Notes from "Molecular Driving Forces," by Dill and Bromberg.
This is a MATLAB notebook, so if you have MATLAB (which you may want to run if it doesn't start automagically) then you should see an extra "Notebook" menu which will let you evaluate cells to perform computations if you want to change the numbers.

Statistical thermodynamics makes models for understanding the forces at work on atoms and molecules as they bind, absorb, dissolve, react, and reconfigure.  

ch.1&2: The basic idea is to define a set of possible states, and determine a probability distribution on the states.  States are usually defined by equilibria, which may be stable, neutral, unstable, or metastable. 

An extremum principle is that states with the most freedom, or most options, have the highest probabilities. E.g., if you throw 100 coins, you have nchoosek(100,50)   = 1.0089e+029  ways to roll 50 heads and 50 tails, and only  nchoosek(100,25)  = 2.4252e+023 ways to roll 25 heads and 75 tails – a million-fold fewer.  

Consider a gas as particles in a lattice (or even a discrete line).

N particles in V slots have VchooseN freedom; when we add more slots the freedom grows, so gas increases in volume.   The rate the number of states grows, as a function of volume, defines pressure (when temperature is constant).  When V >> N, the number of states, W ~= V^N, so log W ~=N log V  and d/dV (log W) ~= N/V.  For example, N=5; V = 10:30; W = zeros(1,length(V)); for i = 1:length(V);W(i) = nchoosek(V(i),N); end; W, diff(log(W)).*V(1:end-1)  
W =

  Columns 1 through 5 

         252         462         792        1287        2002

  Columns 6 through 10 

        3003        4368        6188        8568       11628

  Columns 11 through 15 

       15504       20349       26334       33649       42504

  Columns 16 through 20 

       53130       65780       80730       98280      118755

  Column 21 

      142506

ans =

  Columns 1 through 6 

    6.0614    5.9290    5.8261    5.7438    5.6765    5.6204

  Columns 7 through 12 

    5.5729    5.5322    5.4969    5.4660    5.4387    5.4144

  Columns 13 through 18 

    5.3927    5.3731    5.3554    5.3394    5.3247    5.3112

  Columns 19 through 20 

    5.2988    5.2873  

Gasses mix because there are more ways for the molecules to be intermixed than to be separated. 

N1 particles in V1 slots and N2 particles in V2 slots have ~= V1^N1*V2^N2 states

N1+N2 particles in V1+V2 slots have ~=(V1+V2)^(N1+N2) states.  If V1=V2 and N1,N2 << V1, then there are roughly 2^(N1+N2) times more states when the gases can intermix.
ch.3 The kinetic model for gas suggests that the pressure/volume/temperature relationship comes from the kinetic collisions of molecules.  The observation that energy is quantized is not explained by this model.  A statistical thermodynamics model that considers energy states can also explain this relationship as maximizing choice.  

Suppose you have A particles and E quanta of energy.  There are A+E choose E ways to distribute the quanta, using balls & bars counting.  Most will evenly distribute the energy.

Energy flows to maximize the number of states: Suppose you have two systems with A > B and the same energy E.  If you bring them into contact, then A+B+2E choose 2E has more states than the systems do separately.  If you then separate, you'll find that the energy has divided into A+E_A choose EA 

and B+E_B choose E_B, with E_A + E_B = E, and E_A/E_B ~= A/B.  The energy quanta flow to the larger system, because that equalizes opportunity. 
Moral: Just counting states for balls in boxes can give the behavior of particles as volume, type, and energy increase. 

Entropy S measures disorder as the log of the number of states. 

The entropy of a distribution is S = - \sum_i p_i \log p_i, where log is the natural logarithm.

Boltzman puts his constant of 1.380662e-23 J/K in there, which would be1.380662e-23 /log(2)   = 1.9919e-023 with a base 2 log.

There are three keys to entropy 

1. that it is maximized on the uniform distribution, 

2. that H(AB) = H(A) + H_A(B), where H_A(B) is the entropy of B knowing A, which is the entropy of B if A and B are independent, and

3. that adding impossible events (pi=0) to the set of states does not change the entropy.
We can show that entropy is maximized on the uniform distribution by noting that –pi \log pi is a convex function, so the sum will be maximized when all terms are equal.  

We can also use Lagrange multipliers:

Consider \del/\del pi (\sum pi \log pi) dpi =0 subject to \sum pi = 1, 

or \del/\del pi(\sum pi) dpi = 0

With any Lagrange multiplier \alpha 

 (\del/\del pi (\sum pi \log pi) dpi - \alpha \del/\del pi(\sum pi) )  dpi = 0
so –1 – log pi - \alpha = 0, and all pis are the same. 

If we constrain the average of a distribution, then maximizing entropy gives us exponentials:

To the above, we add the constraint that mean = \sum pi*ei, so \del/\del pi ( \sum pi*ei) dpi = 0

With any Lagrange multiplier \alpha and \beta

 (\del/\del pi (\sum pi \log pi) dpi - \alpha \del/\del pi(\sum pi) - \beta \del/\del pi ( \sum pi*ei)  )  dpi = 0

so –1 – log pi  – \alpha – \beta ei = 0, which gives us pi as a function of alpha and beta.  We have to go back to the constraints to figure out the exact form.  We can normalize to make the sum pi = 1:
pi = exp( –1 –alpha  – \beta ei) / (\sum_i exp( –1 –alpha  – \beta ei)).

Notice that this lets us pull out an exp(–1 –alpha) factor, and eliminate the variable \alpha:
pi = exp( –\beta ei) / (\sum_i exp(–\beta ei)).  The constraint on average would let us solve for \beta.
(Aside: The denominator is the partition function of statistical thermodynamics.)
Moral: exponential distributions arise naturally when maximizing entropy subject to constraints. 
ch. 7:  If we look at the differential equations that relate entropy S to energy U,  volume V, and numbers of different types of particles Nj, we can study
change in entropy:

dS = (\del S/\del U) dU + (\del S/\del V) dV +\sum_j (\del S/\del Nj) dNj

change in energy

dU = (\del U/\del S) dS + (\del U/\del V) dV +\sum_j (\del U/\del Nj) dNj

From this second equation, we can name the partial derivative quantities, because these are quantities that we can observe with experimental aparatus:
Temperature T = (\del U/\del S) : rate of change of energy as a function of entropy (degrees Kelvin)
Pressure p =  –(\del U/\del V) : rate of change of energy as a function of volume
chemical potential muj = (\del U/\del Nj) : r.c. of energy as a function of number of particles of type j
so dU = T dS –p dV + \sum_j muj dNj, which we can rewrite as
dS = dU/T + p dV/T –\sum_j muj dNj/T, which means that the above three quantities are also related to partial derivatives of entropy (as long as we divide by the temperature T). 
1/T = (\del S/\del U)
p/T = (\del S/\del V) 
muj/T = –(\del S/\del Nj)
Extensive properties add when you enlarge the system.  

Entropy and Energy are both extensive: 

S_tot = S_A+S_B, and U_tot = U_A + U_B.

Intensive properties do not depend on system size: temperature, pressure, and chemical potential are intensive because they are first-order differential properties. 

