
Fast Computation of Generalized Voronoi Diagrams Using Graphics Hardware
Kenneth E. Hoff III, Tim Culver, John Keyser, Ming Lin, Dinesh Manocha

University of North Carolina at Chapel Hill, Dept. of Computer Science

Abstract: We present a new approach for computing generalized
Voronoi diagrams in two and three dimensions using
interpolation-based polygon rasterization hardware. The input
primitives may be points, lines, polygons, curves, or surfaces. The
algorithm computes a discrete Voronoi diagram by rendering a
three dimensional distance mesh corresponding to each primitive.
The polygonal mesh is a bounded-error approximation of a non-
linear distance function. The algorithm divides the space into
regular cells. For each cell it computes the closest primitive and
the distance to that primitive using polygon scan-conversion and
Z-buffer depth comparison. We present efficient techniques to
detect Voronoi boundaries and compute Voronoi neighbors. The
algorithm has been implemented on SGI workstations and PCs
using OpenGL and applied to complex 2D and 3D datasets. We
also demonstrate the applications of our algorithm to fast motion
planning in static and dynamic environments, and improving the
performance of continuous Voronoi diagram computation.

Key Words and Phrases: Voronoi diagrams, graphics hardware,
polygon rasterization, interpolation, motion planning, proximity,
medial axis, OpenGL, framebuffer techniques.

1 Introduction
Given a set of primitives, a Voronoi diagram partitions space into
regions, where each region consists of all points that are closer to
one primitive than to any other. Voronoi diagrams have been
widely used in a number of applications including visualization of
medical datasets, proximity queries, spatial data manipulation,
shape analysis, computer animation, robot motion planning,
modeling spatial structures and processes, pattern recognition,
locational optimization, and selection in user-interfaces. The
concept of Voronoi diagrams has been around for at least four
centuries, and since the 1970s, algorithms for computing Voronoi
diagrams of geometric primitives have been developed in
computational geometry and related areas.

The set of input primitives may include points, lines, polygons,
curves, polyhedra, curved surfaces, etc. Good theoretical and
practical algorithms are known for computing Voronoi diagrams
of points in any dimension. For higher order primitives like lines,
curves, and polyhedra, the boundaries of the generalized Voronoi
diagrams are composed of high-degree algebraic curves and
surfaces, and their intersections. However, current algorithms used
for representing and computing the Voronoi boundaries suffer
from efficiency and accuracy problems. As a result, no efficient
and numerically robust algorithms are known for constructing a
topologically consistent and exact representation of generalized
Voronoi diagrams.

Given the practical complexity of computing an exact generalized
Voronoi diagram, many authors have proposed algorithms for
computing an approximation or a discrete representation. Some
approaches are based on computing the Voronoi diagram of a
point-sampling of the primitives. Other approaches adaptively
subdivide space into rectangular or tetrahedral cells and compute
the boundary of the Voronoi diagram up to a pre-determined
precision [Laven92, Teich97, Vleug95, Vleug96]. In practice,
these approaches take considerable time and memory on large
numbers of input primitives. Furthermore, this makes it difficult to
use them in dynamic environments.

Cover Plate: Discrete approximation of the generalized Voronoi
diagram of four points, a line, a triangle, and one cubic Bézier curve
computed interactively on a PC.

Main Contributions: In this paper, we present an approach that
computes discrete approximations of generalized Voronoi
diagrams to an arbitrary resolution using polygon rasterization
hardware. Our contributions include:

1. Efficient methods to approximate the distance function for
lines, polygons, polyhedra, Bézier curves and surfaces, and
other higher order primitives using a mesh that is interpolated
by graphics hardware.

2. Adaptive techniques for generating the distance mesh of
polygonal elements so that the error is bounded by a specified
precision.

3. Efficient algorithms for detecting Voronoi boundaries and
neighbors, which are used for accurate visualization and
Delaunay triangulations.

4. Ability to construct weighted and farthest-site generalized
Voronoi diagrams in 2D and 3D.

5. Demonstration of the effectiveness of our approach to the
following applications:
• Computing generalized Voronoi diagrams of complex

3D polygonal data sets.
• Improving the efficiency of computing the exact and

continuous Voronoi boundaries by using neighbor-pair
pruning.

• Fast motion planning in static and dynamic
environments using discretized Voronoi diagrams.

The resulting techniques have been effectively implemented on
PCs and high-end SGI workstations using the OpenGL graphics
library. A 2D example computed in real-time is shown in the
cover plate. Our techniques improve upon the state of the art in
following ways:

• Generality: We make no assumption with respect to input
primitives. We only need to compute the distance to the
primitive from a point in space. For maximum effectiveness,
we need to be able to efficiently mesh its distance function.

• Efficiency: We show that our approach is quite fast. Its speed
arises from using coarse polygonal approximations of the
distance functions while still maintaining the required error
bound, using polygon rasterization hardware to reconstruct
the distance values, and using the Z-buffer depth comparison
test to perform distance comparisons. We demonstrate the 2D
approach on models composed of nearly 100K triangles in

real-time in a motion planning application through a complex
dynamic scene. We derive efficient meshing strategies for
polygonal models in 3D, and show the results of a prototype
implementation that demonstrates its potential.

• Tight Bounds on Accuracy: Althrough our approach
produces a discretized Voronoi diagram, all sources of error
are enumerated and techniques are given to produce output
within any specified tolerance.

• Ease of Implementation: The approach can be easily
implemented on current graphics systems to generate the
distance mesh. The special cases are limited and the problem
reduces to simply meshing a distance function for any new
primitive.

Organization: We survey related work on Voronoi diagrams in
Section 2. Section 3 gives an overview of our approach and
highlights the features of graphics hardware used by our
algorithm. We present algorithms for computing generalized
discrete Voronoi diagrams in Section 4. Section 5 provides a
detailed analysis of our algorithms. Section 6 discusses issues in
efficient implementation. In Section 7, we use our approximate
algorithm to improve the performance of a continuous Voronoi
diagram computation algorithm. Based on approximate Voronoi
diagrams, we demonstrate its application to motion planning in
static and dynamic environments in Section 8.

2 Related Work
The concept of Voronoi diagrams has been around for at least four
centuries. In his treatment of cosmic fragmentation in Le Monde
de Mr. Descartes, ou Le Traite de la Lumière, published in 1644,
Descartes uses Voronoi-like diagrams to show the disposition of
matter in the solar system and its environment. The first
presentations of this concept appeared in the work of [Diric50]
and [Voron08]. Although the concept has been around for a long
time, algorithms for computing Voronoi diagrams did not start
appearing until the 1970’s. See the surveys by [Auren91] and
[Okabe92] on various algorithms, applications, and
generalizations of Voronoi diagrams.

2.1 Voronoi Diagrams of Points
Among the algorithms known for computing Voronoi diagrams of
points in 2D, 3D, and higher dimensions are the divide-and-
conquer algorithm proposed by [Shamo75] and Fortune’s
sweepline algorithm [Fortu86]. Numerically robust algorithms for
constructing topologically consistent Voronoi diagrams have been
proposed by [Inaga92, Sugih94]. A number of implementations in
exact and floating-point arithmetic are also available.

2.2 Generalized Voronoi Diagrams
Algorithms have been proposed for constructing Voronoi
diagrams of higher order primitives like the lines, polygons, and
polyhedral and curved-surface models. Two broad approaches
based on incremental and divide-and-conquer techniques have
been summarized in [Okabe92]. The set of algorithms includes
divide-and-conquer algorithms for polygons [Lee82, Held97], an
incremental algorithm for polyhedra [Milen93b], algorithms based
on 3D tracing for polyhedral models [Milen93, Sherb95,
Culve98], curved primitives [Chian92], and CSG objects
[Dutta93, Hoffm94]. In all these cases, the computation of
generalized Voronoi diagrams involves representing and
manipulating high degree algebraic curves and surfaces and their
intersections. As a result, no efficient numerically robust
algorithms are known for computing them.

2.3 Approximate/Discrete Voronoi Diagrams
Previously proposed algorithms to compute approximations of
generalized Voronoi diagrams are based on sampling points on the
surface of the object and computing the Voronoi diagram of the
points [Sheeh95]. However, deriving any error bounds on the
output of such an approach is difficult, and the overall complexity
is not well understood.

[Vleug95] and [Vleug96] have presented an approach that
adaptively subdivides the space into regular cells and computes
the Voronoi diagram up to a given precision. [Laven92] uses an
octree representation of objects and performs spatial
decomposition to compute the approximation. [Teich97] computes
a polygonal approximation of Voronoi diagrams by subdividing
the space into tetrahedral cells. All these algorithms take
considerable time and memory for large models composed of tens
of thousands of triangles, and cannot easily be extended to directly
handle dynamic environments.

The idea of using polygon rasterizing hardware is suggested in the
OpenGL 1.1 Programming Guide for displaying Voronoi regions
of 2D points [Woo97].

2.4 Graphics Hardware
Polygon rasterization graphics hardware has been used for a
number of geometric computations, such as visualization of
constructive solid geometry models [Rossi86, Goldf89] and
interactive inspection of solids, including cross-sections and
interferences [Rossi92]. Algorithms for real-time motion planning
using raster graphics hardware have been proposed by [Lengy90].

3 Overview
In this section, we briefly give an overview of generalized
Voronoi diagrams, our approach for computing discrete
approximations of Voronoi diagrams, and polygon rasterization
hardware.

3.1 Generalized Voronoi Diagrams
Let us denote the set of input primitives as A1,A2,…,Ak. For any
point p in the space, let dist(p,Ai) denote the Euclidean distance
from the point p to the primitive Ai. Let us define the bisector of Ai

and Aj by
)},(),(|{),(jiji ApdistApdistpAAb ==

and the dominance region of Ai over Aj by
)},(),(|{),(jiji ApdistApdistpAADom ≤=

For a primitive Ai, we define the Voronoi region for Ai by
),()(jiiji AADomAV ≠= I

The partition of space into V(A1),V(A2),…,V(Ak) is called the
generalized Voronoi diagram. The (ordinary) Voronoi diagram
corresponds to the case when each Ai is an individual point. When
the primitives are linear elements (points, lines, polygons), the
bisectors are algebraic curves or surfaces.

3.2 Discrete Voronoi Diagrams
To compute a discrete Voronoi diagram, we start with a uniform
subdivision of a bounded region of space into rectangular cells. In
this bounded region, we approximate the Voronoi diagram by
determining, for a sample point in the center of each cell, the
closest primitive to the cell and its distance. The resulting diagram
is a table of IDs and distance values, one for each cell. All points
in the bounded region of space belong to only one cell, so for any
point we know the closest primitive and the distance to within half
the diagonal length of a cell.

A simple brute-force approach to find the closest primitives to
each cell is to iterate through all cells, computing for each cell the
distances to all primitives, and recording the closest primitive. The
algorithm can be rearranged to iterate through the primitives: for
each primitive, check all cells, updating the current closest
primitive for each cell. The second arrangement is amenable to an
implementation in graphics hardware.

Our approach is inspired by an interesting sidenote in the OpenGL
1.1 Programming Guide [Woo97]. In the Section “Now That You
Know” on “Dirichlet Domains”, the authors briefly discuss a
simple method to construct discretized 2D Voronoi diagrams for
points using OpenGL graphics hardware. The authors mention the
use of cones for Voronoi diagrams of points in 2D, but warn that
the technique “might require thousands of polygons.” We show
that we can render cones using fewer than 100 polygons for a
1K×1K resolution grid and achieve the same level of accuracy. In
addition, we generalize this approach to higher-order primitives in
both two and three dimensions.

The main idea of our approach is to render a polygonal mesh
approximation to a primitive’s distance function. We make use of
polygon rasterization hardware to reconstruct distance values to all
pixels (cell centers). The distance comparison is performed by the
Z-buffer depth test. A pixel will only be updated with a primitive
color ID if the depth comparison passes (less than current value).
In order to maintain an accurate Voronoi diagram, we bound the
error of the mesh to be smaller than a pixel’s width.

3.3 The Distance Function
We define the distance function with respect to a single primitive
over a region of space as the distance from the primitive to all
points in the region. For 2D Voronoi diagrams, the region is the
entire plane. For 3D Voronoi diagrams, the region is a planar slice
of space. In both cases, the distance function is a function of two
variables (x,y).

3.4 Polygon Rasterization Hardware
Our approach makes use of standard Z-buffered raster graphics
hardware for rendering polygons. The frame buffer stores the
attributes (intensity or shade) of each pixel in the image space; the
Z-buffer, or depth buffer, stores the z coordinate, or depth, of
every visible pixel. We assume that the Z-buffer has l bits of
precision for each pixel (on most current graphics systems, l≥24).
Given only the vertices of a triangle, the rasterization hardware
uses linear interpolation to get depth values across the triangle’s
surface. All raster samples covered by a triangle have an
interpolated z-value.

We make use of two components of the graphics hardware: linear
interpolation across polygons and the Z-buffer depth comparison
operation. When rendering a polygonal distance mesh, the
polygon rasterization reconstructs all distances across the mesh.
The Z-buffer depth test compares the new depth value to the
previously stored value. If the new value is less, we update the Z-
buffer with the new distance and the pixel with the new color.

4 Discretized Voronoi Diagrams
Our goal is to generate a discrete approximation to the Voronoi
diagram for a group of primitives. The polygon rasterization
hardware computes the approximation by rendering a three-
dimensional distance mesh corresponding to each primitive.
Rendering the distance mesh is equivalent to computing the
distance from a primitive A to each pixel location (x,y).
Geometrically, the distance mesh is a piecewise-linear
approximation to the graph of the distance function
d=dist((x,y),A). Each primitive is assigned a different color, and

the corresponding distance mesh is rendered in that color using a
parallel projection along the d-axis. For each pixel, the Z-buffering
hardware automatically selects the color for the primitive with the
smallest d valuethe color of the nearest primitive. In this way,
each pixel in the frame buffer will have a color indicating which
primitive it is closest to, and the Z-buffer will have the distance to
that primitive.

Current graphics systems are optimized to render dense triangular
meshes at fast rates using hardware polygon scan-conversion. The
exact distance functions for many primitives are non-linear
geometric shapes, and to render them on graphics systems, we
approximate the distance structures with polygonal meshes. In this
section, we present algorithms for meshing the distance function,
and derive tight bounds on the error generated by this
approximation.

4.1 2D Voronoi Diagrams
The four types of 2D primitives are points, lines, curves, and
polygons. Their corresponding distance functions are shown in the
following table. In this section, we present algorithms for
computing distance meshes for each of them.

2D primitive Shape of Distance Function Figure
Point Right circular cone 1a
Line segment “Tent” 1b
Curve Polyline of cones and tents 4
Polygon Cones and tents 5

X

D

Y

a b

Figure 1: The distance meshes used for a point (left) and a line
segment (right). The XY-plane containing the primitive is shown
above each mesh.

4.1.1 Points in 2D
The distance function for a point in the plane is a right circular
cone. We approximate cones as a triangle fan proceeding radially
outward from the apex (Figure 1a). A point’s Voronoi region can
potentially extend to any portion of the region of interest, and thus
the radius at the cone’s base must be of size M√2 if the scene is
contained in an M×M square. The error in the distance mesh will
be greatest at the far edges of the cone; along any radial edge of
the triangle fan, the computed distance is correct. To ensure that
our cone mesh has at most ε deviation, we examine a single
triangle of the fan as viewed from above. The maximum distance
of the triangle from the continuous cone is at the center of the
triangle’s outermost edge. Because this is a right circular cone, the
error in approximating the circular base as viewed from above is
the same as the error in distance.

α/2

ε

R-ε
α

R

R

R

R

Figure 2: The left image shows a single triangle of the meshed
cone. α is the angle we wish to maximize, R is the radius of the
cone, and ε is the prescribed max error.

From this formulation (see Figure 2), we compute the maximum
angle as:

R

R εα −=)2cos(Ð 





 −= −

R

R εα 1cos2

For example, for a maximum distance error of no more than one
pixel's width, a cone mesh for a 512×512 grid will require only 60
triangles, and the one for a 1024×1024 grid will require 85
triangles. Bounding the potential Voronoi region of a point to less
than the diameter of the scene will reduce the number of triangles
and pixel fill-rate required. However, it is difficult to determine a
sufficient radius to ensure coverage without knowing the
primitive’s Voronoi region.

4.1.2 Line Segments in 2D
The distance function for a line segment is composed of three
parts: one for the segment itself and one for each endpoint. The
endpoints are treated the same way as points. The distance
function for the line segment (excluding the endpoints) is just a
“tent” (Figure 1b); its distance mesh is composed of two
quadrilaterals. These represent the distance function exactly, so
there is no error in the distance mesh representation. The only
error for the line segment is in the cone mesh for the endpoint
distance functions, as described in the previous section.

4.1.3 Curves in 2D
The exact distance function for a curved primitive can be rather
complicated, and for Bézier or algebraic curves is a high degree
algebraic function. We simplify this by creating a linear
tessellation of the curved primitive, and then creating a mesh of
the distance function of this approximation. We can use
algorithms such as in [Filip87] to obtain bounded-error
tessellations. Figure 3 shows the mesh for a Bézier curve. Since
the mesh for a linear segment is exact, the distance error for any of
the linear segments is just the error in the deviation of the original
line to the curve. The endpoints of the curve must be treated as
points, just as for the line segment. The distance mesh for the
“joints” between linear segments is a portion of the radial mesh of
triangles. An overall maximum error bound of ε can be obtained
for the entire curve by:

• tessellating the curve into linear segments with maximum
error bound of ε;

• rendering the distance mesh for the linear segments; and
• treating the endpoints and joints as points, and rendering each

point distance mesh with maximum error bound of ε.

A picture of the generalized Voronoi diagram generated by a
curve and five points is given in Figure 3.

Figure 3: The Voronoi diagram of a Bézier curve and 5 points (left).
The distance mesh for the Bézier curve that has been tessellated
into 16 segments (right).

4.1.4 Polygons and Per-feature Voronoi Diagrams
It is often useful to consider primitives as a collection of features,
rather than as a single entity. For example, a line segment would
be considered as three features: the two endpoints and the linear
edge between them. By rendering the distance meshes for different

features in different colors, we obtain a discrete approximation of
a per-feature Voronoi diagram. Such diagrams are useful in
several contexts: for example, the computation of a medial axis of
a polygon. A picture of a per-feature Voronoi diagram for a
polygon is given in Figure 4.

Figure 4: The per-feature Voronoi diagram of a quadrilateral (left).
The corresponding distance mesh (right).

Polygons are rendered as a series of linear segments connected at
the vertices. Each edge and vertex is a feature. For the vertices,
rendering a triangle fan connecting two adjacent edges, rather than
a full point distance mesh cone, saves on the total number of
triangles computed and ensures that the distance meshes for
adjacent features join smoothly. See Figure 4 for an illustration.

4.2 3D Voronoi Diagrams
The discrete Voronoi diagram in three dimensions is computed as
a sequence of 2D planar slices. As in the 2D case, the distance
function of a primitive is defined over the set of points in a
rectangular bounded region of the slice; we approximate this with
a polygonal mesh. The distance structure is then rendered in
graphics hardware, yielding a slice of the 3D discrete Voronoi
diagram in the frame buffer, and a slice of the distance function in
the Z-buffer.

In this section, we show how to construct distance meshes for 3D
primitives with respect to a 2D planar slice. Our goal is to
minimize the number of mesh polygons while ensuring that the
error incurred in interpolating the distance function over each tile
is within ε. Separate algorithms generate meshes for three
primitives: the polygon, the line segment, and the point. As part of
pre-computation, all curved patches are tessellated into polygons.
For notational convenience, a slice is assumed to be of the form
z=z0. We denote the distance function from a primitive to the point
(x,y,z0) in this slice by dist(x,y).

3D primitive Shape of distance function Figure
Polygon Plane 5
Line segment Elliptical cone 6
Point 1 sheet of a hyperboloid of 2 sheets 7

4.2.1 Polygonal Primitives
The influence of this primitive in 3D is confined to the region
formed by sweeping the polygon orthogonally through space,
since points outside this region are considered to be closer to an
edge or vertex of the polygon. In the slice, this region is a
polygon, and dist(x,y) is linear within this region, as illustrated in
Figure 5. The distance to the primitive is computed at the vertices
of the region, and a distance mesh composed of a single polygon is
rendered. No meshing error is incurred. If the polygon intersects
the slice, the intersection is computed and the polygon is
decomposed into two sub-polygons. Each sub-polygon is treated
as above.

x
y

z

x

y

d

Figure 5: A polygonal primitive and its region of influence in a slice
(left). The corresponding linear distance function (right).

4.2.2 Line Segment Primitives
The graph of the distance function for a line segment primitive is
an elliptical cone (Figure 6). The apex of the cone lies at the
intersection of the segment’s line with the slice, and the
eccentricity is determined by the relative angle of the line and the
slice. The 3D region of influence of a line segment lies between
two parallel planes through the endpoints, since a point outside
these planes is closer to one of the endpoints than to the segment.
The portion of the slice between these two planes is called a
“slab.”

x
y

z

x

y

d

Figure 6: A line-segment primitive and its region of influence in a
slice (left). The corresponding conical distance function (right).

A mesh for this slab is shown in Figure 8(left). The distance
function is linear along the radial lines containing the cone vertex,
so we use these lines in the mesh. The interpolated distance is
correct along these lines, and all meshing error occurs between
them. Thus the mesh consists of irregular quadrilaterals. The
maximum error in each quadrilateral occurs along the far line of
the slab, so it suffices to analyze the error along this line.

The distance function, restricted to the far line, is simply a

hyperbola. The equation is of a simple form: 22 tqd += where

q is the distance from the far line to the line segment primitive,
and t is a unit-speed parameter along the line. The hyperbola’s
shape is determined entirely by the quantity q.

We tessellate this hyperbola with line segments, and this one-
dimensional tessellation determines the rest of the mesh. The
vertices of this tessellation are placed as far apart as possible, so
that the maximum error ε is attained at some point along each
edge. This results in a very coarse mesh that can be rendered
efficiently. Since the shape of the hyperbola is determined by the
single number q, we precompute an optimally coarse tessellation
for a family of hyperbolas corresponding to many values of q, and
store them in a table. The computation of this table is
straightforward, and the details are given in [Anon99]. The error
incurred by discretizing q translates directly into error in the
distance function, and can be taken into account when choosing ε.

We illustrate the table size using a typical example. Assume that
the model’s bounding box is the unit cube, so that M=√2. For a
10003-voxel array, a meshing error of 1/1000 in the distance
function is acceptable. Allowing half of this error to be committed
by meshing and half to be committed by discretization of q, we set
ε=1/2000. In this case, the table has M/ε≈2800 rows—that is, a
library of about 2800 tessellated hyperbolas. In computing this
table, we find that the most densely-tessellated hyperbolas have 36

vertices (by symmetry, only 18 need be stored). The storage
required for this table is about 280 kilobytes, for a system which is
not otherwise memory-intensive. A Mathematica program can
precompute this table in 20 minutes. The table is reusable for any
model with the same ratio M/ε.

The clipping effect illustrated in Figure 8(left) is accomplished
within the context of the table, and allows fewer, smaller
quadrilaterals to be rendered (again, see [Anon99] for details). If
the line segment intersects the slice, it is broken into two
segments, each of which is treated as above.

4.2.3 Point Primitives
The distance function for a point primitive is shown in Figure 7.
Its graph is one sheet of a hyperboloid of revolution of two sheets.
The slice is meshed into quadrilaterals by radial lines and
concentric circles, as shown in Figure 8(right).

x
y

z

x

y

d

Figure 7: A point primitive and its region of influence in a slice (left).
The corresponding hyperbolic distance function (right).

As in the line-segment case, a coarse mesh with bounded error is
constructed by table lookup. The radial lines are spaced by an
angle α which is chosen once and for all (we use π/12). The radii
of the concentric circles are stored in a table indexed by the
distance q from the point to the slice. The maximum error of ε is
attained at some point between each pair of adjacent circles. The
table’s size and method of computation are very similar to those in
the line-segment case. See [Anon99] for details.

If the point lies in the slice, the distance function is a cone rather
than a hyperboloid. In this case, and when the point is close to the
slice, a simple cone is drawn as in the 2D case.

x

y

p

x

y

Figure 8: A bounded-error distance mesh for the line-segment
primitive (left) and the point primitive (right).

4.3 Weighted and Farthest Voronoi Diagram
A weighted Voronoi diagram is one for which the distance
function is an additively or multiplicatively weighted distance
function (see [Okabe92]). Additive weights can be incorporated by
simply translating the entire distance mesh along the d axis.
Multiplicative weights are incorporated in our approach by
linearly scaling the distance mesh along the d axis. In 2D, this is
equivalent to changing the angle of the cone or tent. Keep in mind
that scaling the distance mesh along d also scales the meshing
error.

In a farthest site Voronoi diagram, the farthest primitive from each
point is found. We can compute a farthest site Voronoi diagram

with our approach by using the previously defined distance mesh
reflected about the distance function domain plane and then
renormalized. The mesh will monotonically decrease in d as you
move away from the primitive. For example, when forming the
cones for 2D points, the apex of the cone should be the farthest
point, and the edges of the cone the nearest point. Both weighted
and farthest site methods work in 2D and 3D.

4.4 Voronoi Boundaries and Neighbors
In this section, we present algorithms to compute Voronoi
boundaries and neighbors from the discretized representation. We
present first a brute-force approach, followed by an efficient
algorithm that takes advantage of spatial coherence. These
algorithms compute a discrete approximation of the Voronoi
boundary.

The brute-force approach simply examines each pair of adjacent
cells in 2D or 3D. If the colors are different, the location is
registered as a point on a Voronoi boundary. In 2D, there are four
types of edges between adjacent pixels: vertical, horizontal,
positive-slope, and negative-slope. Each of these edges is
associated arbitrarily with one of its endpoints: the upper, left,
upper-right, and upper-left pixels, respectively. The brute-force
search considers each pixel and examines the four edges
associated with it, and registers a boundary point there if one of
these four edges spans different colors. This avoids checking each
adjacent pair twice. This approach extends to 3D, where there are
13 types of edges instead of four.

The more efficient approach uses a continuation method that finds
the boundary locations by looking only at locations near known
boundaries. The overall approach is output sensitive. It examines a
number of pixels which is at most a constant factor times the
number of boundary locations it finds. The correctness of the
continuation method depends on whether the Voronoi diagram is
connected. The generalized Voronoi diagram of a collection of
convex sites is always connected, so the method is correct for
inputs consisting of point, line-segment, or convex polygonal
primitives in a polyhedral model. The method may fail in the
presence of curves or curved-surfaces, where the generalized
Voronoi diagram may have isolated components.

In this approach, at least one boundary point must be known as a
“seed” value. Assuming convex sites, some Voronoi boundary
must pass through the edge of the bounding box, so the method
begins by examining every pixel along the edge of the discrete
Voronoi diagram. When all Voronoi boundaries are connected, as
is often the case in 2D, only one seed point is needed since all
others can be reached from that first point.

The method starts from a seed point and proceeds by comparing a
pixel to its four (or 13 in 3D) associated neighbors. If it differs
from one of these, it is registered as a boundary, and its eight (or
26 in 3D) immediate neighbors are marked for consideration and
visited recursively. If it is not a boundary pixel, it is discarded.

4.4.1 Finding Voronoi neighbors
Some applications need to know the pairs of primitives whose
Voronoi regions are adjacent. This information is generated during
the boundary-extraction procedure described above, but each
neighbor-pair is noticed many times. However, computing the
Voronoi neighbors is a slightly more expensive procedure,
because the neighbor relationships must be maintained in a search
structure. In Section 6, an alternative approach to neighbor-finding
is presented, which allows better control over the error.

5 Sources of Error
In this section we analyze our algorithm, enumerate all sources of
error, and present efficient techniques to improve accuracy. We
consider two broad categories: error in distance approximation and
combinatorial error.

5.1 Distance Error
When rendering the distance mesh for each object, the distance
computed at each pixel is assumed to be that from the center of
that pixel to the primitive. The distance error can occur in the
distance computation at one of those pixels when rendering one
distance mesh. There are three sources of distance error:

• Meshing error, introduced by approximating the distance
function by the distance mesh. We discussed bounds on this
error in Section 4.

• Tessellation error, introduced when tessellating a curved
primitive by a number of linear primitives. The tessellation
algorithms presented in [Filip87] give tight bounds.

• Hardware precision error arises due to the use of fixed-
precision arithmetic (integer or floating-point) during
rasterization.

These errors are additive and affect the accuracy of discretized
Voronoi diagrams. That is, the error from one source is not
magnified by the other sources. The total distance error is at most
the sum of the errors from these three sources.

To reduce the error in distance approximation, we reduce the error
due to each of these sources. We have shown in Section 4 how to
ensure that the meshing error is within any predetermined bound.
Tessellation error can be reduced by using a finer approximation
to the primitive. Hardware precision error cannot be removed
without resorting to multiple-precision arithmetic, but hardware
error is usually negligible compared to meshing error.

5.2 Combinatorial Error
Combinatorial error refers to the error that is qualitative rather
than quantitative. For example, a pixel may be assigned the wrong
color, or the algorithm reports a pair of incorrect Voronoi
neighbors. There are three sources that contribute to combinatorial
error:

• Distance error, as described in the previous section, can
cause pixels to be colored incorrectly. If there is significant
error in the distance computed, depth comparison at that pixel
may result in incorrect visibility determination.

• Resolution error occurs when the cell grid is not fine enough.
The raster is a sampling of space. If this sampling is too
coarse, we may miss some Voronoi neighbors or find
spurious neighbors. Techniques dealing with resolution error
are described below.

• Z-buffer precision error refers to the limitations of the
number of bits of precision provided by the Z-buffer. Current
graphics systems have 24 bits or 32 bits precision for each
pixel in the Z-buffer, which is more than the 23 bits provided
in standard floating-point. If the distances between two pixels
cannot be determined within that precision, the Z-buffer
cannot accurately choose the correct color. This effect is
relatively small compared to the other two, but can be
significant at very high resolutions with very little distance
error. A higher-precision Z-buffer can be simulated in
software at a significant loss in efficiency.

The basic way to decrease resolution error is to adaptively
compute the approximate Voronoi diagram to a higher resolution.
We use adaptive resolution to “zoom in” on a region of interest.
This involves identifying a window of interest, which may be

arbitrarily small, and applying the appropriate linear
transformation for zooming into that region. Figure 9 shows an
example.

Figure 9: Adaptive resolution allows us to zoom in on features that
could otherwise be missed.

Resolution error can cause a number of combinatorial problems,
such as missing the entire Voronoi region of a primitive. One such
example is shown in Figure 10. If none of the cells has the color of
a particular primitive, we separately render the primitive itself,
computing the pixels covering that primitive. By zooming around
those pixels, we will find pixels in the Voronoi region. The same
technique can be applied to cells in 3D. Another problem arising
from resolution error, also shown in Figure 10, is incorrectly
finding Voronoi neighbors. This problem (when due solely to
resolution error) can be resolved by adaptively zooming in on just
the boundary pixels.

Figure 10: Problems caused by resolution error. An entire region in
the center will be missed since it does not hit any pixel centers (left).
The left and right regions, which should meet (middle), become
disconnected after rasterization(right).

5.3 Error Bounds
In this section we will derive an exact bound on the accuracy of
our algorithm. For this analysis, we will assume that there is no Z-
buffer precision error. Assume that we can bound the maximum
distance error by ε, as described earlier. For a pixel P colored with
the ID of primitive A and with a computed depth buffer value of
D, we know that:

εε +≤≤− DAPdistD),(
Furthermore, we know that for any other primitive B,

),(BPdistD ≤− ε
From this information, we easily determine that

ε2),(),(+≤ BPdistAPdist
where dist(X,Y) means the distance from the center of pixel X to
primitive Y. That is, if a pixel is colored A, the corresponding
primitive is no more than 2ε farther from the pixel center than any
other primitive. The same bound also works for 3D.

6 Implementation
The 2D and 3D systems were both implemented in C++ using the
OpenGL graphics library and the GLUT toolkit on high-end SGI
workstations and low-end PC hardware. Any graphics API
specification that uses a standard Z-buffered interpolation-based
raster graphics system that supports the ability to read back entire
color and depth buffers is sufficient to support the Voronoi
computation.

Our system runs, without source modification, on both an MS-
Windows based PC and a high-end SGI Onyx2 with
InfiniteReality Graphics. Surprisingly, the performance on a 400
Mhz Intel Pentium II PC with an Intergraph Intense 3D Pro 3410-

T graphics accelerator was comparable to the SGI performance. In
fact, in boundary finding, neighbor finding, and particle motion
planning applications, the performance exceeded the high-end
SGI. This was mainly due to intense buffer readback requirements.
For large numbers of input primitives, performance is bound by
the graphics hardware’s pixel fill-rate, and the SGI outperforms
the PC.

In most of our 2D test examples, we used distance meshes that
cover the entire screen. However, in many practical cases, a mesh
covering only part of the screen is sufficient. Knowing a
maximum radius for the Voronoi regions increases performance
significantly. We exploit this observation in the 10,000-point
example seen in the video and the 1,000-point example shown in
Plate 1.

In our motion planning algorithm, we demonstrate interactive
Voronoi diagram construction of a house floorplan composed of
approximately 100K triangles. The performance could be
improved by bounding the maximum distance, using coaser
meshes, and considering only the internal Voronoi diagram (only
one-half of all distance meshes). In addition, we could have used
the silhouette boundaries of the dynamic objects as input
primitives.

In 3D, we have not yet fully implemented the meshing strategies
described in Section 4.2. Instead, we show a prototype
implementation that uses uniform meshing and brute-force
distance evaluation from each site to each 3D cell. With this initial
implementation, we obtain interactive frame rates for a slice
computation with hundreds of points and triangles. For large
polygonal models, we compute per-feature Voronoi regions in a
non-interactive preprocessing step. These models consist of
around 2000 triangles (~6000 features) each, and the entire
Voronoi volume was computed, in several hours, using the brute-
force method for a 256x256x256 subdivision. Examples of this are
seen in Color Plate 3 and the video. These volumes are used to
show the correctness of the method and the need for massive
speedups. We have given an analysis that shows the correctness of
a mesh-based approach to achieve the same results as the brute-
force approach; in addition, we clearly indicate the performance
potential of adaptive meshing and graphics hardware. We
speculate that the performance will be great enough to show slices
of the same models interactively.

7 Continuous Voronoi Diagrams
The methods presented in this paper so far are all fundamentally
discrete. For linear primitives, the continuous Voronoi diagram
includes parabolic arcs in 2D and quadric surfaces in 3D. This
section shows how the discrete Voronoi diagram can be used to
speed up continuous Voronoi algorithms which are capable of
manipulating the necessary curved objects. We restrict our
attention to the problem of computing the internal part of the
Voronoi diagram of a closed polygon or polyhedron, which is
closely related to the medial axis.

7.1 Graph-Traversal: A Continuous Algorithm
The internal Voronoi diagram may be computed by a graph-
traversal algorithm, described in 3D by Milenkovic [Milen93].
The algorithm traces out each curve in the Voronoi diagram by
taking small steps. Such a curve is the set of points equidistant
from three sites (primitive), called the governors of the curve. The
tracing stops when a point is reached that is equidistant from a
fourth site. The algorithm then forks, tracing each of the other
curves (generically, there are three) incident at that vertex. The
overall running time of this algorithm is O(nm), where n is the
input size (the number of sites) and m is the output size (the

number of curves). This time is a factor of n away from optimal
O(m) time since for each curve, every site must be considered as a
candidate for the fourth site; a linear search through the entire
input occurs at each step. All existing practical algorithms for the
3D internal Voronoi diagram (or medial axis) are based on either
this graph-traversal algorithm, a discretization of the polyhedron,
or a discretization of space.

We propose a preprocess for the graph-traversal algorithm, based
on the discrete Voronoi diagram, which significantly reduces the
total running time. The search for the fourth site can be limited to
those sites which are Voronoi neighbors of all three governors of
the curve. The graph-traversal algorithm can thus be sped up if it
is provided with a list, for each site, of other sites which are
potential Voronoi neighbors. The list must contain all actual
neighbors.

The discrete Voronoi diagram is examined to produce a superset
of the neighbor set for each site. The process is similar to the
brute-force neighbor-finding algorithm in Section 4.4, but takes
special care not to miss any neighbors. The error in the neighbor
graph computed by this new method can be systematically
eliminated by the graph-traversal algorithm.

7.2 A Superset of the Voronoi Neighbors
One key assumption is made by this algorithm: If a pixel’s (or
voxel’s) color is the same as that of its eight (or 26) neighbors,
then that pixel (or voxel) is colored correctly. This assumption
holds if all of the Voronoi boundaries are linear; a similar theorem
is proved in [Vleug95]. In the case of our 2D discrete Voronoi
diagram, the assumption can fail for two reasons. First, the pixel
may actually be on the other side of a parabolic boundary from its
eight neighbors. This is extremely rare, and is a result of resolution
error. Second, there may be an entire region where the difference
in distance between the closest and second-closest sites is less than
ε, the total prescribed distance error. This problem actually does
not arise in the context of interior Voronoi diagrams of polygons,
however, because two sites are very near each other only if they
are adjacent in the polygon (and are therefore Voronoi neighbors
in any case), or if they oppose each other across a narrow region
of the polygon (easily detected, and resolved by zooming).

A pixel which differs from one of its neighbors is called a white
pixel, because it is treated as though it could be in the Voronoi
region of any site.

The basic idea of the algorithm is to extend each Voronoi region
in turn over the white pixels until it reaches other colors, and then
record the other colors reached. Figure 11 illustrates the algorithm
for a single region in 2D. First, the discrete Voronoi diagram is
computed, but with a slight modification: the exterior parts of the
distance mesh are all rendered in black, ensuring that all pixels
outside the polygon are colored black.

Figure 11: Starting from the horizontal edge, a Voronoi region
grows upward. The growth stops whenever another Voronoi region
is reached.

The second step is to consider each site (the concave vertices and
all of the edges count as sites) to find a superset of its Voronoi
neighbors. Starting from the site itself and moving away, the
pixels in its region of influence are searched until the region is
curtailed either by pixels associated with other sites, or the black
exterior pixels. The region can be searched line-by-line, as in
scan-conversion. White pixels are marked white only as they are
discovered. The three-dimensional generalization of this algorithm
is straightforward.

The algorithm examines the white pixels many times; most
colored pixels are examined once. While inefficient compared to
the boundary-finding algorithms in Section 4.4, this method can
lend significant speedups to the graph-tracing algorithm in two or
three dimensions, and perhaps to other continuous algorithms.

8 Application to Motion Planning
Motion planning is one of the fundamental problems in
computational geometry and robotics. Most earlier work has
focussed on the Piano Mover’s problem, which can be stated as
the following: Given a robot R and an environment E composed of
obstacles, find a collision-free path from an initial configuration I
to a final configuration F. Besides robotics, this problem also
comes up in motion control and planning of digital actors or
autonomous agents in computer animation, maintainability studies
in virtual prototyping, and robot-assisted medical surgery. This
problem has been well studied for more than two decades and a
number of algorithms have been proposed, most of which can be
classified into global or local methods. Some of the well-known
approaches include roadmap algorithms, exact/approximate cell-
decomposition, potential field methods, and other variations
[Latom91].

Several algorithms have been proposed based on generalized
Voronoi diagrams [Latom91]. The underlying idea is that the
boundaries or skeleton curves of generalized Voronoi diagrams
provide paths of maximal clearance between the robot and the
obstacles. Due to the practical complexity of computing
generalized Voronoi diagrams, the applications of such planners
have been limited to environments composed of a few primitives.

Our discrete Voronoi computation algorithm can be applied to
motion planning in static and dynamic environments. Our Voronoi
algorithm computes the approximate distance function for each
cell. Based on this information, it can easily locate the nearest
obstacle and the distance to it quickly.

To illustrate the application of our algorithm, we have
implemented a simple motion planner using our system for
computing generalized Voronoi diagrams. We demonstrate its
effectiveness in a rather complex environment (corresponding to
the interior of a house) composed of over 100,000 polygons for
both a static scene and a dynamic scene with several moving
obstacles. We use the X and Y components of the polygons to give
the 2D input primitives for our Voronoi diagram. The robot has
three degrees of freedom: X and Y translation along the ground and
rotation about the Z axis.

Our basic approach is based on the potential field method, which
repels a robot away from the obstacles and towards the goal using
a well-designed artificial potential function. One possible potential
function Uart(x) of the robot at the configuration x is:

2

2
))(,(

))(,(min
)(xRGDb

xROD

a
xU

ii

art ×+=

where D(Oi,R(x)) is the shortest distance between an obstacle Oi

and the robot R and D(G,R(x)) is the distance between the goal G
and the robot R, a and b are adjustment constants. The major
components of our planner include:

1. Using our Voronoi diagram computation algorithm to get the
distance measurement at every grid point over the entire
scene. The distance buffer was computed once for the entire
house. In the dynamic scene, the distance buffer for the static
part of the environment (e.g. the walls and stationary
furniture) was computed once, and the distances between the
“robot” and the dynamic “obstacles” (e.g. the moving
furniture) are computed during each frame. We note that even
computing the distance buffer for all polygons every frame
had only a small effect on the frame rate.

2. For ease of implementation, our planner takes several sample
points for the robot. These sample points are used to
determine the center of mass and moment of inertia.

3. At each stage, we compute a force on each of the sample
points. The force is a combination of the attractive force
toward the sub-goals and a repulsive force based on the
distance to the nearest object (obtained from the distance or
depth buffer). We use bilinear interpolation of the discrete
distance values to determine the exact distance, gradient in X
(δX), gradient in Y (δY), and thus the gradient of the potential
function for any point in the environment.

4. We decompose each force into two components: one acting
toward/away from the center of mass and the other one in the
orthogonal direction that contributes to the torque necessary
to rotate the robot. Moreover, we sum up all the torque and
force components from all sample points to obtain the overall
force and torque acting on the center of mass.

5. We apply the force and torque to the target object and move
it step by step. To ensure stability of our computation, a
bound on the maximum linear velocity and maximum angular
velocity is established and a damping effect is placed on the
linear velocity.

Color Plate 2 shows a sequence of motions generated by our
motion planner in a static environment (as shown in the video).
The piano’s motion is automatically generated by the planner
using nine subgoals. The color plate also shows an image of the
discrete Voronoi diagram for the house.

Due to fast and reliable Voronoi diagram computation, it is also
possible to apply this technique to environments with moving
obstacles. Our video demonstrates the movement of a music stand
through a house filled with moving furniture. The music stand has
no prior knowledge about the movement of other pieces of
furniture. The motion planning and the motion sequences are
executed in real time, with the distance buffer dynamically
computed on the fly.

9 Conclusions and Future Work
We have presented a method for rapidly finding the generalized
Voronoi diagram in two and three dimensions, using graphics
hardware. We have presented techniques for creating a mesh of
the distance function for each primitive with bounded error, and
described how this distance mesh lets us compute the Voronoi
diagram rapidly. We have analyzed all sources of error, as well as
how to bound or reduce the major sources of error. Finally, we
have described how our approach can be used to improve the
efficiency of two other applications: exact medial axis
computation and motion planning.

Although we have not completed an optimized implementation of
the 3D meshing discussed, we have shown a bounded-error
meshing strategy that will achieve the same results as the brute
force method implemented, but at interactive rates. In the very
near future, we plan to complete implementation of this meshing
to demonstrably prove this claim. In addition, we will apply the
improved method to much larger models. We believe that the

improvements will be significant enough to allow entire volume
computation of high-resolution 3D Voronoi diagrams of very large
medical and CAD data sets.

Other areas of our planned future work include further
applications and additional acceleration techniques.

References
[Anon99] Anonymous Technical Report. 1999.
[Auren91] F.Aurenhammer.Voronoi diagrams: A survey of a fundamental

geometric data structure. ACM Comput. Surv., 23:345−405, 1991.
[Chian92] C. –S. Chiang. The Euclidean distance transform. Ph. D. thesis, Dept.

Comput. Sci., Purdue Univ., West Lafayette, IN, August 1992. Report
CSD-TR 92−050.

[Culve98] T.Culver, J.Keyser, and D.Manocha. Accurate computation of the medial
axis of a polyhedron. Technical Report TR98-034, Department of
Computer Science, University of North Carolina, 1998.

[Dutta93] D.Dutta and C.M. Hoffmann. On the skeleton of simple CSG objects.
Journal of Mechanical Design, ASME Transactions, 115(1):87−94,
1993.

[Diric50] G.L. Dirichlet. Uber die reduktion der positiven quadratischen formen
mit drei unbestimmten ganzen zahlen. J. Reine Angew. Math.,
40:209−27, 1850.

[Filip87] D.Filip and R.Goldman. Conversion from Bézier-rectangles to Bézier-
triangles. CAD, 19:25−27, 1987.

[Fortu86] S.Fortune. A sweepline algorithm for Voronoi diagrams. In Proc. 2nd
Annu. ACM Sympos. Comput. Geom., pages 313−322, 1986.

[Goldf89] J. Goldfeather, S. Molnar, G. Turk, and H. Fuchs. Near real-time CSG
rendering using tree normalization and geometric pruning. IEEE
Computer Graphics and Applications, 9(3):20−28, May 1989.

[Held97] M. Held. Voronoi diagrams and offset curves of curvilinear polygons.
Computer-Aided Design, 1997. To appear.

[Hoffm94] C.M. Hoffmann. How to construct the skeleton of csg objects. In
A.Bowyer and J.Davenport, editors. Proceedings of the Fourth IMA
Conference, The Mathematics of Surfaces, University of Bath, UK,
September 1990. Oxford University Press, New York, 1994.

[Inaga92] H.Inagaki, K.Sugihara, and N.Sugie. Numerically robust incremental
algorithm for constructing three-dimensional Voronoi diagrams. In
Proc. 4th Canad. Conf. Comput. Geom., pages 334-−339, 1992.

[Latom91] J.C. Latombe. Robot Motion Planning. Kluwer Academic Publishers,
1991.

[Laven92] D. Lavender, A. Bowyer, J. Davenport, A. Wallis, and J. Woodwark.
Voronoi diagrams of set-theoretic solid models. IEEE Comput. Graph.
Appl., 12(5):69−77, September 1992.

[Lee82] D.T. Lee. Medial axis transformation of a planar shape. IEEE Trans.
Pattern Anal. Mach. Intell., PAMI−4:363−369, 1982.

[Lengy90] J. Lengyel, M. Reichert, B. R. Donald, and D. P. Greenberg. Real-time
robot motion planning using rasterizing computer graphics hardware. In
Forest Baskett, editor, Computer Graphics (SIGGRAPH ‘90
Proceedings), volume24, pages 327−335, August 1990.

[Milen93] V.Milenkovic. Robust construction of the Voronoi diagram of a
polyhedron. In Proc. 5th Canad. Conf. Comput. Geom., pages 473−478,
1993.

[Milen93b] V.Milenkovic. Robust polygon modeling. Comput. Aided Design, 25(9),
1993. (special issue on Uncertainties in Geometric Design).

[Okabe92] A. Okabe, B. Boots, and K. Sugihara. Spatial Tessellations: Concepts
and Applications of Voronoi Diagrams. John Wiley & Sons, Chichester,
UK, 1992.

[Rossi92] J. Rossignac, A. Megahed, and B. Schneider. Interactive inspection of
solids: Cross-sections and interferences. In EdwinE. Catmull, editor,
Computer Graphics (SIGGRAPH ‘92 Proceedings), volume26, pages
353−360, July 1992.

[Rossi86] J.R. Rossignac and A.A.G. Requicha. Depth-buffering display
techniques for constructive solid geometry. IEEE Computer Graphics
and Applications, 6(9):29−39, 1986.

[Sheeh95] D.J. Sheehy, C.G. Armstrong, and D.J. Robinson. Computing the medial
surface of a solid from a domain Delaunaytriangulation. In Proc.
ACM/IEEE Symp. on Solid Modeling and Applications, May 1995.

[Shamo75] M.I. Shamos and D.Hoey. Closest-point problems. In Proc. 16th Annu.
IEEE Sympos. Found. Comput. Sci., pages 151−162, 1975.

[Sugih94] K.Sugihara and M.Iri. A robust topology-oriented incremental algorithm
for Voronoi diagrams. Internat. J. Comput. Geom. Appl., 4:179−228,
1994.

[Sherb95] E. C. Sherbrooke, N. M. Patrikalakis, and E. Brisson. Computation of the
medial axis transform of 3D polyhedra. In Solid Modeling, pages
187−199. ACM, 1995.

[Teich97] M.Teichmann and S.Teller. Polygonal approximation of Voronoi
diagrams of a set of triangles in three dimensions. Technical Report 766,
Laboratory of Computer Science, MIT, 1997.

[Vleug95] J. Vleugels and M. Overmars. Approximating generalized Voronoi
diagrams in any dimension. Technical Report UU-CS-1995-14,
Department of Computer Science, Utrecht University, 1995.

[Vleug96] J.Vleugels, V.Ferrucci, M.Overmars, and A.Rao. Hunting Voronoi
vertices. Comput. Geom. Theory Appl., 6:329−354, 1996.

[Voron08] G.M. Voronoi. Nouvelles applications des paramètres continus à la
théorie des formes quadratiques. deuxième Mémoire: Recherches sur les
parallélloèdres primitifs. J. Reine Angew. Math., 134:198−287, 1908.

[Woo97] M.Woo, J.Neider, and T.Davis. OpenGL Programming Guide, Second
Edition. Addison Wesley, 1997.

