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GENERIC RIGIDITY OF GRAPHS

1. Introduction and summary. In this survey, all graphs will be simple. Let G be a graph
with vertex-set V(G ) and edge-set E(G ). A pair F = (G, p) consisting of G together with an
injective map p : V(G ) → 2 is a framework, linkage or skeletal structure in the plane with
underlying graph G. We visualize the vertices vi of G as pivots at positions p(vi ), and the
edges as rigid bars joining the corresponding pairs of pivots. In higher-dimensional
frameworks we visualize the vertices as ‘universal joints’.

We are going to define the concepts of mechanical rigidity and independence, and
infinitesimal rigidity and independence. These concepts do not coincide, but there is a one-
way implication: if a framework is infinitesimally rigid then it is mechanically rigid, and if it
is infinitesimally independent then it is mechanically independent. These concepts do not
depend just on the underlying graph: special geometry can cause a framework to be
mechanically rigid when it “shouldn’t” be, not mechanically rigid when it “should” be, or not
infinitesimally rigid when it “should” be, although it cannot cause a framework to be
infinitesimally rigid when it “shouldn’t” be.

We call a framework generic when it has no special geometry. For generic frameworks,
the mechanical and infinitesimal concepts coincide, and also depend only on the underlying
graph, so that we can refer to the generic rigidity or generic independence of a graph. The
aim is to give a combinatorial characterization of the graphs that are generically independent
for dimension 2, which will automatically characterize the graphs that are generically rigid for
dimension 2. We shall see eight different characterizations: two due (more or less) to
L. Henneberg (1911) and J. E. Graver (1984), one due to G. Laman (1970), one due to
L. Lovász and Y. Yemini (1982), and four due (directly or indirectly) to A. Dress (1987). It is
known that none of these characterizations can extend in any obvious way to frameworks in
four or more dimensions, and that five of them do not extend even to frameworks in three
dimensions. But there are conjectures due to Henneberg–Graver and to Dress, each of which
would provide a combinatorial characterization of generic independence in three dimensions.
At the moment no such characterization is known, and finding one is the major unsolved
problem of rigidity theory today.

2. Definitions. A mechanical motion of a framework F = (G, p) is a parametrized family
(pt : 0 t 1) of maps such that:

(a) p0 = p;
(b) the position pt(vi ) of each vertex vi is a differentiable function of t ; and
(c) for each t and each edge vi vj of G, the distance

� �
pt(vi ) − pt(vj )

� �
=

� �
p(vi ) − p(vj )

� �
, (1)

which is independent of t (so that the edges of F have ‘constant length’).

A rigid motion of F is a mechanical motion in which each framework Ft = (G, pt ) is
geometrically congruent to F; that is, (1) holds for every i and j . If F does not admit any
mechanical motions apart from its rigid motions, then F is mechanically rigid. If, for each
edge e of F, F − e admits a mechanical motion that is not admitted by F, then the edges of F
are mechanically independent.

An infinitesimal motion of F is an assignment of a vector ξξξξξξ i to each vertex vi such that
the dot product

(p(vi ) − p(vj )) . (ξξξξξξ i − ξξξξξξ j ) = 0 (2)

for each edge vi vj of G (so that if each vertex vi were simultaneously to start moving with
velocity ξξξξξξ i , then momentarily no bar would be stretched or compressed). By squaring and
differentiating (1) when t = 0 we obtain
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(p(vi ) − p(vj )) . ( .p0(vi ) − .p0(vj )) = 0;

that is, the initial velocities of the vertices in a mechanical motion of F constitute an
infinitesimal motion of F. The framework F3 in Fig. 1 (taken from Graver (1984)) shows that
the converse is false: the assignment of a non-zero vector to vertex b , perpendicular to edge
bc , and 0 to every other vertex, gives an infinitesimal motion that does not correspond to any
mechanical motion. However, the converse is true for generic frameworks: see below.
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Fig. 1.

If F has n vertices and m edges, then the equations (2) can be written in coordinate form
as a system of m linear equations in 2n real variables (the 2 coordinates of each of the n
vectors ξξξξξξ i ). We can write this system in the form

Mξξξξξξ = 0, (3)

where each edge of F contributes one row to the m × 2n matrix M. For example, if F consists
of K4 with its vertices at positions (x1 , y1), . . . , (x4 , y4 ) and ‘velocity’ vectors
(ξ1 , η1 ), . . . , (ξ4 , η4 ), then (3) becomes
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The infinitesimal motions of F are precisely the solutions of (3). A set of edges of F is
infinitesimally independent if the corresponding rows of M are linearly independent. The
initial velocities of the rigid motions of F satisfy (3) and form a vector space of dimension 3.
F is infinitesimally rigid if these are the only solutions of (3); that is, if rank M = 2n − 3.

These concepts depend on the map p as well as on the underlying graph G. Because of its
special geometry, the framework F1 in Fig. 1 is not rigid, either mechanically or
infinitesimally, whereas F2 , with the same underlying graph, is both mechanically and
infinitesimally rigid. Again, because of its special geometry, F3 is mechanically rigid but not
infinitesimally rigid, for the reason described earlier; whereas F4 , with the same underlying
graph as F3 , is not even mechanically rigid. However, F4 ∪ {ac} is both infinitesimally and
mechanically rigid, whereas F3 ∪ {ac} is still not infinitesimally rigid.

The (set of vertices of a) framework F = (G, p) with n vertices is generic if, in the matrix
M corresponding to the complete framework (Kn , p) with the same vertices as F, every
submatrix has the largest possible rank that it can have. This is equivalent to saying that the
determinant of a square submatrix of M is never zero except when it is identically zero when
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regarded as a polynomial in the variables xi and yi . Note that almost all frameworks are
generic, in the sense that there are generic frameworks arbitrarily close to any given
framework, and if F is generic, then there exists an ε such that if F ′ is obtained from F by
displacing the vertices in arbitrary directions by less than ε , then F ′ is also generic.

It is obvious from the definition that any two generic frameworks with the same
underlying graph are either both infinitesimally rigid or both infinitesimally non-rigid, and that
their edge-sets are either both infinitesimally independent or both infinitesimally dependent; in
other words, for generic frameworks, infinitesimal independence and infinitesimal rigidity
depend only on the underlying graph G. Also, L. Asimow and B. Roth (1978, 1979) proved
that if F is generic then every infinitesimal motion of F consists of the initial velocities of
some mechanical motion, so that for generic frameworks the mechanical and infinitesimal
concepts coincide. We say that a graph G is generically rigid for dimension 2 if every
2-dimensional generic framework with underlying graph G is infinitesimally (or mechanically)
rigid, and G (or a set of edges in G) is generically independent for dimension 2 if, for every
2-dimensional generic framework F with underlying graph G, F (or the appropriate set of
edges in F) is infinitesimally independent. It is clear that a graph with n vertices is
generically rigid for dimension 2 if and only if it contains a set of 2n − 3 edges that are
generically independent for dimension 2.

3. Matrix methods. The following lemmas were apparently proved by L. Henneberg (1911)
and rediscovered independently by J. E. Graver (1984).

Lemma 1. If x is a vertex of a graph G with degree d(x) 2, and G − x is generically
independent for dimension 2, then so is G.

Proof. It suffices to prove the result when d(x) = 2. So let the vertices of G be v1 , . . . , vn ,
where x = vn and N(x) = {v1 , v2}. Let F = (G, p) be a generic framework with underlying
graph G, and suppose that p(vi ) = (xi , yi ) for each i . The matrix M representing F in equation
(3) can be written in the form

R1 � x1 − xn y1 − yn 0 0 0 . . . 0 xn − x1 yn − y1 �
R2 � 0 0 x2 − xn y2 − yn 0 . . . 0 xn − x2 yn − y2 ��������������������������������������������������������������������������������
R3

�
0 0

�
... � M ′ ...

... �
Rm � 0 0 �		

		

where M ′ is the matrix representing G ′ = G − x . Since G − x is generically independent, the
rows of M ′ are linearly independent. We want to prove that the rows of M are linearly
independent. Suppose that some linear combination ∑ ai Ri of the rows of M is equal to the
zero vector. Since F is generic,

xn − x2

xn − x1

yn − y2

yn − y1 ≠ 0,

and so a1 = a2 = 0. We are left with a linear combination of the rows of M ′ , which are
linearly independent; so a3 = . . . = am = 0. Thus the rows of M are linearly independent, as
required. 


If G is generically independent and X ⊆ V(G ), the relative degree of freedom of X in G
is the largest number of edges {e1 , . . . , er} that one can add between pairs of non-adjacent
vertices of X so that G ∪ {e1 , . . . , er} is still generically independent.

Lemma 2. If x is a vertex of a graph G with degree 3, G − x is generically independent for
dimension 2, and N(x) has at least one relative degree of freedom in G − x , then G is
generically independent for dimension 2.
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Proof. Let the vertices of G be v1 , . . . , vn , where x = vn and N(x) = {v1 , v2 , v3}, and suppose
w.l.o.g. that v1v2 /∈G and (G − x) ∪ {v1v2} is generically independent. Let F = (G, p) be a
generic framework with underlying graph G, and suppose that p(vi ) = (xi, yi ) for each i . The
matrix M representing F in equation (3) can be written in the form

R1 � x1 − xn y1 − yn 0 0 0 0 0 . . . 0 xn − x1 yn − y1 �
R2 � 0 0 x2 − xn y2 − yn 0 0 0 . . . 0 xn − x2 yn − y2 �
R3 � 0 0 0 0 x3 − xn y3 − yn 0 . . . 0 xn − x3 yn − y3 �� �������������������������������������������������������������������������������������������������������������
R4

�
0 0

�
... � M ′ ...

... �
Rm � 0 0 �		

		

where M ′ is the matrix representing G ′ = G − x . Suppose that some linear combination ∑ ai Ri

of the rows of M is equal to the zero vector. Then a1R1 + a2R2 + a3R3 ∈V ′ , the space spanned
by the rows of M ′ (with two extra zeros added on the end). Since F is generic, a1 , a2 , a3 are
uniquely determined up to a constant multiple, and we may suppose that

a1 =
xn − x3

xn − x2

yn − y3

yn − y2 , a2 = −
xn − x3

xn − x1

yn − y3

yn − y1 , a3 =
xn − x2

xn − x1

yn − y2

yn − y1 .

Let v(p) := a1R1 + a2R2 + a3R3 . Keeping p(v1), . . . , p(vn −1 ) fixed and allowing p(vn ) to vary,
we see that v(p) ∈V ′ whenever p(v1 ), . . . , p(vn ) are generic. However, this is true for points
p(vn ) arbitrarily close to any given point (x0 , y0), and so, since V ′ is a closed set (in the
analytic sense), it follows that v(p) ∈V ′ for every choice of p(vn ). Taking p(vn ) =
2
1
 
 (p(v1 ) + p(v2 )), we find that a3 = 0 and

a1 = a2 = 2
1
 


x1 − x3

x1 − x2

y1 − y3

y1 − y2 ≠ 0

since p(v1 ), . . . , p(vn −1 ) are generic, and so p(vn ) = 2
1
 
 a1e12 , where

e12 = (x1 − x2 , y1 − y2 , x2 − x1 , y2 − y1 , 0, . . . , 0),

which is the row vector corresponding to the edge v1v2 . Thus (G − x) ∪ {v1v2} is generically
dependent, contrary to hypothesis. This contradiction shows that the rows of M are linearly
independent, as required. �

It is easy to see from the above proofs that Lemmas 1 and 2 extend to an arbitrary
dimension q , with d(x) q in Lemma 1 and d(x) = q + 1 in Lemma 2. In dimension 3, this
covers the cases d(x) 4. The case d(x) = 5 is the subject of the following conjecture, due to
Henneberg and Graver. However, as H. Maehara (to appear) pointed out, this conjecture does
not extend in the obvious way to dimension 4: K6, 6 is a counterexample.

Conjecture. If x is a vertex of a graph G with degree 5, G − x is generically independent for
dimension 3, N(x) has at least two relative degrees of freedom in G − x , and every subset of 4
vertices of N(x) has at least one relative degree of freedom in G − x , then G is generically
independent for dimension 3.

4. Characterizations. Let be a class of graphs (meaning that if a graph belongs to then
so do all graphs isomorphic to it). is hereditary if every proper subgraph of a graph in is
in . If is hereditary, we shall call the graphs in -independent and all other graphs

-dependent. By a minimal -dependent graph, we mean a graph that is not in , all of
whose proper subgraphs are in . A hereditary class is matroidal if, whenever G1 and G2

are distinct minimal -dependent graphs that both contain the same edge e , then
(G1 ∪ G2) − e /∈ .

Let q denote the class of graphs that are generically independent for dimension q . If M
is the matrix in (3) corresponding to the graph G1 ∪ G2 , then Gi is a minimal q -dependent
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graph if and only if the rows of M corresponding to the edges of Gi form a minimal linearly
dependent set of rows; from this it is easy to see that the class q is matroidal.

The following two characterizations are essentially due to J. E. Graver (1984).

Theorem 1. 2 is the unique non-empty hereditary class satisfying:
A1. Every graph in contains a vertex with degree at most 3.
A2. If x ∈V(G ), d(x) 2 and G − x ∈ , then G ∈ .
A3. If x ∈V(G ) and d(x) = 3, then G ∈ if and only if (G − x) ∪ {e} ∈ for some edge e

joining two non-adjacent vertices of N(x).

Theorem 2. 2 is the unique non-empty matroidal class not containing K4 and satisfying
A1, A2 and the ‘if’ part of A3.

The proof of these results uses:

Lemma 3. Let be a matroidal class of graphs, let H ∈ , and let G1 be a minimal
-dependent graph that contains exactly one edge e ′ that is not in H. Then (H − e) ∪ {e ′} ∈ ,

for each edge e in G1 − e ′ .

Proof. Suppose not. Let G2 be a minimal -dependent subgraph of (H − e) ∪ {e ′}. If e ′ /∈G2

we get a contradiction because then G2 ⊂ H ∈ , and if e ′ ∈G2 then the matroidal property of
ensures that (G1 ∪ G2 ) − e ′ /∈ , which is a contradiction since (G1 ∪ G2 ) − e ′ ⊆ H ∈ . �

The next result is the well known characterization by G. Laman (1970).

Theorem 3. A graph G belongs to 2 if and only if, for each subgraph H of G with at least
two vertices,

�
E(H )

�
2

�
V(H )

�
− 3. (L2 )

Note that (L2 ) holds for each such subgraph of G if and only if it holds for each such induced
subgraph.

From this we obtain the following characterization due to L. Lovász and Y. Yemini
(1982).

Theorem 4. A graph G belongs to 2 if and only if, for each edge e of G, doubling e results
in a multigraph G ′ that is the union of two forests.

Proof. C. St J. A. Nash-Williams (1964) proved that a multigraph G ′ is the union of k forests
if and only if, for each submultigraph H ′ of G ′ ,

�
E(H ′ )

�
k(

�
V(H ′)

�
− 1). Thus G ′ is the

union of two forests if and only if, for each submultigraph H ′ of G ′ ,
�
E(H ′ )

�
2

�
V(H ′ )

�
− 2. (4)

But if (L2 ) holds for every subgraph H of G, then clearly (4) holds for every submultigraph H ′
of G ′ (taking H to be the corresponding subgraph of G, so that V(H ) = V(H ′ ) and�
E(H )

� �
E(H ′ )

�
− 1). And if (L2 ) fails for some subgraph H of G, then choosing e ∈H and

taking H ′ to be the corresponding subgraph of G ′ , so that V(H ′ ) = V(H ) and
�
E(H ′ )

�
=�

E(H )
�
+ 1, we see that (4) fails. So the result follows from Theorem 3. �

For our final set of four characterizations, we need several definitions and lemmas. The
-rank r (G ) of a graph G is the largest number of edges in any -independent subgraph of

G.

Lemma 4. Let be a matroidal class of graphs, G an arbitrary graph, and e1 , e2 edges not in
G such that r (G ∪ {e1}) = r (G ∪ {e2}) = r (G ). Then r (G ∪ {e1 , e2}) = r (G).
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We shall say that a graph G is -rigid if r (G ∪ {e}) = r (G) whenever e is a new edge
joining two non-adjacent vertices of G, and -closed if r (G ∪ {e}) > r (G ) whenever e is a
new edge joining two non-adjacent vertices of G ∪ � �K2 . Clearly all complete graphs are

-rigid, and a -rigid subgraph of a -closed graph G induces a complete subgraph of G.
Also, a graph is 2 -independent or 2 -rigid if and only if it is generically independent or
generically rigid for dimension 2.

We shall say that a matroidal class of graphs is matroidal for dimension q if it
satisfies the two conditions:
B1. If G1 and G2 are two -independent graphs with at most q − 1 vertices in common, then

G1 ∪ G2 ∪ {uw} is -independent whenever u ∈V(G1) \ V(G2 ) and w ∈V(G2 ) \ V(G1).
B2. If G1 and G2 are two -rigid graphs with at least q vertices in common, then G1 ∪ G2 is

-rigid.

Lemma 5. The class q is matroidal for dimension q .

Lemma 6. Let be a non-empty class of graphs that is matroidal for dimension 2.
(a) r (Kn ) = 2n − 3 if n 2.
(b) If G ∈ then

�
E(H )

�
2

�
V(H )

�
− 3 for every subgraph H of G with at least two vertices.

(c) If G is -closed and G1 and G2 are distinct maximal cliques of G, then�
V(G1 ) ∩ V(G2 )

�
1.

Now consider the following four conditions.
C1. If G ∈ and u, w are non-adjacent vertices of G such that G ∪ {uw} /∈ , then G has a

-rigid subgraph H such that u, w ∈V(H ).
C2. If G is a minimal -dependent graph, then G − e is -rigid, for each edge e of G.
C3. If G is a minimal -dependent graph, then G is -rigid.
C4. If G is -closed and F1 , . . . , Fk are the maximal cliques of G, then r (G ) =

r (F1 ) + . . . + r (Fk ).

Lemma 7. Let be a class of graphs that is matroidal for dimension 2. Then
C1 ⇔ C2 ⇒ C3 ⇒ C4.

We are at last in a position to prove the final four characterizations. The one using C4
was obtained by J. E. Graver (to appear) following an observation by A. Dress (1987).

Theorem 5. 2 is the unique non-empty class of graphs that is matroidal for dimension 2
and satisfies any one of the conditions C1, C2, C3 and C4 (in which case it satisfies them all).

Corollary 5.1. If a 2-dimensional generic framework determines the distance apart of two
vertices u and w , then it has a rigid subframework containing u and w .

Proof. This is effectively C1 for the class 2 . �

5. One-dimensional and three-dimensional frameworks. It is easy to see that every one-
dimensional framework (with distinct vertices) is generic, and that a one-dimensional
framework is rigid if and only if it is connected and is independent if and only if it is circuit-
free. Thus we have the following theorems, which are directly analogous to Theorems 1–5.

Theorem 11 . 1 is the unique non-empty hereditary class satisfying:
A11 . Every graph in contains a vertex with degree at most 1.
A21 . If x ∈V(G ), d(x) 1 and G − x ∈ , then G ∈ .

Theorem 21 . 1 is the unique non-empty matroidal class satisfying A11 and A21 .
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Theorem 31 . A graph G belongs to 1 if and only if, for each subgraph H of G,
�
E(H )

� �
V(H )

�
− 1. (L1 )

Note that (L1 ) holds for each such subgraph of G if and only if it holds for each such induced
subgraph.

Theorem 41 . A graph G belongs to 1 if and only if it is a forest.

Theorem 51 . 1 is the unique non-empty class of graphs that is matroidal for dimension 1
and satisfies any one of the conditions C1, C2, C3 and C4 (in which case it satisfies them all).

Little has been proved about three-dimensional frameworks. Theorems 3 and 31 suggest
the following:

False Analogue of Laman’s Theorem (FALT). A graph G belongs to 3 if and only if, for
each subgraph H of G with more than one edge,

�
E(H )

�
3

�
V(H )

�
− 6. (L3 )

The graph G3 in Fig. 2 shows that this is false. Every subgraph H of G3 with more than one
edge satisfies (L3 ), but G3 /∈ 3 because it has exactly 3

�
V(G3 )

�
− 6 edges and so cannot be

3-independent without being 3-rigid, which it clearly isn’t. Laman’s theorem can be
interpreted as saying that there are exactly two reasons why a 2-dimensional framework
F = (G, p) can be infinitesimally or mechanically dependent: either some subgraph H of G has
too many edges for its number of vertices (specifically, (L2 ) fails), or there is some special
geometry that causes F to be dependent (that is, F is not generic—Laman’s theorem does not
attempt to classify the different types of special geometry that can arise here). FALT would
imply that only the same two reasons could apply in three dimensions, whereas the graph G3

shows that there is another reason, namely, that G consists of two graphs H1 and H2 joined at
two vertices u and w that are not adjacent in either H1 or H2 but whose distance apart in F is
determined by both H1 and H2 . This reason can evidently apply in any dimension, but it is
covered by conditions (L1 ) and (L2) in dimensions 1 and 2. G4 in Fig. 2 is the analogue of G3

in two dimensions, but it is 2-rigid and violates Laman’s condition (L2 ), whereas G3 is
evidently not 3-rigid and it satisfies (L3 ). Probably there are no other reasons why a
3-dimensional framework can be dependent; but nobody has yet found a precise formulation
of this intuitive statement.

A second reason why FALT fails is that the class of graphs that it describes is not even
matroidal. For example, if G1 and G2 are the graphs in Fig. 2, having precisely one edge e in
common, then G1 and G2 are minimal -dependent graphs, but (G1 ∪ G2 ) − e = G3 ∈ .
Perhaps 3 is the largest matroidal subclass of ; but, even if it is, nobody seems to know
how to characterize it.

A third way of seeing that FALT is false is to observe that it would imply that 3 satisfies
condition C1, so that the analogue of Corollary 5.1 holds in three dimensions. However, the

G1 G2

e

u

w
G3

u

w
G4

Fig. 2.
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u

v

w

u

v

w
F1 F2

Fig. 3.

3-dimensional framework F1 in Fig. 3 is a counterexample. It is formed from the rigid
framework F2 by replacing the edge uv by a ‘spindle’ isomorphic to F2 . So far as the rest of
the framework is concerned, this spindle has the same effect as the edge uv , namely, to
determine the distance apart of u and v ; thus F1 determines the distance apart of u and w , just
as F2 does. But, unlike the edge, the spindle can rotate on its axis, and so F1 is not rigid, and
it has no rigid subframework containing u and w . The framework obtained from F1 by adding
the edge uw is a minimal dependent framework that is not rigid, which shows that 3 does not
satisfy condition C2 or C3 either.

Thus Theorem 3 and the conditions C1, C2 and C3 in Theorem 5 do not extend to three
dimensions in any obvious way, and it seems unlikely that the closely related Theorem 4 can
extend either. However, the Henneberg–Graver conjecture in Section 3 would give rise to
theorems that are natural generalizations of Theorems 1 and 2 to three dimensions. And
A. Dress (1987) has made the following conjecture, which is a refinement (hopefully, the
appropriate refinement) of condition C4.

Conjecture. If G is 3-closed and F1 , . . . , Fk are the maximal cliques of G, then
r (G ) = ∑i =1

k r (Fi ) − ∑e∈E(G)
ρe where ρe is one less than the number of maximal cliques

containing e .
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GENERIC RIGIDITY OF GRAPHS

1. Introduction and summary.

2. Definitions.

3. Matrix methods.

4. Characterizations.

Proof of Theorems 1 and 2. We have seen that 2 is a matroidal class. Also, a graph in 2

with n vertices has at most 2n − 3 edges, whence it is not K4 and contains a vertex with degree
3. Since A2 and the ‘if’ part of A3 follow from Lemmas 1 and 2, we have proved all of

Theorem 2 except for the uniqueness of the class described therein. On the other hand,
there is clearly at most one non-empty hereditary class satisfying A1–A3, and so if we can
prove that any non-empty matroidal class not containing K4 and satisfying A1, A2 and the
‘if’ part of A3 also satisfies the ‘only if’ part of A3, then we will have proved both of
Theorems 1 and 2.

So let be such a class. Suppose that G ∈ , x ∈V(G ), d(x) = 3 and (G − x) ∪ {e} /∈ for
each edge e joining two non-adjacent vertices of N(x). Suppose that, among all such
counterexamples, G has as many edges as possible joining pairs of vertices in N(x). Since
K4 /∈ and G ∈ , K4 /⊆ G, and so some two vertices of N(x) are non-adjacent: let e be a new
edge joining them. Since (G − x) ∪ {e} /∈ , there is a minimal -dependent graph G1 such that
G1 ⊆ (G − x) ∪ {e}. Since G ∈ , e ∈G1 . Let e ′ be an edge of G1 that does not join two
vertices in N(x), which exists since K3 ∈ by A2. By Lemma 3, G ′ := (G − e ′ ) ∪ {e} ∈ .
Since G ′ has more edges than G joining pairs of vertices in N(x), G ′ is not a counterexample
to ‘only if’ in A3, and so we can add an edge f joining two vertices of N(x) that are non-
adjacent in G ′ so that H := (G ′ − x) ∪ { f } ∈ . Then G1 contains exactly one edge e ′ not in
H, and (H − e) ∪ {e ′} = (G − x) ∪ { f } /∈ , contradicting Lemma 3. �

Proof of Theorem 3. Let be the class of graphs characterized in the theorem. It is easy to
see that satisfies A1, A2 and the ‘if’ part of A3. (In A3, (L2 ) will hold for any subgraph H
of G obtained from H − x by adding x and at most two edges. And if H contains three edges
not in H − x then � E(H − x) � 2 � V(H − x) � − 4 because (H − x) ∪ {e} satisfies (L2).) So, by
Theorem 2, it suffices to prove that is matroidal.

To do this, let G1 and G2 be distinct minimal graphs not in , so that

� E(G1 ) � = 2 � V(G1 ) � − 2

and

� E(G2 ) � = 2 � V(G2 ) � − 2.

Since G1 ∩ G2 ≠
⊂ G1 , G1 ∩ G2 ∈ and so

� E(G1 ∩ G2 ) � 2 � V(G1 ∩ G2 ) � − 3,

so that

� E(G1 ∪ G2 ) � 2 � V(G1 ∪ G2 ) � − 2 − 2 + 3

and

� E((G1 ∪ G2 ) − e) � 2 � V((G1 ∪ G2 ) − e) � − 2.
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Thus (G1 ∪ G2 ) − e /∈ . �

Proof of Lemma 4. Suppose r (G ∪ {e1 , e2}) > r (G ). Let H and H ′ be largest
-independent subgraphs of G ∪ {e1 , e2} and G, chosen to have as many edges as possible in

common, where evidently e1 , e2 ∈H and � E(H ) � = � E(H ′) � + 1. Then ∃ e ′ in H ′ \ H. Since
H ∪ {e ′} /∈ , H ∪ {e ′} contains a minimal -dependent graph G1 . Clearly e ′ ∈G1 . Choose e
in G1 \ H ′ , which exists since G1 /⊆ H ′ ∈ . By Lemma 3, H1 := (H − e) ∪ {e ′} ∈ . But H1

has more edges in common with H ′ than H has, ⇒⇐. �

Proof of Lemma 6. (a) Since ≠ ∅, K1 ∈ , and B1 easily implies that K2 ∈ . By taking
G2 := K2 in B1 we see that B1 ⇒ A2. K2 + � �Kn −2 is a spanning subgraph of Kn , where ‘+’
denotes ‘join’. It is easy to see that K2 + � �Kn −2 is -independent, by A2, and -rigid, by B2
(since K3 is -rigid). By repeated application of Lemma 4, r (Kn ) = � E(K2 + � �Kn −2) � = 2n − 3.

(b) If G ∈ and H ⊆ G (H ≠ K1), then H is a -independent subgraph of K � V(H ) � and so
� E(H ) � 2 � V(H ) � − 3 by (a).

(c) G1 and G2 are cliques, hence -rigid, and so if � V(G1) ∩ V(G2 ) � 2 then G1 ∪ G2 is
-rigid by B2. But G1 ∪ G2 is not complete, and so G is not -closed, ⇒⇐. �

Proof of Lemma 7. C1 ⇒ C2: Applying C1 to G − e we see that G − e has a -rigid subgraph
H that contains both end vertices of e . Then H ∪ {e} is -dependent. Since G is a minimal

-dependent graph, H ∪ {e} = G and G − e = H is -rigid.

C2 ⇒ C1: Let H ′ be a minimal -dependent subgraph of G ∪ {uw}, necessarily containing the
edge uw . Then H = H ′ − uw is -rigid by C2.

C2 ⇒ C3: Obvious.

C3 ⇒ C4: By Lemma 6(c), E(Fi ) ∩ E(Fj ) = ∅ whenever i ≠ j . Let B be a largest
-independent subgraph of G. Then

r (G ) = � E(B ) � = ∑i
� E(B ∩ Fi ) � ∑i

r (Fi )

since B ∩ Fi ⊆ B ∈ . Now let Bi be a largest -independent subgraph of Fi , for each i , and
B := B1 ∪ . . . ∪ Bk . Suppose B is -dependent and let H be a minimal -dependent subgraph
of B. By C3, H is -rigid, whence H ⊆ Fi for some i . But then H ⊆ Bi ∈ , which is
impossible. Thus B ∈ and

r (G ) � E(B ) � = ∑i
� E(Bi ) � = ∑i

r (Fi ),

whence C4 holds. �

Proof of Theorem 5. 2 is matroidal for dimension 2 by Lemma 5. To see that it satisfies
C2, let G be a minimal 2 -dependent graph with n vertices. By Theorem 3, G has 2n − 2
edges and every subgraph of the form G − e has n vertices and 2n − 3 generically independent
edges. Thus G − e is generically rigid, by the definition of infinitesimal rigidity in Section 2.
Thus 2 satisfies C2, and hence C1, C3 and C4 by Lemma 7.

Suppose conversely that is a non-empty class of graphs that is matroidal for dimension
2 and satisfies C1, C2, C3 or C4, and hence satisfies C4 by Lemma 7. We wish to prove that

= 2 . If G ∈ then G ∈ 2 by Lemma 6(b) and Theorem 3. So suppose G ∈ 2 . We shall
prove by induction on � E(G ) � that G ∈ . Form a -closed graph Gc by adding edges to G as
long as this does not increase the -rank, and let F1 , . . . , Fk be the maximal cliques of Gc . If
k = 1 then Gc is complete and so, by Lemma 6(a) and Theorem 3,

r (G ) = r (Gc ) = 2 � V(G ) � − 3 � E(G ) � r (G ).

Thus r (G ) = � E(G ) � and so G ∈ . So suppose k 2 and let Gi := G ∩ Fi for each i . Then
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Gi /=
⊂ G and so we may suppose inductively that Gi ∈ . By Lemma 6(c), E(Gi ) ∩ E(Gj ) = ∅

whenever i ≠ j . Thus, by C4,

r (G ) = r (Gc ) = ∑i
r (Fi ) ∑i

�
E(Gi )

�
=

�
E(G )

�
r (G ).

Then G ∈ as required. �

5. One-dimensional and three-dimensional frameworks.


