RGB blending wrongly predicts brown. Although my implementation
of K-M blending does not match the scanned colors exactly, the important feature to
note is that the result of using my 8-sample Gaussian quadrature is almost identical to
that using 101 samples. Thus, given more accurate reflectance data as initial input, I
should be able to match the real samples very closely.

computed with the Blinn-Phong model. The specular contribution is computed in RGB

space, since in RGB space the specular color is simply the color of the light, which by

definition is white.

7.9 Color Comparison

Figure 7.9 shows the results of the rendering algorithm and comparisons of the blending

results for my method and several alternatives. On the left, the figure shows a scanned

sample of actual paint mixtures. The next column computes the color of mixtures using

175

the Kubelka-Munk equations at 101 wavelengths to obtain the spectral reflectance at

101 wavelength samples. Then reflectance is then converted to XYZ using Equation 7.5,

with H(λi) set to a particular light source spectrum. The third column is obtained in

a similar manner, but using only 8 sample wavelengths, and Gaussian quadrature to

estimate the XYZ integrals. The fourth column uses Kubelka-Munk as previous authors

have done, with just three wavelengths treated directly as the R, G, and B reflectances

for display, bypassing the integration step. Finally the rightmost column just shows

blending performed with linear interpolation of the R, G, and B color components.

Some difference between the scanned paints and the computed colors is to be expected

because the light source used by the flatbed scanner was not the same as that used

in the color calculations. However, note that the 8-wavelength Gaussian quadrature

method I propose achieves nearly the same results as using all 101 wavelength samples,

at greatly reduced runtime computational cost. Also note that the results when using

fewer samples, as previous researchers have, are noticeably different.

7.10 Results

I have coupled this paint rendering model with the paint dynamics models in the

previous two chapters (Stokes Paint and IMPaSTo), and tested the implementation

on a variety of systems, equipped with NVIDIA GeForceFX 5900 Ultra, GeForce 5950,

and GeForce 6800 Ultra graphics cards. The re-rendering of the paint tiles is performed

lazily and only after the brush modifies a given tile. Because of this localization and lazy

updating, rendering has not been a bottleneck thus far, but rather the paint dynamics

simulation.

The paintings in Chapters 5 and 6 were all rendered using the real-time interactive

eight-sample Kubelka-Munk paint appearance model presented in this chapter.

176

7.11 Limitations and Future Work

The astonishing aspect of K-M theory is not the accuracy with which it predicts the

colors of pigmented mixtures, but rather the fact that it can predict real-world color

mixtures as all, given the routine violation of so many of the primary assumptions

underlying the theory. Some of those generally violated assumptions:

� Perfectly diffuse lighting (or parallel lighting at exactly 60°). My implementation

allows the user to move the light source anywhere, and the colors still seem

plausible.

� Perfectly random distribution of particle orientations. Most paints are fairly

random, but metallic flake paints are a notable exception. Of course, metallic

flakes also violate other assumptions.

� Perfectly homogeneous materials. This is violated anywhere two different concen-

trations, or thicknesses, of pigments fall side-by-side.

� Perfectly smooth surfaces. I allow the surface to have bumpy geometry that

technically should cause a significant change due to the angles of incidence and

refraction at entry.

� Infinite extent of the sample. Clearly one is limited to a finite canvas given finite

computer memory.

� Perfectly isotropic scattering. (Johnston-Feller, 2001, p.119) discusses the break-

down of this assumption when either the concentration or layer thickness becomes

very small. In that case forward scattering dominates, violating the assumption

of an “intensely light-scattering material” (Kubelka, 1948).

Despite all of these violated assumptions, the results are still quite realistic the

majority of the time.

177

In terms of future improvements to the algorithm, several researchers specializing

in other fields have proposed improvements to the Kubelka-Munk model, such as

(Duntley, 1942) and (Callet, 1996). Recently there has been some progress in rendering

techniques for semi-translucent materials with subsurface scattering using diffusion

models BSSRDF (Jensen et al., 2001). This work seems relevant to paint rendering as

well, since it also involves subsurface scattering. Medical researchers have also proposed

some improved models for light transport through skin such as (Poirier, 2004).

Currently the paint rendering algorithm does not incorporate a notion of varying

medium or of liquid content. An interesting area for future improvements would be to

model different media with different indexes of refraction. However, the Kubelka-Munk

coefficients are particular to the media used when making the measurements (Fishkin,

1983), so providing a realistic optical model for different media is non-trivial. Also, as

the ratio of pigment volume to media volume increases it can give the paint a more

matte appearance. I currently do not model this effect, nor the effect of drying on the

surface appearance. Another related area for possible rendering improvements would

be to add more sophisticated surface reflectance models, such as allowing an arbitrary

BRDF.

As already mentioned, improved gamut mapping and integration with the standard-

ized ICC color management systems, now included as a component of most desktop

windowing systems, is also very desirable.

7.12 Summary

This chapter has presented an accurate, real-time color mixing and layer compositing

algorithm based on the Kubelka-Munk equations and Gaussian quadrature integration

that executes efficiently using the programmable shading available on modern graph-

178

ics hardware. Compared with previous paint rendering systems, my paint rendering

technique offers both greater interactivity and greater color accuracy.

Chapter 8

Computer Interface

Despite its usefulness, the computer is no panacea for dis-
pensing with the hard work and diligent imagination requisite
to any serious art. It is no elixir for the creative agony often
unavoidable in the process of giving birth to new expressions
— Timothy Binkley in the introduction to (Schwartz, 1992)

The interface for a realistic computer painting system is an important consideration.

The high-fidelity simulation of paint enables the possibility of providing a useful tool to

those more interested in traditional painting than computer painting. But care must be

taken in designing the interface for the system, so as not to alienate that very user group

by overwhelming them with a profusion of buttons and complex controls. However, no

matter how capable the interface, the quote above brings to attention the fact that

creating serious art requires serious effort, no matter what the medium. The interface

should assist the painter, and complement the painter’s abilities, but it is no substitute

for the painter’s artistic vision and talent.

An interface is desired that will be easy to learn and easy to use, while at the

same time maximize the potential for skill transfer, and enable expert users to work

efficiently. One important and novel aspect of my system is the haptic response of the

system to user input.

180

In this chapter I discuss both the overall interface design and interface components

as a whole, as well the specifics behind my haptic feedback algorithms.

Part I: Painting Interface

In the painting system interface, I have attempted to provide a minimalistic environ-

ment that requires as few arcane buttons, key-presses, and complex controls as possible,

yet still offers a great deal of expressive power by drawing on physical metaphors and

users’ familiarity with the real world. With the dAb, Stokes, and IMPaSTo painting

systems, most paintings can be created with just the input device (haptic stylus or

tablet) and the space bar on the keyboard. In comparison to the existing computer

painting programs, this approach offers the following advantages:

� Natural and expressive mechanisms for manipulating the painting tools, including

brushes, palette, paint and canvas;

� Simple and easy loading of complex blends using 3D virtual brushes and the

virtual mixing palette;

� Physically-based and realistic brush footprints generated automatically by the

brush strokes;

� Intuitive and familiar feel of the painting process requiring little or no training;

� Haptic feedback to give a more realistic feel of painting with a soft brush and to

improve the painter’s control of brush.

This section presents an analysis of the criteria I have used to design the interface

and select the input devices used to control the brush.

181

8.1 Evaluation Criteria

The best interface for any system is often “the one you already know”. All interfaces

require some degree of training to achieve proficiency, but if you already know the

interface, or a large part of the interface, then that part of it will be easy to learn and

use immediately. In other words, in user interface design, it is worthwhile to leverage

existing user training and knowledge when possible.

This is one reason Microsoft and Apple both issue human interface guidelines (HIG)

for their platforms. If all developers follow the guidelines, different applications will

share behavior wherever feasible. In this way, time spent training to use any one of these

HIG-compliant applications serves to increase proficiency in the others. Leveraging

training is also why shortcut keys for one dominant application in a market segment

often show up in other applications. The makers of competing products know many

of their customers will migrating from competitors’ products, so if the interface can

conforms to the one users already know, so much the better.

In addition to familiarity, another criterion for a good interface is that it offer a path

for a user to develop into an expert, or “virtuoso”. Like a violin virtuoso, a virtuoso

with a particular computer interface can get the most out of that application. An

interface that is merely easy to learn, but slow and inefficient for novice and expert

alike, is not as desirable as one that enables the user to continually improve his or

her efficiency, towards the goal of virtuosity. The Microsoft Paint program that comes

bundled with Windows is easy for both novices and experts alike, but it is also equally

tedious to use for either. In the real world, many activities have the property that their

fundamentals are easy to learn, but offer a lifetime of room for improvement. Some

examples are dance, chess, martial arts, piano, writing and, naturally, painting.

In the case of painting, for example, the tools are intuitive enough that a child

can figure out how to “operate” them to create a painting of some sort, but master

182

painters spend many years perfecting their brush technique, and continue to improve

throughout their lives.

8.2 Target User

In designing a user interface, it is also important to understand who the target user

is. To take an example from the world of text editors, the Emacs editor is a wonderful

interface for a user who is also a programmer, but a very poor interface for a less

technical user. Similarly, a simple text editor like Notepad is better for a non-technical

user, but not sufficient for most programmers. So the design of an appropriate interface

depends to a large degree on the needs of the person who will be using it.

The painting interface I have created is aimed at users who do not traditionally

use computer-based painting tools. I have designed the interface specifically not to

discourage adoption by novice computer users. The target audience encompasses both

those who are interested in beginning to paint, as well as those who already skilled in

traditional painting techniques.

8.3 Prior Work on Painting Interfaces

There have been several innovative research and commercial projects that are of interest

in the area of interfaces for computer painting. Hanrahan et al. allowed the user to

paint directly onto a 3D model by using standard graphics hardware to map the brush

from screen space onto the model (Hanrahan & Haeberli, 1990). Commercial systems,

such as Z-Brush (Z-Brush, 2000) and Deep Paint (Deep Paint, 2000), also allow users to

paint directly on surfaces, by projecting standard 2D brush footprints onto the surface

of the 3D objects, similar to Hanrahan and Haeberli’s method. The brush itself is

not three-dimensional. The idea of painting on 3D surfaces has also been explored in

183

(Agrawala et al., 1995; Johnson et al., 1999; Gregory et al., 2000a) using a simple, rigid

3D brush controlled by a 6-DOF input device to color 3D surfaces. Most of these 3D

painting systems allowed just a simple monochrome brush. Agrawala’s interface had

the user paint on a physical copy of the virtual object, while the results were displayed

on a monitor to the side. (Bandyopadhyay et al., 2001) presented a version of this idea

in which projectors were used to display the virtual color directly on the surface of the

physical object (which should be painted white). (Adams et al., 2004) enhanced the

system in (Baxter et al., 2001) to allow painting on 3D point-sampled models using

3D, deformable brushes.

Several of the more advanced commercial tools, e.g. Painter (Painter 8, 2003), have

interfaces that support pen-based input with 5-DOF tablet devices (X,Y,pressure,X-

tilt,Y-tilt), yet most tablet-aware applications still only use the position and pressure

parameters and ignore the tilt. Further discussion on tablet systems is given in Sec-

tion 8.5.

8.3.1 The Palette

One of the most effective elements of the original dAb user interface (Baxter et al.,

2001) has proved to be the virtual mixing palette. As described in Chapter 4, this is a

special canvas dedicated to mixing paint and loading the brush. This general idea is not

new to digital painting programs, which is not surprising given the importance of the

mixing palette in real painting. In 1985 Quantel patented the idea of a mixing area for

digital paint (Searby & Walker, 1985). Unfortunately, Quantel’s patent on the idea has

likely prevented this interface from becoming widespread in current painting programs.

Recently the patent has expired, however, and soon after Corel introduced their own

mixing palette interface in Painter (Painter 8, 2003). According to one engineer within

Corel who I spoke to, the palette had been available internally for some time, but the

184

Quantel patent prevented its public release. According to the same source, feedback

from users of the new mixing interface has been very positive. One unique feature of

the Painter mixing area, as one can determine from simple experimentation, is that it

operates with a subtractive color model, probably based on the Zimmer logarithmic

dye model patent (Zimmer, 1994). The rest of Painter appears to work with color

additively. (Cockshott, 1991) also included a dedicated color mixing area in his user

interface. Cockshott mentions that many previous digital paint systems had mixing

areas, in addition to Quantel’s PaintBox.

The difference between all these previous digital mixing palettes and the ones offered

in dAb and IMPaSTo is that the previous ones only allowed the artists to pick a

single color from the mixtures created. This completely eliminates one of the primary

functions of the real-world palette, which is loading brushes with a complex blend of

paints. This is a significant added feature in my palette, because multiple loading is one

of the most flexible techniques in a painter’s bag of tricks. The technique necessitates

a complex brush model, however, which has been lacking in the previous systems that

provided a mixing palette.

8.4 Painting Interface

By faithfully simulating the behavior of real paint and real brushes as described in pre-

vious chapters, I am able to create a uniquely natural computer interface for painting,

as shown in Figure 8.1.

A typical computer painting program presents users with many options or states

in order achieve a wide variety of effects. This type of interface is to some degree

necessitated by the limited input modality and limited expressiveness of the digital

media these programs provide the user.

185

Figure 8.1: Graphical User Interface: The virtual canvas with the brush rack and a
portion of the palette (LEFT); the brush rack and the palette for color mixing (RIGHT).

For instance, in typical painting programs, in order to create a paint stroke that

transitions between two colors it is often necessary to open a special dialog that controls

color gradients, and select the two colors that will be part of the stroke, and then define

the direction of the color transition. In contrast to that procedure, a traditional painter

with traditional tools would simply load a little bit of both colors onto his or her brush

and begin to paint the stroke directly.

With my interface the painter is able to duplicate the traditional workflow, because

the brush loading, paint motion, and paint blending are all simulated realistically. Thus

the user is able to load the brush just as he would a real brush.

This natural interface is the perfect choice given the desire to make the interface

accessible to non-technical users. The interface presents the user with nothing but the

basic tools themselves: brushes, canvas, paint, and palette. The rest of this section

gives an overview of the key aspects of the natural interface.

8.4.1 The Brushes

The brush modeling was discussed in Chapter 3. The ability to control a 6DOF, 3D

virtual brush in the painting simulation is critical to the natural interface, and is one of

186

the key differences between the interface I present and that of typical computer painting

programs.

The input device for controlling the brush is an important factor in giving the

interface a natural feel. I have experimented with several different input devices as

described later in this chapter.

8.4.2 The Paint

Chapters 4–6 presented three different models for paint. As Tia from Pixar complained

in the introduction, with typical paint programs, “you can’t push junk around.” The

paint models I have presented, in particular Stokes and IMPaSTo, truly allow the

painter to work with the paint media as if it were a real physical substance, allowing

for a very natural means of achieving a desired distribution of paint on the canvas.

8.4.3 The Canvas

The canvas is where the user’s focus is primarily directed most of the time. Thus I give

the canvas the majority of the screen real estate. The normal view presented to the

user is shown on the left of Figure 8.1, with a small brush rack on the right and, and

a portion of the palette visible (and usable) on the left.

With a tap of the space bar, or by waving the brush off the screen in the direction

of the palette, the palette slides out for mixing as shown on the right of Figure 8.1.

8.4.4 The Palette

Despite the palette being an intuitive interface for choosing and creating colors, this

paradigm has not been widely supported in most previous computer painting systems.

One of the main advantages of my 3D brush and palette combination, however—

and one not possible with any previous system—is that loading the brush with complex

187

blends is simple. To get a blend of colors one simply needs to drag different parts of

the brush through different colors to pick them up, and then the stroke created on the

canvas will consist of those colors blended together as expected. With a conventional

program, if such an operation is supported at all, it requires defining a gradient fill for

the stroke, and it still will not offer the same level of intuitive control over the blend

effect afforded by simply rotating the 3D brush during a stroke, for instance.

8.4.5 Brush Shadows

One feature initially missing from the interface, but that was quickly found to be

indispensable, was brush shadows. Since the virtual brush is a 3D object in the scene,

it can be difficult to determine from a single-perspective view on the monitor exactly

how far the brush is away from the canvas. The simple solution was to provide depth

cues in the form of shadows. In fact, there should be several shadows, to increase the

chances that at least one of them will be on-screen and be casting onto a light enough

region of the canvas where it has best visibility. In the end I also added an “inverse

shadow” capability, which lightens rather than darkens, after one user decided to paint

a completely black picture of outer space.

8.4.6 Bi-manual Input

Several studies have shown improved task performance when using interfaces that allow

the use of both hands (Owen et al., 1998; Buxton & Myers, 1986; Kabbash et al., 1994;

Kabbash et al., 1993). Specifically, what works well is when the non-dominant hand is

used for secondary tasks like positioning a see-through overlay tool (Bier et al., 1994),

or for positioning the surface on which the user is writing.

Since we use an input device other than the mouse as the primary input, as will be

described below, this leaves the mouse free for use in the user’s non-dominant hand. In

188

my implementation of the interface, I allow the user to use the mouse to select brushes,

operate menus, and to position the palette and canvas. In this way the user can wield

the brush with the dominant hand and at the same time place the canvas or position

the palette with the non-dominant hand, exactly the sort of task at which it excels.

8.5 Input Devices

In order to allow painting to be performed seamlessly one needs an input device capable

of expressing the motion of a 3D virtual brush. There are a few technologies on the

market today that I considered for this purpose. My interface supports two of them: the

Phantom haptic interface from SensAble Technologies, and the Wacom Intuos Tablet

interface.

There are three main characteristics desired from a brush control input device.

First, the number of input degrees of freedom (DOF) should be as close to the six

degrees of freedom of an actual brush as possible. Second it should be approximately

the same bulk as a brush to allow for the same sorts of control and range of motion

that is possible with a brush. Finally, the device would ideally be able to generate

haptic feedback similar to an actual brush, either by virtue of being an actual brush,

or via programmatic force feedback. We summarize some of the input devices available

in Table 8.1.

We will first describe the pros and cons of several of the most common types of

input device.

8.5.1 Mouse

The mouse is the input device used most commonly in digital painting applications

today; however, it is far from being the ideal input device for painting. The limited

189

IO Device Input DOF Output DOF Bulk Haptics
Mouse 2 0 Low None
6DOF Phantom 6 6 High Programmatic
3D Tracker 6 0 Medium None
Wacom Intuos Tablet 5 0 Low Static
Desktop Phantom 6 3 Medium Programmatic
Omni Phantom 6 3 Medium Programmatic

Table 8.1: Various input devices that can be used for brush control.

degrees of freedom of the mouse mean that applications must provide other means to

control the appearance of strokes, which almost always are less intuitive than using a

real brush.

8.5.2 Trackers

3D trackers employ several different technologies and are available in many configura-

tions. Major technology categories are optical, magnetic, electrical and inertial. There

are three main drawbacks with existing tracker technologies. The first is bulk. Existing

tracking devices are often too bulky to place on a paintbrush (as with the UNC Hi-Ball

optical tracker), and nearly all require a tether to a power-supply, which is undesirable.

The second drawback is that they provide no haptic response. They are completely

free-floating in space, though static haptics can be constructed. The third drawback

is that most trackers are designed for tracking a large area, and they do this at the

expense of fine scale accuracy and response time. The working volume of a typical

painting does not match the working volume of most trackers well.

8.5.3 Tablets

Several manufacturers make tablets for pen-based input. There are a wide variety of

these, with some offering only the same number of input degrees of freedom as a mouse

(X-Y position only). Many offer a third degree of freedom in the form of a pressure

190

value, which can be mapped to a Z coordinate. The Wacom Intuos and Intuos2 lines

of tablets are capable of measuring an additional two degrees of freedom: X and Y tilt

angles, for a total of five DOF input.

This is still one DOF fewer than is necessary to control a 6DOF brush (it lacks a

twist DOF), but it is a reasonable interface for painting despite the missing degree of

freedom. One feature of the tablet is the pen-like feel. On the positive side, the haptic

response is real, so there is no latency and the friction is real, though somewhat plastic.

On the negative side, however, it always feels like a pen on hard surface, and it is not

possible to programmatically make the brush feel stiffer or softer, or to feel the virtual

paint.

From a convenience point of view, some users find this interface easier to control

because of the real friction, and because it gives them a place to rest their hand, and

through that resting point, a better proprioceptive sense of context.

8.5.4 Haptic Devices

While many haptic devices have been designed and built (see (Hayward et al., 2004) for

a recent survey), the Phantom (Salisbury et al., 1995a) is perhaps the most commonly

used, and it provides a very good platform for development. The Phantom family of

devices are all 6-DOF input, based on an articulated armature design. The Desktop and

Omni models provide 3-DOF force feedback, while the Premium-A model is capable of

full 6-DOF haptic feedback (force and torque).

The 3-DOF Desktop and Omni models are the best suited to use as painting

interfaces since their armatures are the least bulky, and have inertial properties more

similar to a paint brush than the larger models. Still, the bulk and the armature that

tethers them to the base are drawbacks. Another drawback is the lack of hand rest,

191

which some users find to be tiring. On the other hand, there is typically no hand rest

in actual painting, either.

The unique feature of the haptic devices is that they are able to deliver an arbitrary

force to the user under programmatic control. Thus the brush properties can be

modeled, and the feel of different brushes and paint can be simulated. This is the

focus of the next section.

Part II: Haptic Feedback

“Where the spirit does not work with the hand there is no art.”

— Leonardo da Vinci

Brushes have thousands of individual hairs, each of which can move independently.

Too much pressure applied in the wrong direction can cause a brush to splay in an

undesirable way, or, alternatively, that may be exactly the effect the painter wishes

to achieve. Either way the painter needs feedback from the brush in order to control

it properly. Visual feedback is certainly one important channel of information, which

is why in my interface I display the entire 3D virtual brush, rather than just the

active portion that is currently depositing paint. But haptic sensations are also a very

important type of feedback. The direction and amount of force felt by the painter gives

a very useful indication of the brush’s state at every instant. A skilled painter could

probably visualize what a stroke will look like without looking based on the feel alone.

Thus good haptic feedback is a useful addition to a painting system.

Haptic feedback using the Phantom interface is one of the main novel aspects of my

painting simulations. I attempt to provide sufficiently good force feedback to emulate

the sensation of applying brush strokes to a canvas. The 6-DOF armature input device

also serves as a 3-DOF force output device.

I have investigated two methods for delivering haptics, the first, used in dAb, was a

192

relatively simple, but still quite effective mechanism, and the second technique is based

on the more physically accurate computation possible when simulating fluid-based paint

with Navier-Stokes or Stokes equations.

For all force computations, I align the virtual paintbrush with the physical 6-DOF

stylus, and position it so that the point of 3-DOF force delivery coincides with the

point where the brush head meets the handle on the virtual brush.

8.6 Related Work on Haptics

In this section, I present a brief survey previous work related to haptic rendering,

applications of haptics, and force computation in simulated fluid-structure interaction.

8.6.1 Force Feedback

Several techniques have been proposed for integrating force feedback with real-time

virtual environments to enhance the user’s ability to perform interaction tasks (Colgate

& Brown, 1994; Massie & Salisbury, 1994; Salisbury et al., 1995b).

(Ruspini et al., 1997) presented a haptic interface library “HL” that uses a virtual

proxy and a multi-level control system to effectively display forces using 3-DOF haptic

devices. Hollerbach et al. (Hollerbach et al., 1997; Nahvi et al., 1998) described a

haptic display system for contact and manipulation in the CAD design of mechanical

assemblies and Thompson et al. (Thompson et al., 1997) have presented a system for

direct haptic rendering of sculptured models.

Techniques for haptic visualization of the topology of vector fields were investigated

by Helman and Hesselink (Helman & Hesselink, 1990; Helman & Hesslink, 1991).

Durbeck et al. (Durbeck et al., 1998) have described a system for enhancing scientific

visualization by the use of haptic feedback. The combined haptics/graphics display is

193

used for displaying flow fields, and vector fields. These systems were based on 3-DOF

haptic devices that provided only force feedback. Recently, Lawrence et al. presented

a technique for shock and vortex visualization using a combined visual and haptic

interface with a 5-DOF force feedback device (Lawrence et al., 2000).

In (Yeh et al., 2002) the authors propose an evaluation of haptics for painting and

present the results of a preliminary study comparing two conditions: with and without

haptics. The haptics are a modification of the model presented in (Baxter et al., 2001).

The study consisted of a simple yes/no questionnaire asking each of the participants

which condition was better. The results are fairly inconclusive since there were only six

participants. However, four out of the six subjects preferred the presence of haptics.

The results of any such study are obviously highly dependent on the quality of the actual

haptic implementation used. They report that a more extensive study is planned.

8.6.2 Volumetric Approaches

Gibson (Gibson, 1995) proposed an algorithm for object manipulation including haptic

interaction with volumetric objects and physically-realistic modeling of object interac-

tions. The algorithms presented by Avila and Sobierajski (Avila & Sobierajski, 1996)

rely on interactive force feedback and rendering to allow a user to quickly explore and

modify volumetric scenes.

Essentially, most present techniques for direct haptic rendering of volumetric data

follow a general strategy in which the force display is defined as a vector-valued function,

or is transformed to one (Avila & Sobierajski, 1996; Iwata & Noma, 1993; Gibson,

1995). From this vector function, force feedback is generated from the data around the

probe and from the velocity of the tip.

194

8.6.3 6-DOF Haptic Rendering

Iwata describes a 6-DOF haptic master and the concept of time-critical rendering at

a lower update rate of hundreds of Hz (Iwata, 1990). Iwata and Noma also proposed

methods for presenting volume data by force sensation using a 6-DOF force reflecting

master manipulator with an update rate of a hundred Hz (Iwata & Noma, 1993).

Recently (McNeely et al., 1999) proposed “point-voxel sampling,” a discretized

approximation technique for contact queries that generates points on moving objects

and voxels on static geometry. This approximation algorithm is the first to offer run-

time performance independent of the environment’s input size by basically sampling

the object geometry at a resolution that the given processor can handle.

A recent approach proposed in (Gregory et al., 2000b) is limited to haptic display of

object-object interaction for relatively simple models that can be easily represented as

unions of convex pieces. (Kim et al., 2002) attempts to increase the stability of the force

feedback using contact clustering, but their algorithm for contact queries suffers from

the same computational complexity. (Otaduy & Lin, 2003) introduces a “sensation

preserving” simplification algorithm for faster collision queries between two polyhedral

objects in haptic rendering, thus achieving time-critical 6-DOF haptic rendering for

highly complex models and contact configurations.

8.6.4 Fluid Force Computation

Foster and Metaxas (Foster & Metaxas, 1996) used a form of the hydrostatic force

equations to create animations of rigid body objects in their offline Navier-Stokes

simulation. Hydrostatics ignore the dynamic effects of fluid flow on the objects. Their

simulation also did not account for the effect of the objects on the fluid.

Tu computed forces by using a boundary integral of the relative velocity between

a fish’s fin surface and surrounding fluid for simulating how swimming motions propel

195

a fish (Tu, 1996). Like (Foster & Metaxas, 1996) this method apparently does not

take into account the influence of the immersed surface on the fluid, since at the actual

surface of an immersed object, the physical boundary conditions demand that the

velocity of the fluid relative to the surface is always zero, which would mean the force

should always be zero as well with this method.

Ristow (Ristow, 1999; Ristow, 2000) has created several offline simulations of spheri-

cal and elliptical particles falling through fluids using accurate force computations based

on the fluid stress tensor. The method I propose is based on the same equations but

uses a different numerical procedure to compute the force. A further distinction is that

in my case the “particle” is an actively controlled haptic probe rather than a passively

simulated object.

To the best of my knowledge, no one to date has used real-time fluid simulation to

generate the force feedback to drive a haptic display, allowing the user to both feel and

influence the fluid at the same time.

8.7 Simple Force Computation

8.7.1 Decoupled Haptics

In the simple force model, I separate the force computation from the brush deformation

computation, since the two have different goals. For instance, the force updates for

haptic feedback need to be generated at close to 1kHz for smooth jitter-free output,

but the deformation calculation only needs to proceed at visual update rates (around

30Hz). Consequently, in the simple force model I solve this problem by decoupling the

force simulation from brush dynamics simulation, and simplify the force computation

to run at kHz rates.

196

slope k2

Normal Force

Brush head penetration depth %

slope k1

0 100

device limit

f1,k1

BendBuckle Limit

Normal Force

Brush head penetration depth %
0 100

f2, k2

f3, k3

Piecewise Linear Model Nonlinear Model

Figure 8.2: Example graphs of the normal force used in the basic force model and
non-linear force model.

8.7.2 Basic Force Model

The root of the force model is a simple piecewise linear function of the penetration depth

of the undeformed brush point. If dp is the penetration depth , and lp is the length of

the brush head projected onto the canvas normal, n, then the force is modeled as:

fb(dp) =

0 if dp ≤ 0

n(k1/lp)dp if 0 < dp ≤ lp

n(k1 + (k2/lp)(dp − lp)) if lp < dp

(8.1)

where k1 is a small positive constant that models the light spring of bristles and k2

is a larger positive constant that simulates collision of the actual brush handle with

the canvas. The spring constants are normalized by lp so that the same absolute force

is delivered when the handle first hits the canvas, regardless of the brush length or

orientation. The value of k1 can be changed to simulate brushes of varying stiffness.

See Figure 8.2.

197

Compressive Effects

When a real brush contacts the canvas at close to a right angle, the stiff bristles initially

act as strong compressive springs, transmitting an abrupt force to the handle. As more

pressure is applied, the bristles buckle and the compressive force reduces as bending

forces take over. When the brush makes a contact at an oblique angle, compressive

effects play a lesser role in the force felt.

Therefore, I extend the piecewise linear function, Equation 8.1, to a piecewise

Hermite curve, as shown on the right of Figure 8.2. This curve is defined by a series of

control tuples that contain the penetration depth and corresponding force magnitude,

and the linear stiffness of the spring model at that point. I currently use a four-segment

piecewise curve, which was derived from the empirical observation of how a brush head

behaves under compression.

The initial segment of the piecewise curve models the compressive force. I assign

the initial control tuple a fairly strong linear spring constant to simulate the initial

strong compressive force. I modulate this compressive force according to the angle

of contact, by multiplying the force value of the second control tuple by an angle-

dependent coefficient between one and zero. Given θ, the angle between the canvas

normal and negated bristle direction vector, the factor I use is

γ =

cos2(2θ) if −π
4

< θ < π
4

0 otherwise
(8.2)

This results in a compressive force that is strongest when a brush contacts the canvas

at a right angle and that tapers off to zero as the brush approaches a 45 degree angle

to the canvas.

198

Frictional Forces

An important component of the force delivered to the user is a small amount of

tangential resistance. Though small in magnitude, frictional forces have a large effect

on the user’s perceived ability to control the brush by damping small oscillations in the

user’s hand. I model friction ft simply, as a force opposite the current brush velocity,

vb, which is added to the other feedback forces:

ft = kt (vb − n(n · vb))

where kt is the coefficient of friction.

8.8 Fluid Force

In this section I will describe a method of computing haptic feedback from fluid

simulations I have developed that is applied to the fluid-based painting simulation, but

is actually a general method applicable to any fluid simulation that generates velocity

and pressure fields as output.

8.8.1 Preliminaries

The motion of an incompressible Newtonian fluid is described by the Navier-Stokes

equations. The momentum equation describes the transport of momentum in the fluid:

∂u

∂t
= −(u · ∇)u−

∇p

ρ
+ ν∇2u + F (8.3)

where u is the fluid velocity field, p is the pressure field, ρ is the density, ν is the

coefficient of kinematic viscosity, and F is an external force per unit mass such as

supplied by gravity. The dynamic viscosity will also be needed later, which is µ =

199

ρν. Incompressibility adds an additional constraint, known as the continuity equation,

which for a constant-density fluid can be written:

∇ · u = 0 (8.4)

Appropriate boundary conditions are necessary as well. For a “no-slip” boundary

condition on velocity and pure Neumann boundary condition on pressure, in a domain

Ω with boundary ∂Ω, these are

u = 0 ∈ ∂Ω (8.5)

∂p

∂n
= 0 ∈ ∂Ω (8.6)

In this section I present methods for computing a force for haptic feedback from a

fluid simulation. Before presenting the accurate method, I first look at some common

force approximations used in fluid dynamics.

8.8.2 Approximated Fluid Forces

For rough aerodynamic calculations of lift and drag forces, a few simple approximations

are commonly used. One standard equation used to approximate the aerodynamic drag

force on an object with relative airspeed v (Bloomer, 2000) is

FAD = CAD ρv2A, (8.7)

where A is the projected cross-sectional area of the object, CAD is an aerodynamic drag

coefficient that depends upon the shape and material properties of the object, and ρ

is the fluid density. this approximation is only applicable to low-viscosity, and low

vorticity situations such as the laminar air stream in a wind tunnel.

200

For high-viscosity, or slow flow scenarios in which the Stokes approximation holds,

one can obtain a similar expression for the viscous drag force(Landau & Lifschitz, 1975):

FVD = CVD µvA (8.8)

where CVD is a coefficient of viscous drag that depends on the shape of the object,

and µ is the viscosity of the fluid. This type of simple linear relation between force

and velocity has been used quite extensively in haptics to simulate viscous or dynamic

friction, because it is simple, computationally inexpensive, and quite stable. In such

uses, the source of the viscous force is generally taken to be at rest so that the probe’s

velocity is the overall relative velocity.

Both of these approximations make the assumption that the velocity field can be

characterized by a single vector, so these methods can only generate forces, not torques.

If a single sample velocity from the flow field is chosen, the method becomes similar

to that used by many haptic volume display systems, where a vector field is haptically

rendered using a force proportional to the vector at the probe location.

One can use these equations for approximating the fluid force on a point probe, but

difficulty arises if you wish to also interact with the fluid via the same point probe. If

interaction is implemented by simply injecting velocity into the simulation at the probe

location, as is common, then this injected velocity becomes a large part of what gets

sampled and the resulting force is incorrect. A better, more physically correct approach

is to cause the fluid to move via boundary conditions on a finite probe. This will be

discussed more in Section 8.8.4.

201

8.8.3 Accurate Force Computation

The proper description of the internal forces in a viscous incompressible ideal fluid is

given by the stress tensor, σ, which in index notation is given by (Landau & Lifschitz,

1975)

σik = −pδik + µ

(

∂ui

∂xk

+
∂uk

∂xi

)

. (8.9)

The force per unit area at a given point in the fluid, x, on an infinitesimal area dA

with normal n is given by:

P = σ(x) · n; (8.10)

The net force acting on a closed object submerged in the fluid can then be obtained by

integrating this expression over the surface of the object:

Fobj =

∫

S

σ · n dA. (8.11)

In terms of vector components, P is given by

Pi = (σ · n)i = −pni + µ

(

∂ui

∂xk

+
∂uk

∂xi

)

nk (8.12)

or, for a two dimensional viscous flow,

Px

Py

=

−pxnx + µ
(

2∂ux

∂x
nx + (∂ux

∂y
+ ∂uy

∂x
)ny

)

−pyny + µ
(

2∂uy

∂y
ny + (∂ux

∂y
+ ∂uy

∂x
)nx

)

(8.13)

Similarly, the torque on the object about the point c is given by integrating the cross

product

τobj =

∫

S

r× σ · n dA. (8.14)

202

where r is the vector from c to each infinitesimal surface element. For computing the

haptic force, c acts as the point of attachment of the haptic stylus to whatever probe

geometry is desired. In two dimensions where torque is a scalar, one obtains:

τobj =

∫

S

(rxPy − ryPx) dA. (8.15)

Equations 8.11 and 8.14 tell everything one needs to know to generate haptic feedback

from a fluid solution. The next step is to determine an appropriate discretization of

these equations in order to evaluate them numerically on a computational grid, which

will be discussed in the next section.

8.8.4 Haptic Display of Viscous Flows

There are numerous ways to discretize Navier-Stokes equations, with various strengths

and weaknesses. For my purposes I desire a simulation method that emphasizes speed

and interactivity. For this reason it is important to choose a method without timestep

restrictions. Many solution methods require for stability that the simulation timestep

be selected such that a CFL condition such as ∆t ui,j < ∆x holds for all (i, j) on

the discretized grid. Even worse are timestep restrictions on viscosity that typically

require ∆t < O(∆x2ν−1‖ui,j‖
−1). Even if the basic time-stepping procedure is fast, the

number of steps required to advance the simulation by a desired time increment ∆T

can be prohibitive, and cause the simulation clock to fall behind the wall clock time.

A better approach for interactive fluid simulation is that presented by Stam et. al.

(Stam, 1999). By using an implicit time-stepping procedure to handle viscosity, and

a semi-Lagrangian scheme for advection, all stability restrictions on the timestep are

removed, and thus it is possible to prevent the simulation clock from falling behind the

wall clock.

203

pi,j ui+½,jui-½,j

vi,j-½

vi,j+½

Figure 8.3: A typical grid cell, at grid location (i, j).

The approach is a fractional step method with a Chorin projection (Chorin, 1968) to

solve for the pressure. The differential operator is approximated by splitting it in time

so that the advection term, viscosity term, and pressure terms are handled sequentially

instead of simultaneously. The incompressibility constraint is ignored for the first sub-

steps, and then the resulting flow field is projected onto the space of divergence-free

vector fields to satisfy the continuity equation. This approach requires the solution

of a discretized Poisson problem. The overall procedure is first-order accurate using

first-order discretized operators.

I implement the solver for the most part like Stam, except I use the conjugate

gradient method with an incomplete Cholesky preconditioner to solve the sparse linear

systems of equations that arise from the implicit viscosity step and the Poisson equation

for pressure (Kershaw, 1978). Also I use a staggered grid rather than a cell-centered

grid, since the Poisson solver tends to converge better on a staggered grid (Griebel

et al., 1990). A typical grid cell is shown in Figure 8.3.

To discretize the boundary of the haptic probe, I use the common first-order ap-

proach of treating each grid cell as either entirely fluid or entirely solid, thus snapping

the actual boundary shape to the nearest grid cell edges as shown in Figure 8.4. This

is the same approach as proposed in the original Marker-and-Cell method (Harlow &

Welch, 1965).

204

Actual Boundary

Discrete Boundary

Fluid Cell

Solid Cell

Figure 8.4: Boundary discretization used for incorporating the haptic probe geometry
into the grid-based simulation.

To incorporate the motion of the haptic probe into the simulation, the u and v

velocity boundary values are set along the perimeter of the discretized probe boundary

on the grid. For a north facing edge, for example, I enforce the no-slip boundary

condition by setting

v
i,j+

1
2

= vprobe
(

i∆x, (j + 1
2
)∆y

)

(8.16)

u
i±

1
2

,j
= 2uprobe

(

(i± 1
2
)∆x, j∆y

)

−

u
i±

1
2

,j+1
, (8.17)

and similar expressions are used for the other cell edges.

8.8.5 Force Computation

After an iteration of the numerical fluid solver, I have values for p, and and u = (u, v)

on the grid. To compute the force and torque on the probe, at this point I simply need

to traverse the boundary and and approximate the boundary integrals Equations 8.11

and 8.14, using a discrete Riemann sum. For a north facing edge, for instance, the

normal pointing in toward the probe is n = (0,−1) and the contributions to the total

205

force and torque obtained by using this n in Equations 8.11-8.15 are

Px

Py

=

µ
vi,j+3/2−vi,j+1/2

∆x

−p + 2µ
vi,j+3/2−vi,j+1/2

∆y

(8.18)

Fi = ∆x

Px

Py

(8.19)

τi = ∆x (rxPy − ryPx) . (8.20)

Similar expressions are obtained for the remaining three edge orientations. After

traversing the entire boundary of the probe, one obtains Fobj =
∑

i Fi and τobj =

∑

i τi.

8.8.6 Force Filtering

The above method does suffice for calculating the force from the flow, but generally in

the simulations of interest–a 64×64 grid or larger–the fluid simulation cannot execute

at the 1KHz rate desired for smooth haptic rendering on a typical GHz-class processor.

40-70Hz is a more typical simulation rate for such a grid. For general haptics, involving

the display of rigid contact with rigid surfaces, any sort of smoothing filters can lead

to an undesirable softening of the surfaces by removing the high frequency components

of the force displayed. However, for simulating the feel of a fluid, the high frequency

components contain much less energy, and I have found some amount filtering to be

both acceptable and beneficial in reducing the artificial stair-stepping and vibration

that comes from updating the haptic output at less than the desired 1KHz rate.

In selecting a filter, a desirable characteristic is a step response function that

smoothly transitions both away from the previous state and into the new state, to

avoid introducing high frequency artifacts. Finite impulse response (FIR) window

206

0 0.02 0.04 0.06 0.08 0.1 0.12 0.14
0

2

4

6

8

10

Haptic Filtering

S
ig

n
a
l
v
a
lu

e

Time (sec)

70Hz simulation data

1000Hz haptic signal

Figure 8.5: The results of filtering a random 70Hz input signal for haptic display at
1KHz.

filters match these desired characteristics well. I selected a 10th order Bartlett-Hanning

window using the Matlab signal toolbox. My results indicate that filtering the force

in this manner yields a notable improvement in the smoothness of the haptic feedback

for this application. The filter’s smoothing effect on an input signal can be seen in

Figure 8.5. Although the filtering does introduce some delay into the force response

time, the users did not find this to be noticeable in the case of fluid force display.

8.9 Haptic Results

I have implemented the force feedback methods as described above in C++ and tested

this implementation on a 2GHz Pentium IV computer with a Phantom haptic interface

from SensAble Technologies, Inc. For force only, I used a Desktop Phantom model

with 3DOF of force feedback. For force and torque, I used a Premium-A 6-DOF model

Phantom.

207

8.9.1 Simple Haptics

The simple haptic feedback model—either piecewise linear or non-linear—can easily be

calculated at the desired rate of 1KHz on the test system above. Though the model

is simple, the simplicity of the computation makes for a very smooth and consistent

springy brush response. The non-linear model makes the brush feel less compliant on

initial contact more like a real brush.

8.9.2 Fluid-Based Haptics

For fluid based haptic feedback, in the implementation I control the final scaling of the

fluid force with a user-defined parameter. This parameter should be chosen carefully

since too low a value will make the fluid forces too weak, but too high a value can add

excessive energy back to the haptic probe that is then fed back to the fluid leading to

unstable oscillations. The scale used in my simulation is typically in the range of 2-10.

This is for a unit domain of [0, 1]× [0, 1] at 64× 64 resolution with a Reynolds number

of about 103.

Figure 8.6 shows a few frames from a fluid interaction sequence in which a square

probe is swept along a path. In Figure 8.7 I show the force as computed by my

simulation method along that path. The square begins at rest, accelerates as it sweeps

out an arc, then comes to rest. Then it reverses direction and traces the same path

backwards. At the same time the square spins with an angular velocity that has a

similar profile of acceleration. I have split the 2D force into two components, one

the drag force, tangential to the motion of the probe, and the other component is

perpendicular to the motion.

The force and torque profiles can be seen to contain some amount of noise. This

jitter comes from the discretization of the boundary. Figure 8.8 shows how the noise

is reduced when I sweep along the same path repeatedly at different grid resolutions.

208

Figure 8.6: A sequence of images captured from my interactive fluid simulation with
haptic rendering, showing both the instantaneous force (green arrows) and velocity
vectors (magenta arrows) at several instants along the probe’s path.

Although the simulation does not run interactively at the higher resolutions, the re-

duction in noise indicates that boundary discretization is the major source of the noise.

Higher order numerical treatments of the boundary have been developed, such as (Tome

& McKee, 1994), and these would likely reduce the noise in the force signal. In my

current implementation this jitter is not very noticeable since the magnitude of the

variation is only about 0.005N.

To demonstrate the practical utility of my method in virtual applications I have

also integrated the force computation into my painting system using the Stokes paint

model from Chapter 5. Using this method, a user is able to feel the viscosity of the the

paint as he or she makes brush strokes using the haptic stylus. See Figure 8.9.

209

-0.15

-0.1

-0.05

0

0.05

Tangential (Drag) Force

F
o

rc
e

 (
N

)

-0.04

-0.02

0

0.02

0.04

0.06

Normal Force
F

o
rc

e
 (

N
)

-5

0

5

10
x 10

-4

Plane Torque

T
o

rq
u

e
 (

N
 m

m
)

Time

Figure 8.7: Unfiltered haptic feedback forces generated by my method for a square probe
dragged and twisted along a path. My haptic filtering method smooths these values for
the final force display. The object first accelerates from rest, decelerates to a stop at the
middle of the graph, and then returns to its starting point (see Figure 8.6). The drag
force graph (top) clearly shows the fluid force working against the direction of motion,
as expected.

8.10 Limitations and Future Work

The ideal haptic feedback for a paint simulation system should be indistinguishable

from the feel of a real brush, and every nuance of the elastic force of the bristles,

every aspect of the friction of the bristles sliding against a rough canvas, and the

every change in force due to interaction with paint medium should be modeled. There

is still much ground to cover before reaching this goal, but the methods for brush

haptic feedback simulation presented in this dissertation present several strides in that

direction, and serve as a proof of concept for the value of haptic feedback in this type

of application. My implementation of the concept is compelling enough in its current

form that SensAble Technologies, the makers of the Phantom haptic device, have even

210

-0.12

-0.1

-0.08

-0.06

-0.04

-0.02

0

0.02

0.04

Tangential (Drag) Force For Different Grid Resolutions

Time

F
o

rc
e

 (
N

)

64x64 grid (blue)

128x128 grid (green)

256x256 grid (red)

Figure 8.8: The effect of grid resolution on the force computed. The noise in the
signal is reduced with each increase in grid resolution from the coarsest grid (blue) to
the finest grid (red).

begun to use my painting systems as a demonstration of their haptic devices at trade

shows.

My demo system has the ability to switch between different test haptic feedback

modes for comparison. For instance, there’s a mode that disables the haptic force

entirely, and another that emulates the type rigid contact felt when using a tablet

interface. Practically every single user I have asked has expressed a preference for my

standard springy haptic model compared to no haptics or rigid haptics. These results

differ from the preliminary results presented by (Yeh et al., 2002), who found only 2/3

of users in a small study to prefer painting with haptics. A formal study, and perhaps

further research into realistic haptic models, will be required to truly determine the

value of haptics in applications such as this.

Concerning the interface as a whole, the prototype system I have put together is

just a demonstration of the potential for this type of natural, realistic interface for a

211

Figure 8.9: This is a screen captured from a painting application modified to use my
method to display the feel of the viscous paint to the user. The green arrow shows the
force being displayed as the user paints a stroke from left to right.

painting system. It currently lacks many of the features that may be required by serious

professional users in the long term, such as flexible support for layering and masks, and

a variety of import and export options. These are probably features that need to be

added; however, the current prototype system is still very capable of creating works of

art, as can be seen in the many example paintings shown in the previous chapters.

Based on the feedback from the hundreds of people who have tried my painting

systems, overall it is clear that the interface has accomplished the goal of appealing

to users who are interested in painting, but not necessarily computer painting, and

also of being easy to learn and use. Children, in particular, seem to really enjoy the

system and are able to work with it immediately, with very little instruction, though

professionals such as John Holloway (see Appendix B) have also found the interface

rewarding to work with. Non-technical artists also seem to be very enthusiastic about

it.

212

8.11 Summary

This chapter has presented the natural painting interface I have developed using the

physically-based models presented in the previous chapters. I have also presented two

models for haptic feedback: a simpler, spring-based model decoupled from the actual

brush and fluid simulations, and a method based on the stress tensor for computing

force directly from fluid simulation data.

In summary, in this chapter I have presented:

� A natural interface for a computer painting system that combines a mixing palette

and 3D deformable brushes, with simulated paint and virtual canvas.

� A physically-based interface that enhances the potential for transfer of real-world

physical skills to the computer painting task.

� An interface that requires minimal training and is instantly accessible to users.

� An interface that allows for users to improve their skills over time, to become

virtuosos.

� An interface with a novel use of haptic feedback, using two different models, to

enhance the sense of immersion in the painting environment and increase the

user’s control of the brush.

Chapter 9

Conclusions

Cover the canvas at the first go, and then work on till you see nothing
more to add ... Don’t proceed according to rules and principles, but
paint what you observe and feel. Paint generously and unhesitatingly,
for it is best not to lose the first impression.
—Camille Pissaro

9.1 Summary of Results

In this dissertation I have presented a variety of physically-based techniques for mod-

eling the tools and materials of traditional painting. The goal was to create a flexible,

versatile, and easy-to-use digital painting system that works like painting in the real

world, but with all the advantages of a digital system. In particular, I have presented

a model for 3D flexible, dynamic paint brushes, three different models for the behavior

and dynamics of paint, a realistic model for paint appearance, two models for haptic

feedback, and an interface to tie all of these components together.

The brush model I presented, vBRUSH, uses quasi-static optimization of energy

to stably simulate the stiff paintbrushes used in Western painting. The simulation

is performed for a small number of brush spines that act like the skeletons used in

skin-and-bones computer animation to deform the actual brush geometry. The hybrid

geometric model combines smooth Catmull-Clark subdivision surfaces with hundreds

214

of individually modeled bristles allowing for a wide variety of simulated brushes that

can create a wide variety of marks. The modeling of brushes is further facilitated

by the custom exporter I provide for creating brush models using the popular 3D

modeling program, Blender (Blender, 2004). The many paintings shown in Chapters 3–

6 clearly demonstrate the versatility of the vBRUSH brush model. I have also presented

techniques for computing the contacting regions of the canvas and the brush textures,

and for transferring paint between the two to effect a full bi-directional transfer of paint.

The several paint models I presented offer the user a trade-off between speed and

physical fidelity. The simple two-layer dAb paint model offers the greatest interactivity

on the widest range of hardware. It consists of one active, wet layer and one inactive,

dry layer. The paint on each cell of each layer is stored as an RGB color and an 8-

bit volume. Having all data in eight bit-per-component textures makes for efficient

manipulation on a wide variety of graphics hardware. The Stokes Paint model is based

on the 3D incompressible Stokes partial differential equations. The paint is stored on

a 3D grid, and all layers can be active simultaneously. Finally the IMPaSTo model

represents a balance between the speed and simplicity of dAb and the fidelity of partial

differential equations in Stokes Paint. IMPaSTo represents paint using a stack of many

dry layers, and a single wet, active layer. The dynamics model is based on five basic

empirically derived physical principles of paint behavior, and these dynamics rules can

be seen as simplifications of the Stokes equations used in Stokes Paint. In all of the

paint models, for efficiency, interactions with the brush are carried out in a sliding

window, only in the immediate vicinity of the brush.

The paint rendering model provides an unprecedented level of accuracy in the

interactive simulation of paint mixtures and glazes. Using the Kubelka-Munk diffuse

reflectance equations sampled at eight wavelengths, which are selected automatically via

a Gaussian quadrature rule, and thanks to a fast GPU implementation, the rendering

215

algorithm is able to transform full-spectrum measurements of real oil-paint samples

into RGB colors for display in real time. The resulting colors calculated with only eight

samples and Gaussian quadrature are almost indistinguishable from those calculated

using a full 101 wavelengths and simple Riemann summation, at a vastly reduced com-

putational cost. Furthermore the results are markedly improved compared with those

obtained using just three samples of the spectrum with Kubelka-Munk, as previous

work has done.

The haptic models give the painter the sensation of holding a real brush, as opposed

to a pen or a mouse, and provide the tactile cues necessary to better control the brush.

I presented a simple and fast haptic model based on one dimensional spring models,

and also a more sophisticated model, which is the first method ever, to my knowledge,

for generating haptic feedback directly from the velocity and pressure fields that are

the output of a grid-based fluid simulation.

Although any one of the above components alone could probably have been pursued

in greater depth as the subject of a dissertation, I chose to pursue all of them at once in

the belief that the whole is greater than the sum of the parts. For example, a realistic,

deformable brush model is not very compelling if the paint does not react realistically

in response, and a sophisticated paint model without a realistic brush to manipulate it

would make for an artistic tool with limited utility.

Though I have not conducted a formal user study, each of my models for brush

and paint has been given extensive testing in the form of actual usage by painters

with a wide variety of skill levels. Hundreds of people, both young and old, men and

women, artists and non-artists, and from all over the globe, have tried my painting

systems. Generally, I need only instruct them briefly to use the brush like they would

a real brush, and to hit the space bar (or wave off the screen in that direction) when

they want to use the palette. Sometimes when using the haptic input device I need to

216

remind them that they can twist the brush, too, because people tend not to expect that

to be possible based on their previous experience with computer input devices. They

are generally then able to start making paintings right away. Many people complain,

however, that they are not good artists, so they do not know how paint anything.

Being able to teach these people to overcome their fear of painting is one of the great

potential benefits of this type of system, because they can practice as much as they like

without having to worry about wasting anything. And the uncluttered interface also

allows them to focus completely on the task of painting.

As Pissaro exhorts us in the quote that begins this chapter, “Paint generously and

unhesitatingly, for it is best not to lose the first impression”. But typical computer

painting interfaces often interfere with this directive, requiring the painter to switch

tools or colors often, via invocations of a series of cumbersome menus. Part of the

reason for needing frequent tool switching is the lack of versatility in the tool models

themselves. A real painter does not need more than a handful of brushes because a

single real brush can make a wide variety of different marks depending on pressure and

loading, and on the 6DOF motion of the artist’s hand. However, even the pressure-

sensitive tools provided by the more sophisticated painting programs available today

can usually at most vary a single parameter (e.g. size or opacity) in response to the

user’s input. The result is that painting programs end up requiring dozens of tools,

each in dozens of different sizes. A real brush has greater flexibility and versatility,

and the virtual 3D brush model I have presented brings these benefits to the world of

digital painting, as well.

9.1.1 Mayer’s Attributes

In the introduction I presented Mayer’s list of the positive attributes of oil paints and

brought attention to three in particular important for digital painting as well:

217

1. Its great flexibility and ease of manipulation, and the wide range of varied effects

that can be produced.

2. The artist’s freedom to combine transparent and opaque effects, glaze and body

color, in full range in the same painting.

3. The dispatch with which a number of effects can be obtained by a direct, simple

technique.

Each of these attributes is captured or reproduced in one way or another by the

physically-based models for the traditional painting materials and tools that I have

presented. In my systems, the last is perhaps due mostly to the versatile brush models;

the second is most attributable to the paint models; and the first is achieved by equal

parts of the two.

9.1.2 Process, Accident, and Complexity

In the introduction, I also discussed the three main qualities overlooked in most com-

puter painting programs today: process, accident, and complexity. The overall design

of the interface I have presented, which consists almost entirely of just brushes, palette,

canvas and paint, ensures that the process of painting is the focus. Users cannot

get their attention diverted searching for how to get some particular feature to work,

because the features are all evident, and the features all lead the artist back to the

central process of creating a work of art.

The physically-based models I have presented embody the rich, complex behavior of

real natural paint media and tools. The 6DOF brush model with dynamic deformation

enables the painter the create a wide variety of complex marks simply by varying how

the brush is wielded. The paint can be spread, pushed, scraped and squished and it

will react realistically, and not always predictably. Thanks to the organic complexity

218

inherent in the tool models, the serendipitous accident, the “happy accident” as Bob

Ross calls it, is not engineered out of existence in the pointless pursuit of precision.

9.2 Future Work

I have demonstrated several very capable physically-based models that are able to in-

teractively deliver a physically realistic simulation of the behavior of painting materials

and tools, and I have presented several painting systems based on these models to

demonstrate their effectiveness. Nevertheless, there are still many exciting possibilities

for improvements, and plenty of unexplored avenues for future research based on the

successful results presented here.

First, I have already given a few specific suggestions for future improvements to

specific components within the previous chapters covering each of models for brush,

paint and haptics, so I will not repeat those here. But there are some future possibilities

that have not been discussed relating to further applications of a 3D haptic painting

system as a whole.

For instance, having a 6DOF input device and a haptic output device creates many

new possibilities. It may be possible to use the haptic interface to record every motion

made by a master painter and then draw on this motion library to help someone learning

to paint by actually guiding their hands with haptic feedback. Or even aside from

haptics it would be interesting to build up a model of a particular painter’s characteristic

motions and technique. From this data one could possibly create new paintings in the

same style automatically.

Another interesting possibility is stroking or fill by example. Currently with my

systems, every single stroke must be painted by the user. But for covering a large

area with small strokes, or with dots as in the pointillism style, this can be tedious.

219

Some painting programs feature modes or brushes that create particular instances

of such effects, but it would be more useful if the user could demonstrate a short

example of a stroking style, and then have the computer analyze and deduce the

characteristic aspects of the motion. Then the user could fill large areas quickly with

strokes characteristic of his or her own style. The computer’s version of the motion

should also, of course, display the same degree of variability that was in the human’s

motion. Then the human can simply guide the overall direction or perhaps the intensity

of the motion via the input device in order to fill large areas with their own unique

style, semi-automatically.

In terms of the materials and process supported by the painting simulation, there

is much that can be done. There are many types of painting out there, and artists

have a way of co-opting any material at hand to use in creating works of art. Bits

of ribbon or hair, sand, paper scraps, or other random collage objects often find their

way mixed in with the paint in modern works. Ideally such a wide variety of materials

would be available to the digital artist as well. It would be interesting to create a whole

separate program, still aimed at artists, but dedicated to designing materials for use

in the digital artworks. These materials could behave in normal physical ways, like

fluids or solids or anywhere in between, or they could behave differently from all known

terrestrial materials, according to the artist’s desire.

In terms of processes, Jackson Pollock created many of his paintings by dripping

paint onto a large canvas on the floor as he walked around it. Another artist gained

moderate fame in the 80’s by creating paintings using buckets of paint blown onto a

canvas by jet engines. These processes are outside the scope of possibility with my

current models. What is required is some way to abstract the process at a higher level

so as to encompass any process the artist can envision. Painting large scale works like

murals requires a much different physical setup from that of smaller works. Scaling

220

the painting system up to allow working on mural sized regions using projectors and

tracking devices would be interesting.

An artist (a painter) on the radio recently said that he had realized that painting was

about stillness, that that was its unique limitation that the painter must accept. But

that is no longer necessarily true for paintings on a computer. There is a whole world

of possibilities open when it comes to digital tools for creating moving, or interactive

paintings. Paint can flow fluidly or form structures that morph into other structures.

The great challenge is how to tame the complexity added by the extra dimension of

time to create an interface that is not overwhelming.

I made extensive use of the computational power of GPUs in the IMPaSTo paint

model. However, the speed and capabilities of GPUs continue to grow at an alarming

rate. In the future it may be possible to perform all of the simulation on the GPU,

brush, paint, and rendering, and with much higher resolution. For instance, in the

near future the GPU may be able to simulate every one of the thousands of bristles

on a real brush independently at interactive rates. Twenty years from now it will no

doubt be possible to interactively perform a high fidelity simulation of a visco-elastic

or visco-plastic paint-like material using a method like that in (Goktekin et al., 2004),

which today requires a minute per time-step, and the GPU will likely be involved. In

the future, even the haptic and friction models may be evaluated on the GPU, as the

work of (Otaduy et al., 2004) indicates.

I have presented a natural, physical interface for one particular application, painting.

However the use of physically-based user interface components could potentially lead to

enhancements in a much wider range of applications. Certainly other content creation

applications, such as 3D modeling and sculpting tools, are good candidates for a

physically based interface, and some work has already been done in those areas (Foskey

et al., 2002; FreeForm, 2004). In animation, interfaces for character posing currently use

221

inverse kinematics extensively, but treating skeletons as elasto-plastic materials could

make some tasks easier. In fact, any application in which a user works with virtual

physical objects could benefit from incorporating the real-world physical behavior of

those objects into the system via physically-based models.

This is of course not to say that physical models will always improve an interface.

For instance, a word processor that models the motion of the arms of a mechanical

typewriter smashing into the paper will not lead to a better word processor. But on

the other hand, handwriting input systems can benefit from having a physical model of

how pen and paper interact. Sousa’s work on modeling pencils is another good example

along the same lines (Sousa, 1999).

Even in non-critical capacities, physically-based modeling can add richness to a

user interface. A good example is the digital audio mixing program, Reason, from Pro-

pellerhead Software (Reason, 2004). Reason presents the user with a virtual equipment

rack. Turn the rack around and you can see all the cabling connecting various pieces

of virtual audio equipment together. The cables are implemented using a dynamic,

springy, physically-based model that allows the cables to bounce and drape naturally.

The same function could have been accomplished by drawing line segments, but having

physically simulated cables just adds a tangibility that encourages you to interact with

the interface.

9.3 Conclusions

Painting is a form of art that has been practiced for centuries by people all over the

world. Traditional painting will not ever disappear. But neither will digital painting.

In this dissertation I have shown that it is possible to create realistic digital models of

the primary tools in a traditional painter’s toolbox, thereby creating a bridge between

222

the traditional and the digital. A painting program enhanced with the physically-based

brush, paint, and haptic models as I have presented here can provide the artist with

a painting system that combines the best aspects of digital content creation with the

many benefits of the traditional tools and processes. The result is a painting program

that captures the “organic” feel of natural media desired by artists. It brings the three

main advantages of oil painting cited by Mayer to bear, and it successfully injects the

three important principles of process, accident, and complexity into the world of digital

painting. Finally, the techniques I have presented in this dissertation enable painting

systems that are both flexible and versatile while still being simple enough for a child

to use; yet, like traditional painting, they offer a lifetime of potential to advance from

novice to virtuoso.

223

Appendix A

Brush Optimization Derivations

Most optimization methods, including the SQP method I use for brush simulation,

work best when at least first derivatives of the objective function and constraints can

be computed. If they are very expensive to compute it is possible to estimate derivatives

with finite differences, but this is not as reliable, and it requires multiple evaluations of

the objective function to approximate one derivative. For brush energy optimization,

the derivatives of Equation 3.1 with respect to all the joint parameters are needed, and

these can all be expressed in closed-form. Computationally, the analytical derivative

expressions are similar in cost to the objective function itself, and contain many common

subexpressions, which can be reused for greater efficiency.

A.1 Spring Energy Derivative

The derivatives of the spring potential (Equation 3.2) for the Euler XYZ-angle repre-

sentations are given by:

∂

∂θj

Es,i =
∂

∂θj

1

2
Kiβ

2
i = 0, for i 6= j (A.1)

∂

∂φj

Es,i =
∂

∂φj

1

2
Kiβ

2
i = 0, for i 6= j (A.2)

224

For i = j one obtains:

∂

∂θi

1

2
Kiβ

2
i =

∂

∂θi

1

2
Ki

(

cos−1(cos θi cos φi)
)2

=
Kiβi sin θi cos φi

√

1− cos2 θi cos2 φi

, (A.3)

∂

∂φi

1

2
Kiβ

2
i =

Kiβi cos θi sin φi
√

1− cos2 θi cos2 φi

. (A.4)

Equations A.3 and A.4 appear to be undefined at the brush rest pose, but they are

actually both 0 in the limit.

A.2 Friction Derivative

For the derivatives of the isotropic friction potential (Equation 3.3), first I will introduce

some notation for convenience. Let us denote the full vector of joint parameters simply

as q. Next, let u = ∆xc,i = (pi − p0
i), where pi = pi(q) is the current position of joint

i, and p0
i is its initial position. Differentiation with respect to the joint parameters

gives us

∂Ef,i

∂q
=

∂

∂q
µ|Fn,i| ‖u‖

=
∂

∂q
µ|Fn,i|

(

(pi − p0
i)

T (pi − p0
i)

)
1

2

= µ|Fn,i|
(pi − p0

i)
T

‖pi − p0
i ‖

∂pi

∂q
, (A.5)

where ∂pi/∂q is the Jacobian of the forward kinematics for joint i on the kinematic

chain (Equation 3.11). The above is the friction derivative for a particular contact joint,

i. The total friction derivative is the sum of all such terms, one for each joint of the

brush skeleton that is in contact. The normal force, |Fn,i|, is assumed to be constant

over the course of an optimization step.

225

A.3 Anisotropic Friction Derivative

Equation 3.14 can also be differentiated analytically by application of the product rule.

To use the product rule the only additional information required is ∂η/∂q. Augmenting

the notation above, let û ≡ u/‖u‖. If η = 0, I simply set ∂η/∂q = 0. For η > 0, one

can show that

∂ηi

∂q
= Cηk(dp · û)k−1

dT
p

‖u‖
(I− ûûT)

∂pi

∂q
(A.6)

then this can be combined with (A.5) using straighforward application of the product

rule to get the full anisotropic ∂Ef/∂q. In the above, I have made use of the identity

∂x̂

∂q
=

∂x̂

∂x

∂x

∂q
=

(

I− x̂x̂T

‖x‖

)

∂x

∂q
. (A.7)

For a concrete example, let us take x = x(t), and calculate the rate of change of x̂(t)

with respect to time. Then one obtains

˙̂x =

(

I− x̂x̂T

‖x‖

)

ẋ. (A.8)

So, for example, if x is growing in the direction it already points, i.e. ẋ = cx, then one

would expect from geometric principles that ˙̂x = 0. Substituting into Equation A.8,

˙̂x =

(

I− x̂x̂T

‖x‖

)

cx

= c
(

I− x̂x̂T
)

x̂

= c (x̂− x̂(x̂ · x̂))

= 0,

which is as expected.

226

A.4 Damping Derivative

The main complexities in differentiating the damping derivative are the inverse cosine

hidden in the ∆βi term, and the absolute value sign. Note, just as in Equations A.1–

A.2, that for i 6= j, the derivative of the damping term is zero. For i = j we have

∂∆βi

∂θi

=
∂βi

∂θi

=
∂

∂θi

cos−1(cos θi cos φi)

=
sin θi cos φi

√

1− cos2 θi cos2 φi

(A.9)

∂∆βi

∂φi

=
cos θi sin φi

√

1− cos2 θi cos2 φi

. (A.10)

Given these, the full derivative can be computed as

∂Ed,i

∂θi

=
∂Di|∆βi|

∂θi

= Di

0 if ∆βi = 0

−∂∆βi/∂θi if ∆βi < 0

∂∆βi/∂θi if ∆βi > 0

(A.11)

∂Ed,i

∂φi

= Di

0 if ∆βi = 0

−∂∆βi/∂φi if ∆βi < 0

∂∆βi/∂φi if ∆βi > 0

(A.12)

227

Appendix B

An Artist’s Statement

My View of IMPaSTo

John W. Holloway

6/5/04

I received a BFA in Painting from the University of Cincinnati in 1981. For the

next 13 years I practiced the craft of painting on a full time basis in many of its

different applications and permutations of technology, short that of digital. In 1995

I received an Associates of Science (Scientific Visulization/C++ programming) from

Wake Tech Community college of Raliegh, NC. I then began work with what is now

the “Technology Assisted Learning” (TAL) division of the “Research Triangle Institute

International” (RTI) of Durham, NC.

My focus for the past 10 years has been the development of 3D environments for

interactive real time training applications.

In the summer of 2001 I received a phone call from the floor of the Siggraph

conference in Los Angeles from an associate. He described an experimental application

being exhibited by Bill Baxter of UNC Chapel Hill, NC. My friend suggested that I

look into Mr. Baxter’s work due to my own interest in painting and digital graphics. I

must admit I was skeptical at best.

I contacted Bill immediately and he was kind enough to permit me a couple of

hours with his dAb, later to become IMPaSTo, application. In the course of those few

hours I went from skeptic to true believer of Bills work and immediately recognized the

228

possibilities and significance of this technology. For the past 3 years it has been my

pleasure to experiment with IMPaSTo through its evolution.

There are many graphics applications available for image making and I have worked

with a number of them. IMPaSTo offers a very direct bridge for a crossover in painting

from the analog to the digital world. The haptic interface provides for the physical

dimension and the use of volumetric modeling through voxels allows for the visual

aspect, completing that circuit.

What is uniquely significant about IMPaSTo for me is the ability to approach digital

image creation as a “painter” rather than a “graphic artist”. This is a huge distinction.

The IMPaSTo technology permits me to create a more pure “art” in the computer as

opposed to creating pure “graphics” which is more the case with the dominant graphics

development applications.

With this technology I am able to work with the freedom of the brush to canvass in a

digital 3D environment. This freedom allows for the added pleasure of the unexpected,

the “happy accident”, that dynamic that makes for artful expression. The combination

of interactions between the optical mixing of color, line, mark and texture that until

now I could find only in the analog world I can now find in IMPaSTo. As this is a

digital tool I am also provided the opportunity of versioning, not possible in analog

painting. IMPaSTo also provides for the manipulation of some of the basic parameters

to affect its behavior and manipulation of the digital medium.

Within the art world, traditional painters have rejected the computer primarily

for its inability to produce images that are not purely graphic in nature. There is

no “organicness”, if you will, within digital images for obvious reasons. These images

tend to be too clean, too sterile, too flat and too temporal. The need for an artist

to evoke a feeling of soul is problematic and hardly fluid with the dominant digital

technologies available. IMPaSTo represents a change in approach that begins to bridge

229

this philosophical gap. IMPaSTo offers the introduction of, or rather, the simulation

of that illusive “organic” factor.

I have found this technology to be extremely compelling. I am very grateful that

Mr. Baxter has chosen to take this journey and has permitted me to tag along and gain

a glimpse of what may prove to be a very significant development for the production

of digital art.

It may be a reach to suggest that this technology could represent the beginning of

a new genre in digital art creation and then, maybe not. This technology certainly

contains the elements that such a movement could be built upon.

In this tool we may very well be witnessing the beginnings of a technology that will

allow artists to create truly unique one of a kind digital artworks that make that final

“fluid” connection between the analog and digital worlds.

230

231

Bibliography

Adams, B., Wicke, M., Dutré, P., Gross, M., Pauly, M., & Teschner, M. (2004).
Interactive 3D painting on point-sampled objects. Eurographics Symposium on
Point-Based Graphics.

Agrawal, S. K. & Fabien, B. C. (1999). Optimization of Dynamic Systems. Kluwer
Press.

Agrawala, M., Beers, A. C., & Levoy, M. (1995). 3D painting on scanned surfaces. In
Hanrahan, P. & Winget, J., editors, 1995 Symposium on Interactive 3D Graphics,
pages 145–150. ACM SIGGRAPH. ISBN 0-89791-736-7.

ArtRage (2004). Ambient Design. http://www.ambientdesign.com/artrage.html.

Ashton, D. (1972). Picasso on Art: A Selection of Views. Thames and Hudson.

Avila, R. S. & Sobierajski, L. M. (1996). A haptic interaction method for volume
visualization. Proceedings of Visualization’96, pages 197–204.

Bandyopadhyay, D., Raskar, R., & Fuchs, H. (2001). Dynamic shader lamps : Painting
on real objects. In Proceedings of the International Symposium on Augmented
Reality (ISAR 2001).

Baxter, W. V. & Lin, M. C. (2004). A versatile interactive 3D brush model. Proc. of
Pacific Graphics 2004, pages 319–328.

Baxter, W. V., Liu, Y., & Lin, M. C. (2004a). A viscous paint model for interac-
tive applications. Computer Animation and Virtual Worlds, 15(3–4):433–442.
http://gamma.cs.unc.edu/viscous.

Baxter, W. V., Scheib, V., & Lin, M. C. (2001). dAb: Interactive haptic painting with
3D virtual brushes. In Fiume, E., editor, SIGGRAPH 2001, Computer Graphics
Proceedings, pages 461–468. ACM Press / ACM SIGGRAPH.

Baxter, W. V., Wendt, J., & Lin, M. C. (2004b). IMPaSTo: A realistic model for
paint. In Proceedings of the 3rd International Symposium on Non-Photorealistic
Animation and Rendering, pages 45–56.

Bier, E. A., Stone, M. C., Fishkin, K., Buxton, W., & T.Baudel (1994). A taxonomy of
see-through tools. Proceedings of the ACM CHI’94 Conference on Human Factors
in Computing Systems, pages 358–364.

Blender (2004). Blender 3D. http://www.blender3d.org.

232

Bleser, T. W., Sibert, J. L., & McGee, J. P. (1988). Charcoal sketching: returning
control to the artist. ACM Trans. Graph., 7(1):76–81.

Bloomer, J. (2000). Practical Fluid Mechanics for Engineering Applications. Marcel
Dekker.

Buxton, W. & Myers, B. A. (1986). A study in two-handed input. Proceedings of
the ACM CHI’86 Conference on Human Factors in Computing Systems, pages
321–326.

Callet, P. (1996). Pertinent data for modelling pigmented materials in realistic
rendering. Computer Graphics Forum, 15(2):119–127.

Carlson, M., Mucha, P. J., R. Brooks Van Horn, I., & Turk, G. (2002). Melting
and flowing. In Proceedings of the ACM SIGGRAPH symposium on Computer
animation, pages 167–174. ACM Press.

Catmull, E. (1974). A subdivision algorithm for computer display of curved surfaces.
PhD thesis, University of Utah.

Chan, C. C. & Akleman, E. (2002). Two methods for creating chinese painting.
Proceedings of Pacific Graphics, pages 403–412.

Chen, J. & Lobo, N. (1995). Toward interactive-rate simulation of fluids with moving
obstacles using navier-stokes equations. Graphical Models and Image Processing,
pages 107–116.

Chipp, H. B. (1968). Theories of Modern Art. University of California Press.

Chorin, A. (1968). Numerical solution of the navier-stokes equations. Math. Comp.,
22:745–762.

Chu, N. S. & Tai, C. L. (2002). An efficient brush model for physically-based 3D
painting. Proc. of Pacific Graphics, pages 413–423.

Chu, N. S. & Tai, C. L. (2004). Real-time painting with an expressive virtual chinese
brush. IEEE Computer Graphics and Applications, 24(5):76–85.

Cockshott, T. (1991). Wet and Sticky: A novel model for computer based painting.
Ph.D. Thesis, University of Glasgow, Glasgow, Scotland.

Cockshott, T., Patterson, J., & England, D. (1992). Modelling the texture of paint.
Computer Graphics Forum (Eurographics’92 Proc.), 11(3):C217–C226.

Colgate, J. E. & Brown, J. M. (1994). Factors affecting the z-width of a haptic display.
IEEE Conference on Robotics and Automation, pages 3205–3210.

Curtis, C., Anderson, S., Seims, J., Fleischer, K., & Salesin, D. (1997). Computer-
generated watercolor. Proc. of SIGGRAPH’97, pages 421–430.

233

Deep Paint (2000). Right Hemisphere. http://www.righthemisphere.com/products/dpaint/.

Deep Paint 3D (2000). Right Hemisphere. http://www.righthemisphere.com/products/dp3d/.

Desbrun, M. & Cani, M. P. (1996). Smoothed particles: A new paradigm for
animating highly deformable bodies. In Computer Animation and Simulation
’96 (Proceedings of EG Workshop on Animation and Simulation), pages 61–76.
Springer-Verlag.

Dorsey, J. & Hanrahan, P. (1996). Modeling and rendering of metallic patinas. In
Rushmeier, H., editor, SIGGRAPH 96 Conference Proceedings, Annual Confer-
ence Series, pages 387–396. ACM SIGGRAPH, Addison Wesley. held in New
Orleans, Louisiana, 04-09 August 1996.

Duncan, D. R. (1940). The colour of pigment mixtures. Proceedings of the Physical
Society, London, 52:380–390.

Duncan, D. R. (1949). The colour of pigment mixtures. Journal of the Oil and Colour
Chemists Association, 32(7):269–321.

Duncan, D. R. (1962). The identification and estimation of pigments in pigmented
compositions by reflectance spectrophotometry. Journal of the Oil and Colour
Chemists Association, 45(5):300–324.

Duntley, S. Q. (1942). The optical properties of diffusing materials. Journal of the
Optical Society of America, 32(2):61–70.

Durbeck, L., Macias, N., Weinstein, D., Johnson, C., & Hollerbach, J. (1998). Scirun
haptic display for scientific visualization. Phantom Users Group Meetings.

Em, D. (1983). Butterfly nets revisited: The artist in the lab. In ACM SIGGRAPH
1983.

Enright, D., Marschner, S., & Fedkiw, R. (2002). Animation and rendering of complex
water surfaces. In Proceedings of the 29th annual conference on Computer graphics
and interactive techniques, pages 736–744. ACM Press.

Evans, R. D. (1948). An Introduction to Color. John Wiley and Sons, Inc.

Expression 3 (2004). Creature House. http://www.microsoft.com/products/expression/.

Fedkiw, R., Stam, J., & Jensen, H. W. (2001). Visual simulation of smoke. In Fiume,
E., editor, SIGGRAPH 2001, Computer Graphics Proceedings, pages 15–22. ACM
Press / ACM SIGGRAPH.

Fishkin, K. (1983). Applying Color Science to Computer Graphics. Master’s thesis,
University of California, Berkeley, CA.

234

Foskey, M., Otaduy, M., & Lin, M. (2002). Artnova: Touch-enabled 3d model design.
Proc. of IEEE Virtual Reality Conference.

Foster, N. & Fedkiw, R. (2001). Practical animations of liquids. In Fiume, E., editor,
SIGGRAPH 2001, Computer Graphics Proceedings, pages 23–30. ACM Press /
ACM SIGGRAPH.

Foster, N. & Metaxas, D. (1996). Realistic animation of liquids. Graphical models and
image processing: GMIP, 58(5):471–483.

FreeForm (2004). SensAble Technologies, Inc. http://www.SensAble.com.

Gair, A. (1997). The Beginner’s Guide, Oil Painting. New Holland Publishers.

Gibson, S. (1995). Beyond volume rendering: Visualization, haptic exploration, and
physical modeling of element-based objects. In Proc. Eurographics workshop on
Visualization in Scientific Computing, pages 10–24.

Gleicher, M. (1998). Retargetting motion to new characters. In Proceedings of the 25th
annual conference on Computer graphics and interactive techniques, pages 33–42.
ACM Press.

Goktekin, T. G., Bargteil, A. W., & O’Brien, J. F. (2004). A method for animating
viscoelastic fluids. In Proceedings of ACM SIGGRAPH 2004. ACM Press.

Golub, G. H. & Van Loan, C. F. (1983). Matrix Computations. The Johns Hopkins
University Press.

Gooch, B. & Gooch, A. A. (2001). Non-Photorealistic Rendering. AK Peters, Ltd.

Greene, R. (1985). The drawing prism: a versatile graphic input device. In Proceedings
of the 12th annual conference on Computer graphics and interactive techniques,
pages 103–110. ACM Press.

Gregory, A., Ehmann, S., & Lin, M. C. (2000a). inTouch: Interactive multiresolution
modeling and 3d painting with a haptic interface. Proc. of IEEE VR Conference.

Gregory, A., Mascarenhas, A., Ehmann, S., Lin, M. C., & Manocha, D. (2000b). 6-dof
haptic display of polygonal models. Proc. of IEEE Visualization Conference.

Griebel, M., Dornseifer, T., & Neunhoeffer, T. (1990). Numerical Simulation in
Fluid Dynamics: A Practical Introduction. SIAM Monographcs on Mathematical
Modeling and Computation. SIAM.

Guo, Q. & Kunii, T. L. (1991). Modeling the diffuse paintings of sumie. In Modeling
in Computer Graphics. Proc. of the IFIP WG 5.10 Working Conference, pages
329–338.

235

Guo, Q. & Kunii, T. L. (2003). ”nijimi” rendering algorithm for creating quality black
ink paintings. Proceedings of Computer Graphics International, pages 152–159.

Haase, C. S. & Meyer, G. W. (1992). Modeling pigmented materials for realistic image
synthesis. ACM Trans. on Graphics, 11(4):305.

Hall, R. (1989). Illumination and Color in Computer Generated Imagery. Springer
Verlag.

Hanrahan, P. & Haeberli, P. E. (1990). Direct WYSIWYG painting and texturing on 3D
shapes. In Baskett, F., editor, Computer Graphics (SIGGRAPH ’90 Proceedings),
volume 24, pages 215–223.

Hapke, B. (1993). Theory of Reflectance and Emittance Spectroscopy. Cambridge
University Press.

Harlow, F. H. & Welch, J. E. (1965). Numerical calculation of time-dependent viscous
incompressible flow of fluid with free surface. The Physics of Fluids, 8(12):2182–
2189.

Hays, J. & Essa, I. (2004). Image and video-based painterly animation. In Proceed-
ings of the 3rd International Symposium on Non-Photorealistic Animation and
Rendering, pages 45–56.

Hayward, V., Astley, O. R., Cruz-Hernandez, M., Grant, D., & Robles-De-La-Torre,
G. (2004). Haptic interfaces and devices. Sensor Review, 24(1):16–29.

Helman, J. & Hesselink, L. (1990). Representation and display of vector field topology
in fluid flow data sets. Visualization in scientific computing, pages 61–73.

Helman, J. L. & Hesslink, L. (1991). Surface representations of two- and three-
dimensional F luid flow topology. In Visualization ’91, pages 6–13.

Hertzmann, A. (1998). Painterly rendering with curved brush strokes of multiple sizes.
Proc. of ACM SIGGRAPH’98, pages 453–460.

Hertzmann, A. (2001). Paint by relaxation. Proc. Computer Graphics International,
pages 47–54.

Hertzmann, A. (2002). Fast paint texture. NPAR 2002: ACM Symposium on Non-
Photorealistic Animation and Rendering, pages 91–96.

Hinsinger, D., Neyret, F., & Cani, M. (2002). Interactive animation of ocean waves.
Proc. of ACM SIGGRAPH/Eurographics Symposium on Computer Animation.

Hirt, C. W. & Nichols, B. D. (1981). Volume of fluid (vof) method for the dynamics of
free boundaries. Journal of Computational Physics, 39(1):201–225.

236

Hirt, C. W. & Shannon, J. P. (1968). Surface stress conditions for incompressible-flow
calculations. Journal of Computational Physics, 2:403–411.

Hollerbach, J., Cohen, E., Thompson, W., Freier, R., Johnson, D., Nahvi, A.,
Nelson, D., Thompson, T., & Jacobsen, S. (1997). Haptic interfacing for virtual
prototyping of mechanical cad designs. In ASME Design for Manufacturing
Symposium.

Honour, H. & Fleming, J. (1995). The Visual Arts: A History. Harry N. Abrams, Inc.

House, D. & Breen, D., editors (2000). Cloth Modeling and Animation. AK Peters.

Hsu, S. C. & Lee, I. H. H. (1994). Drawing and animation using skeletal strokes. In
Proceedings of the 21st annual conference on Computer graphics and interactive
techniques, pages 109–118. ACM Press.

Hsu, S. C., Lee, I. H. H., & Wiseman, N. E. (1993). Skeletal strokes. In Proceedings of
the 6th annual ACM symposium on User interface software and technology, pages
197–206. ACM Press.

Huang, S.-W., Way, D.-L., & Shih, Z.-C. (2003). Physical-based model of ink diffusion
in chinese ink paintings. Journal of WSCG.

Iwata, H. (1990). Artificial reality with force-feedback: Development of desktop
virtual space with compact master manipulator. In Baskett, F., editor, Computer
Graphics (SIGGRAPH ’90 Proceedings), volume 24, pages 165–170.

Iwata, H. & Noma, N. (1993). Volume haptization. Proc. of IEEE VRAIS, pages 16–23.

Jensen, H. W., Marschner, S. R., Levoy, M., & Hanrahan, P. (2001). A practical model
for subsurface light transport. In Proceedings of the 28th annual conference on
Computer graphics and interactive techniques, pages 511–518. ACM Press.

Johnson, D., Thompson II, T. V., Kaplan, M., Nelson, D., & Cohen, E. (1999). Painting
textures with a haptic interface. Proceedings of IEEE Virtual Reality Conference.

Johnson, G. M. & Fairchild, M. D. (1999). Full-spectral color calculations in realistic
image synthesis. IEEE Computer Graphics & Applications, 19(4).

Johnson, P. (2003). Art: A New History. Harper Collins.

Johnston-Feller, R. (2001). Color Science in the Examination of Museum Objects. The
Getty Conservation Institute.

Judd, D. B. & Wyszecki, G. (1963). Color in Business, Science, and Industry. John
Wiley and Sons, Inc., 2nd edition.

237

Kabbash, P., Buxton, W., & Sellen, A. (1994). Two-handed input in a compound task.
Proceedings of the CHI’94 Conference on Human Factors in Computing Systems,
pages 417–423.

Kabbash, P., MacKenzie, I. S., & Buxton, W. (1993). Human performance using
computer input devices in the preferred and non-preferred hands. Proceedings of
ACM InterCHI ‘93, pages 474–481.

Kass, M. & Miller, G. (1990). Rapid, stable fluid dynamics for computer graphics. In
Proceedings of the ACM SIGGRAPH symposium on Computer animation, pages
49–57. ACM Press.

Kershaw, D. S. (1978). The incomplete cholesky–conjugate gradient method for the
iterative solution of systems of linear equations. Journal of Computational
Physics, 26:43–65.

Kim, Y., Otaduy, M., Lin, M., & Manocha, D. (2002). 6-dof haptic display using
localized contact computations. Proc. of Haptics Symposium, pages 209–216.

Körtum, G. (1969). Reflectance Spectroscopy. Springer-Verlag.

Kubelka, P. (1948). New contributions to the optics of intensely light-scattering
material, part I. J. Optical Society, 38:448.

Kubelka, P. (1954). New contributions to the optics of intensely light-scattering
material, part II: Non-homogenous layers. J. Optical Society, 44:p.330.

Kubelka, P. & Munk, F. (1931). Ein beitrag zur optik der farbanstriche. Z. tech Physik,
12:593.

Kunii, T., Nosovskij, G., & Hayashi, T. (1995). A diffusion model for computer
animation of diffuse ink painting. In Computer Animation ’95, pages 98–102.

Laerhoven, T. V., Liesenborgs, J., & Reeth, F. V. (2004a). A paper
model for real-time watercolor simulation. Technical Report TR-
LUC-EDM-0403, EDM/LUC. http://research.edm.luc.ac.be/ tvanlaer-
hoven/publications/vanlaerhoven liesenborgs tr03.pdf.

Laerhoven, T. V., Liesenborgs, J., & Reeth, F. V. (2004b). Real-time watercolor
painting on a distributed paper model. In Proceedings of Computer Graphics
International.

Landau, L. & Lifschitz, E. (1975). Fluid Mechanics. Pergamon Press.

Lawrence, D. A., Lee, C. D., Pao, L. Y., & Novoselov, R. Y. (2000). Shock and
vortex visualization using a combined visual/haptic interface. Proc. of IEEE
Visualization, pages 131–137.

238

Lee, J. (1999). Simulating oriental black-ink painting. IEEE Computer Graphics &
Applications, 19(3):74–81.

Lee, J. (2001). Diffusion rendering of black ink paintings using new paper and ink
models. Computers & Graphics, 25:295–308.

LeVeque, R. J. (1992). Numerical Methods for Conservation Laws. Birkhauser Verlag.

Lewis, J. P. (1984). Texture synthesis for digital painting. Computer Graphics,
18(3):245–252.

Lin, W.-J. & Shih, Z.-C. (2004). Computer-generated chinese painting with physically-
based ink and color diffusion. Proceedings of Computer Graphics Workshop.

Litwinowicz, P. (1997). Processing images and video for an impressionist effect. Proc.
of SIGGRAPH’97, pages 407–414.

Massie, T. M. & Salisbury, J. K. (1994). The phantom haptic interface: A device for
probing virtual objects. Proc. of ASME Haptic Interfaces for Virtual Environment
and Teleoperator Systems, 1:295–301.

Mayer, R. (1991). The Artist’s Handbook of Materials and Techniques. Viking Books,
5 edition.

McNeely, W., Puterbaugh, K., & Troy, J. (1999). Six degree-of-freedom haptic
rendering using voxel sampling. Proc. of ACM SIGGRAPH, pages 401–408.

Meier, B. J. (1996). Painterly rendering for animation. In Rushmeier, H., editor,
SIGGRAPH 96 Conference Proceedings, Annual Conference Series, pages 477–
484. ACM SIGGRAPH, Addison Wesley. held in New Orleans, Louisiana, 04-09
August 1996.

Meriam, J. L. & Kraige, L. G. (1992). Engineering Mechanics: Statics. John Wiley &
Sons,Inc., 3rd edition.

Meyer, G. W. (1988). Wavelength selection for synthetic image generation. CVGIP,
41:57–79.

Mi, X.-F., Tang, M., & Dong, J.-X. (2004). Droplet: A virtual brush model to simulate
chinese calligraphy and painting. Journal of Computer Science and Technology,
pages 393–404.

Muller, M., Charypar, D., & Gross, M. (2003). Particle-based fluid simulation for
interactive applications. Proc. of ACM SIGGRAPH/Eurographics Symposium on
Computer Animation.

Nahvi, A., Nelson, D., Hollerbach, J., & Johnson, D. (1998). Haptic manipulation of
virtual mechanisms from mechanical CAD designs. In Proc. of IEEE Conference
on Robotics and Automation, pages 375–380.

239

Nichols, B. D. & Hirt, C. W. (1971). Improved free surface boundary conditions for
numerical incompressible-flow calculations. Journal of Computational Physics,
8:434–448.

O’Brien, J. F. & Hodgins, J. K. (1995). Dynamic simulation of splashing fluids. In
Computer Animation ’95, pages 198–205.

Oddy, R. J. & Willis, P. J. (1991). A physically based colour model. Computer Graphics
Forum (Eurographics), 10(2):121–127.

Osher, S. & Fedkiw, R. (2002). Level Set Methods and Dynamic Implicit Surfaces.
Applied Mathematical Sciences. Springer-Verlag.

Otaduy, M. A., Jain, N., Sud, A., & Lin, M. C. (2004). Haptic display of interaction
between textured models. To appear in Proceedings of IEEE Visualization
Conference. Austin, Tx.

Otaduy, M. A. & Lin, M. C. (2003). Sensation preserving simplification for haptic
rendering. Proc. of ACM SIGGRAPH.

Owen, R., Kurtenbach, G., Fitzmaurice, G., Baudel, T., & Buxton, W. (1998).
Bimanual manipulation in a curve editing task. Unpublished manuscript
(http://www.billbuxton.com/CurveMatch.html).

Painter 8 (2003). Corel. http://www.corel.com/painter/.

Pham, B. (1991). Expressive brush strokes. CVGIP: Graph. Models Image Process.,
53(1):1–6.

Photoshop (2004). Adobe. http://www.adobe.com/photoshop/.

Poirier, G. (2004). Human Skin Modelling and Rendering. Master’s thesis, University
of Waterloo. Technical Report Number CS-2004-05.

Posch, K. C. & Fellner, W. D. (1989). The circle-brush algorithm. ACM Trans. Graph.,
8(1):1–24.

Poynton, C. (2002). Color faq. http://www.poynton.com/ColorFAQ.html.

Reason (2004). Propellerhead Software. http://www.propellerheads.se/products/reason/.

Ristow, G. H. (1999). Particles moving in spatially bounded,viscous fluids. Computer
Physics Communications, pages 43–52.

Ristow, G. H. (2000). Tumbling motion of elliptical particles in viscous two-dimensional
fluids. International Journal of Modern Physics C, 11(0).

Rudolf, D., Mould, D., & Neufeld, E. (2003). Simulating wax crayons. In Proc. of
Pacifc Graphics, pages 163–172.

240

Rudolf, D., Mould, D., & Neufeld, E. (2004). A bidirectional deposition model of wax
crayons. Conputer Graphics Forum.

Ruspini, D., Kolarov, K., & Khatib, O. (1997). The haptic display of complex graphical
environments. Proc. of ACM SIGGRAPH, pages 345–352.

Saito, S. & Nakajima, M. (1999). 3D physically based brush model for painting.
SIGGRAPH99 Conference Abstracts and Applications, page 226.

Saito, S. & Nakajima, M. (2000). Physically based 3D brush model for interactive
painting. Jyouhou-Shori Gakkai Ronbunshi (A Japanese Journal), 41(3):608–615.

Saito, T. & Takahashi, T. (1990). Comprehensible rendering of 3D shapes. Computer
Graphics (SIGGRAPH’91 Proc.), 24(4):197–206.

Salisbury, K., Brock, D., Massie, T., Swarup, N., & Zilles, C. (1995a). Haptic rendering:
Programming touch interaction with virtual objects. In Hanrahan, P. & Winget,
J., editors, 1995 Symposium on Interactive 3D Graphics, pages 123–130. ACM
SIGGRAPH. ISBN 0-89791-736-7.

Salisbury, K., Brock, D., Massie, T., Swarup, N., & Zilles, C. (1995b). Haptic
rendering: Programming touch interaction with virtual objects. Proc. of 1995
ACM Symposium on Interactive 3D Graphics, pages 123–130.

Schofield, S. (1994). Non-photorealistic Rendering: A critical examination and proposed
system. PhD thesis, School of Art and Design, Middlesex University.

Schwartz, L. (1992). The Computer Artist’s Handbook: concepts, techniques, applica-
tions. Computer Creations Corporation, 1st edition.

Searby, A. D. & Walker, I. C. (1985). Computerized graphics system and method using
an electronically synthesized palette. United States Patent Number 4,524,421.

Shewchuk, J. (1994). An introduction to the conjugate gradient method without
the agonizing pain. Technical Report CMUCS-TR-94-125, Carnegie Mellon
University. (See also http://www.cs.cmu.edu/ quake-papers/painless-conjugate-
gradient.ps.).

Shoup, R. (2001). Superpaint: An early frame buffer graphics system. IEEE Annals of
the History of Computing, 23(2):32–37.

Small, D. (1991). Simulating watercolor by modeling diffusion, pigment, and paper
fibers. In SPIE Conference Proceedings, volume 1460, pages 140–146.

Smith, A. R. (1978). Paint. TM 7, NYIT Computer Graphics Lab.

Smith, A. R. (1997). Digital paint systems: A historical overview. TM 14, Microsoft.

241

Smith, A. R. (2001). Digital paint systems: An anecdotal and historical overview.
IEEE Annals of the History of Computing, 23(2).

Sourin, A. (2001). Functionally based virtual computer art. In Proceedings of the 2001
symposium on Interactive 3D graphics, pages 77–84. ACM Press.

Sousa, M. C. (1999). Computer-Generated Graphite Pencil Materials and Rendering.
Ph.D. Thesis, University of Alberta, Alberta, Canada.

Stam, J. (1999). Stable fluids. In Rockwood, A., editor, Siggraph 1999, Computer
Graphics Proceedings, pages 121–128, Los Angeles. Addison Wesley Longman.

Strassmann, S. (1986). Hairy brushes. Computer Graphics (SIGGRAPH’86 Proc.),
20:225–232.

Strothotte, T. & Schlechtweg, S. (2002). Non-Photorealistic Computer Graphics:
Modeling, Rendering and Animation. Morgan Kaufmann.

Subramanian, R. S. (2003). Non-newtonian fluids. From lecture notes for Fluid Me-
chanics, http://www.clarkson.edu/subramanian/ch301/notes/nonnewtonian.pdf.

Sutherland, I. (1963). Sketchpad, A Man-Machine Graphical Communication. Ph.D.
Thesis, Massachusetts Institute of Technology, Cambridge, MA.

Thompson, T., Johnson, D., & Cohen, E. (1997). Direct haptic rendering of sculptured
models. Proc. of ACM Interactive 3D Graphics, pages 167–176.

Tia (2001). Interview with Tia. http://www.pixar.com/artistscorner/tia/interview.html.
Interview of a Pixar artist found on Pixar’s web site.

Tome, M. F. & McKee, S. (1994). Gensmac: A computational marker and cell method
for free surface flows in general domains. J. Comp. Phys., 110:171–186.

Tu, X. (1996). Artificial Animals for Computer Animation: Biomechanics, Locomotion,
Perception, and Behavior. PhD thesis, University of Toronto.

Ware, C. & Baxter, C. (1989). Bat brushes: on the uses of six position and orientation
parameters in a paint program. In Proceedings of the SIGCHI conference on
Human factors in computing systems, pages 155–160. ACM Press.

Warnick, K. F. (2001). Gaussian quadrature and iterative linear system solution
methods. http://www.ee.byu.edu/ee/class/ee563/notes/gq tutorial.pdf”.

Whitted, T. (1983). Anti-aliased line drawing using brush extrusion. In Proceedings
of the 10th annual conference on Computer graphics and interactive techniques,
pages 151–156. ACM Press.

Williams, L. (1990). 3D paint. In Proceedings of the 1990 symposium on Interactive
3D graphics, pages 225–233. ACM Press.

242

Winkenbach, G. & Salesin, D. H. (1994). Computer-generated pen-and-ink illustration.
In Proceedings of the 21st annual conference on Computer graphics and interactive
techniques, pages 91–100. ACM Press.

Winkenbach, G. & Salesin, D. H. (1996). Rendering parametric surfaces in pen and
ink. In Proceedings of the 23rd annual conference on Computer graphics and
interactive techniques, pages 469–476. ACM Press.

Witkin, A. & Baraff, D. (1997). Physically Based Modeling: Principles and Practice.
ACM Press. Course Notes of ACM SIGGRAPH.

Witkin, A. & Kass, M. (1988). Spacetime constraints. In Dill, J., editor, Computer
Graphics (SIGGRAPH ’88 Proceedings), volume 22, pages 159–168.

Wong, H. & Ip, H. (2000). Virtual brush: A model-based synthesis of chinese
calligraphy. Computers & Graphics, 24.

Wright, W. D. (1958). The Measurement of Colour. The MacMillan Company.

Wyszecki, G. & Stile, M. (1982). Color Science. Wiley.

Wyvill, B., van Overveld, K., & Carpendale, S. (2004). Rendering cracks in batik. In
Proceedings of the 3rd international symposium on Non-photorealistic animation
and rendering, pages 61–69. ACM Press.

Xu, S., Lau, F., Tang, F., & Pan, Y. (2003). Advanced design for a realistic virtual
brush. Computer Graphics Forum (Eurographics ’03), 22(3):533–542.

Xu, S., Tang, F., Lau, F., & Pan, Y. (2002). A solid model based virtual hairy brush.
Computer Graphics Forum (Eurographics ’02), 21(3):299–308.

Yeh, J.-S., Lien, T.-Y., & Ouhyoung, M. (2002). On the effects of haptic display in
brush and ink simulation for chinese painting and calligraphy. Proc. of Pacific
Graphics 2002 (PG2002), pages 439–441.

Yu, Y. J., Lee, D. H., Lee, Y. B., & Cho, H. G. (2003). Interactive rendering technique
for realistic oriental painting. Journal of WSCG, 11(1):538–545.

Yu, Y. J., Lee, Y. B., Cho, H. G., & Lee, D. H. (2002). A model based technique for
realistic oriental painting. In 10th Pacific Conference on Computer Graphics and
Applications (PG’02), pages 452–453.

Z-Brush (2000). Pixologic. http://pixologic.com.

Zhang, Q., Sato, Y., Takahashi, J., Muraoka, K., & Chiba, N. (1999). Simple cellular
automaton-based simulation of ink behaviour and its application to suibokuga-
like 3D rendering of trees. Journal of Visualization and Computer Animation,
10:15–26.

243

Zimmer, M. A. (1994). System and method for digital rendering of images and printed
articulation. United States Patent Number 5,347,620.

Zimmer, M. A. (1998). Digital mark-making method. United States Patent Number
5,767,860.

