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Abstract

When implementing Delaunay tessellation in 3d, a number of engineering decisions must be made
about update and location algorithms, arithmetics, perturbations, and representations. We compare five
codes for computing 3D Delaunay tessellation: qhull, hull, CGAL, pyramid, and our own tess3, and
explore how these decisions affect the correctness and speed of computation.

1 Introduction

The Delaunay tetrahedralization is a useful canonical decomposition of the space around a given set of points
in a Eucliean space E3, frequently used for surface reconstruction, molecular modelling and tessellating
solid shapes [13, 8, 26]. The Delaunay is often used to compute its dual Voronoi diagram, which captures
proximity. In its turn, it is often computed as a convex hull of points lifted to the paraboloid of revolution
in one dimension higher [10, 11]. As we sketch in this paper, there are a number of engineering decisions
that must be made by implementors, including the type of arithmetic, degeneracy handling, data structure
representation, and low-level algorithms.

We wanted to know what algorithm would be fastest for a particular application: computing the Delaunay
tessellation of points that represent atoms coordinates in proteins, as represented in the PDB (Protein Data
Bank) format [1]. Atoms in proteins are well-packed, so points from PDB files tend to be evenly distributed,
with physically-enforced minimum separation distances. Coordinates in PDB files have a limit on precision:
because they have an 8.3f field specification in units of Ångstroms, they may have three decimal digits before
the decimal place (four if the number is positive), and three digits after. Thus, positions need about 20 bits,
with differences between neighboring atoms needing 12 bits. Since the the experimental techniques do not
give accuracies of thousandths or even hundredths of Ångstroms, we may even reduce these limits.

We therefore decided to see whether we could stretch the use of standard IEEE 754 double precision
floating point arithmetic [2] to perform Delaunay computation for this special case. We implemented a
program, tess3 [23], which we sketch, and compared it with four popular codes available in the public domain:
Barber et al.’s Qhull [6], the CGAL geometry library’s Delaunay Hierarchy [14], Shewchuk’s Pyramid [29]
and Clarkson’s Hull [12]. Our program, designed to handle limited precision, uniformly-spaced input using
only double precision point arithmetic, was fastest on both randomly generated input and points from PDB
files, although it did compute incorrect tetrahedra for one of the 20,393 PDB files that did not satisfy the
input assumptions.

The performance of Delaunay code is affected by a number of algorithmic and implementation choices.
We compare these choices made by all five programs in an attempt to better understand what makes a
Delaunay program work well in practice. In Section 2, we review the problem of computing the Delaunay
tetrahedralization and describe the main algorithmic approaches and implementation issues. In Section 3,
we compare the programs for computing the Delaunay. In section 4, we show experiments that compare all
five programs in speed, and some experiments that look at the performance of tess3 in detail.

There are many other programs that can compute Delaunay Tedrahedralization: Edelsbrunner’s deltri [19]
and Watson’s nnsort [30, 31], to cite just two. The candidate programs were selected for their popularity
and their speed. In particular, all of these programs are able to rely mostly on floating point operations
when given coordinates that have small number of bits, and can handle at least hundreds of thousands of
points when running on a desktop computer.
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2 Delaunay Tetrahedralization

There are several common element in the five programs that we survey.

2.1 Definition

The Delaunay diagram in E3 can be defined for a finite set of point sites P : For every sphere S whose interior
contains no sites of P , the interior of the convex hull of S ∩ P is in the Delaunay diagram. The Delaunay
diagram is dual to the Voronoi diagram of P , which is defined as the partition of E3 into maximally-connected
regions that have the same set of closest sites of P . The Delaunay diagram completely partitions the convex
hull of P .

If the sites are in general position, in the sense that no more than four points are co-spherical and no more
than three are co-planar on the convex hull, then Delaunay diagram is a Delaunay tetrahedralization—each
of the empty spheres defines a hull that is a tetrahedron, triangle, edge, or single point. The programs we
survey have different approaches to enforce or simulate general position, so that only tetrahedra need be
represented.

2.2 Representation

A Delaunay tetrahedralization, or any simplicial complex, can be represented its full facial lattice: its vertices,
edges, triangles and tetrahedra and their incident relationships. A programmer will usually choose to store
only a subset of the simplices and the incidence relationships, deriving the rest as needed.

All five programs store the set of tetrahedra, and for each tetrahedron t, references to its vertices and
neighbors—a neighbor is another tetrahedron that shares a common triangle with t. A corner is the use of a
vertex in a tetrahedron. Two corners are opposite if their tetrahedra are neighbors, but neither is involved
in the shared triangle.

It is common to include a point at infinity, ∞, so that for every triangle {a, b, c} on the convex hull, there
is a tetrahedron {∞, a, b, c}. Thus, each tetrahedron in the Delaunay has exactly 4 neighbors.

2.3 Incremental Construction

Each of the five programs compute the Delaunay incrementally, adding one point at a time. A new point p is
added in two steps: First, a point location routine finds the tetrahedron (or some sphere) that was formerly
empty, but that now contains the new point p. Second, an update routine removes tetrahedra that no longer
have an empty sphere after adding p and fills in the hole with tetrahedra emanating from p. The running
time of an incremental algorithm is proportional to the number of tetrahedra considered in point location,
plus the total number of tetrahedra created.

The worst-case number of tetrahedra created in adding a vertex is linear, so the total number of tetrahedra
is at most quadratic. This is also the worst-case number in any one tetrahedralization, and simple examples,
such as n/2 points on each of two skew lines or curves, give a matching lower bound. Nevertheless, linear-size
Delaunay tessellations are most commonly observed—the practice is better than the theory predicts. Some
theoretical works explain this under assumptions on the input such as random points or uniform samples
from surfaces [5, 16, 21].

For the linear-sized Delaunay tessellations observed in practice, point location can actually become the
bottleneck in 3d, as it is in 2d. There are a wide variety of point location algorithms in the programs we
survey, so we will discuss this primarily in Section 3.4.

2.4 Numerical Computations

The geometric tests in Delaunay code are performed by doing numerical computations. The most important
is the InSphere test. Let p be a point whose Cartesian coordinates are px, py and pz. We can represent p by
a tuple (p1, px, py, pz, pq), where p1 = 1 is a homogenizing coordinate and pq = p2

x +p2

y +p2

z. Mathematically,
any positive scalar multiple of p can be taken to represent the same point, but for computation, we prefer the
computer graphics convention that p1 = 1, and assume that the Cartesian coordinates are b-bit integers. The
special point ∞ = (0, 0, . . . , 0, 1), representing the point at infinity, is the sole exception. Four non-coplanar
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points a, b, c and d define an oriented sphere and point p lies inside, on, or outside of the sphere depending
on whether the sign of InSphere(a, b, c, d; p) in equation 1 is negative, zero, or positive.

InSphere(a, b, c, d; p) =
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(1)

Note that if one of the four points on the sphere is ∞, the determinant is equal to an orientation
determinant that tests a point against a plane. Therefore, when a tetrahedron includes the ∞ vertex, we
can still use this determinant to perform the InSphere test on its sphere and a chosen point; the test will
return the position of the point with respect to an “infinite sphere” that is an oriented convex hull plane.

Computers store numbers with limited precision and perform floating-operations that could result in
round-off errors. In the Delaunay algorithms, round-off errors change the sign of a determinant and produce
the wrong answer for an InSphere test. Therefore, we look at the bit complexity of the numerical operations:
Assuming that the input numbers are b-bit integers, how large can the results of an algebraic evaluation be
as a function of b?

The InSphere determinant can be expanded into an alternating sum of multiplicative term, each of degree
five. Therefore, if we use the determinant directly, we need at least 5b bits to compute each multiplicative
term correctly. The determinant itself can take no longer than 5b bits, since the InSphere determinant gives
the volume of a parallelepiped in R4, where the thickness of the parallelepiped along the x, y, z and the
lifted dimension take no more than b, b, b and 2b bits, respectively.

Knowing that, e.g., a is a finite point, and that the homogenizing coordinate for points is unity, we can
rewrite the determinant to depend on the differences in coordinates, rather than absolute coordinates by
just subtracting the row a from all finite points, and then evaluate the determinant. The last coordinate
can also be made smaller by lifting after subtraction, but this is usually not done for two reasons: first, it
adds extra squaring operations that must be done within each InSphere determinant, and second, it makes
it harder to generalize to compute power diagrams.

When an InSphere determinant is zero, then the five points being tested lie on a sphere, and are not in
general position. (Subjecting the points to a random perturbation will make them no longer co-spherical,
except for a set of measure zero.) Edelsbrunner and Mücke[18] showed how to simulate general position
for determinant computations by infinitesimal perturbations of the input points, and there have been many
approaches since. We describe the approaches taken by the different programs in Section 3.6.

3 Comparison of Delaunay Codes

With this background, we elaborate on the engineering choices made in the five programs for representation,
arithmetic, perturbation, update and point location. A summary table is provided at the end of the section.
Many of the implementation details we report here cannot be found in the research papers describing the
programs, though they do have impact on the performance of the program.

3.1 Implementation goals

The five programs that we survey were implemented with different goals in mind.
CGAL is a C++ geometric algorithm library that includes a Delaunay triangulation 3 class that encap-

sulates functions that implement Delaunay tetrahedralization [14]. It uses traits classes to support various
types of arithmetic and point representations; we tested both Simple_cartesian<double>, which uses float-
ing point arithmetic and Filtered_kernel<Simple_cartesian<double>>, an exact arithmetic with floating
point filters.

Clarkson’s hull [12] computes convex hull of dimension 2, 3 and 4 by an incremental construction that
can either shuffle the input points or take them as is. It uses a low bit-complexity algorithm to evaluate
signs of determinants in double precision floating point.
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Qhull [6], initially developed at the geometry center of University of Minnesota, is a popular computing
convex hulls in general dimensions. It supports many geometric queries over the convex hull and connects
to geomview for display. It has a many more lines devoted to debugging and portability than to the actual
algorithm.

Shewchuk’s pyramid [29] was developed primarily to generate quality tessellation of a solid shape. In
addition to taking points and producing the Delaunay tessellation, it can take lines and triangles and compute
a conforming Delaunay, adding points on these features until the final tessellation contains, for each input
feature, a set of edges or triangles is a partition of that feature.

Our program, tess3, is specialized to the Delaunay tessellation of near-uniformly spaced points with
limited precision, of the sort found in the crystallographic structures deposited in the PDB [1]. We have
been pleased to find that it also works with NMR structures, which often have several variants of the
same structure in the same file, and therefore violate the separation assumptions under which our code was
developed.

3.2 Representation

Each program stores pointers from tetrahedra to their neighbors. Pyramid and tess3 have special ways to
indicate which corners in a neighboring tetrahedra correspond: Pyramid stores four bits with each neighbor
pointer to indicate the orientation of the neighboring tetrahedron and location of the vertices of the shared
triangle. Tess3 uses a corner-based representation that is a refinement of the structure of Paoluzzi et al. [27]
or Kettner et al. [22]. An array stores corners so that each subsequent block of four corners is one tetrahedron.
Each corner points to its vertex and its opposite corner—the corner in the neighboring tetrahedron across
the shared triangle. Each block is stored with vertices in increasing order, except that the first two may be
swapped to keep the orientation positive. The correspondence between vertices in neighboring tetrahedra,
where vertex 0 ≤ i < 4 is replaced by vertex at position 0 ≤ j < 4, can be recorded in a table indexed by i, j.
This supports operations such as walking through tetrahedra, or cycling around an edge without requiring
conditional tests.

Since a tetrahedron’s sphere can be used repeatedly for InSphere tests, the minors of the determinant
expanded along the last row can be pre-computed and stored in a vector S so that the test becomes a simple
dot product: InSphere(a, b, c, d; p) = S · p. Hull, pyramid, and tess3 store these sphere vectors.

3.3 Incremental Computation

Each of the programs must update data structure as tetrahedra are destroyed and created. One of the
biggest decisions is whether an algorithm uses flipping [20] to always maintain a tessellation of the convex
hull, or uses the Bowyer-Watson approach [9, 30] of removing all destroyed tetrahedra, then filling in with
new. Flipping assigns neighbor pointers to twice as many tetrahedra, since many tetrahedra created by flips
with a new vertex p are almost immediately destroyed by other flips with p.

Amenta, Choi and Rote [4] pointed out that the number of tetrahedra is not the only consideration. Since
modern memory architecture is hierarchical, and the paging policies favor programs that observe locality of
reference, a major concern is cache coherence: a sequence of recent memory references should be clustered
locally rather than randomly in the address space. A program implementing a randomized algorithm does
not observe this rule and can be dramatically slowed down when its address space no longer fits in main
memory. Their Biased Randomized Insertion Order (BRIO) preserves enough randomness in the input points
so that the performance of a randomized incremental algorithm is unchanged but orders the points by spatial
locality to improve cache coherence. More specifically, they partition the input points into expected O(log n)
levels as follows: Randomly sample half of the input points and put them in the first level; for each of the
following level, sample half of the points left. The points with each level are then ordered by bucketing them
with an octree and traversing the buckets in a depth-first order.

To partition the points, tess3 uses a deterministic approach that we call bit-levelling. Bit-levelling group
the points whose three coordinates share i trailing zeros (or any other convenient, popular, bit pattern)
in the ith level. Levels are inserted in increasing order, and points within each level are ordered along a
space-filling curve. With experimentally-determined data, the least-significant bits tend to be random, so bit
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leveling generates a sample without the overhead of generating random bits. The real aim for bit-levelling,
however, is to reduce the bit-complexity of the InSphere computation. Recall that when we evaluate the
determinant for the InSphere test, one point can be used for the local origin and subtracted from all finite
points. Using floating point, the effective number of coordinate bits in the mantissa is reduced if some of the
most- and/or least-significant bits agree. Since the points are assumed to be evenly distributed (the next
section describes how tess3 adds all the points ordered along a Hilbert curve), in the final levels the points
used for InSphere tests tend to be close and share some most-significant bits. Since bit-levelling forms the
ith level by grouping points with the same i least-significant bits, giving cancellation in the early, sparse
levels as well.

3.4 Point location

In theory, point location is not the bottleneck for devising optimal 3D Delaunay algorithms. In practice,
however, the size of the neighborhood updated by inserting a new point is close to constant, and point location
to find the tetrahedron containing a new point p can be more costly than updating the tetrahedralization if
not done carefully.

Hull and Qhull implement the two standard ways to perform point location in randomized incremental
constructions of the convex hull: Hull maintains the history of all simplices, and searches the history dag
to insert a new point. QHull maintains a conflict list for each facet of the convex hull in the form of an
outside set, which is the set of points yet to be processed that can “see” the facet. These are equivalent in
the amount of work done, although the history dag is larger, and the conflict list requires that all points be
known in advance.

The other programs use some form of walk through the tetrahedra. Pyramid uses the jump-and-walk

introduced by Mücke et al. [25] for point location. To locate a point p in a mesh of m tetrahedra, it measures
the distance from p to a random sample of m1/4 tetrahedra, then walk from the closest of these to the
tetrahedron containing p. Each step of the walk visits a tetrahedron t, shoots a ray from the centroid of t
towards p, and go to the neighboring tetrahedron intersected by the ray. In the worst case, this walk may
visit almost all tetrahedra, but under some uniformity assumptions the walk is O(n1/4); it would be O(n1/3)
if a single starting point was used.

CGAL uses the Delaunay hierarchy scheme invented by Devillers [15], which combines a hierarchical
point location data structure with jump-and-walk. Delaunay hierarchy takes a small random sample of the
input points P ′ and create a sequence of levels so that the 0th level is P ′ and each level is a random subset
of the previous level. A Delaunay tetrahedralization is created for each level, and the tetrahedra that share
vertices between levels are linked. To locate p, at each step, a jump-and-walk is performed within a level
to find the vertex closest to p. This vertex is then used as the starting point for the next step. This point
location scheme is an improvement over the jump-and-walk alone when the input point are not uniformly
distributed in space. The walk CGAL’s implements is a “zig-zag” walk: at each step, visit a tetrahedron t1,
choose a triangle face ( out of at most three) so that p and t1 are on the opposite side of the plane through
the triangle and walk to the neighboring tetrahedron t2. This is easier to implement than the straight line
walk or the walk Pyramid implements, and the acyclic theorem by Edelsbrunner [17] guarantees that the
walk terminates.

Tess3 locates a sphere (rather than a tetrahedron) containing a new point p by a zig-zag walk from the
last point inserted. Tess3 uses sphere equations to perform the plane test. Suppose neighboring tetrahedra
t1 and t2 share a triangle in plane P12, have vertices q1 and q2 that are not on P12, and have circumspheres
S1 6= S2. Tess3 can determine the side of plane P12 that contains p by the sign of P12 ·p = q1(S2 ·p)−q2(S1 ·p).
Note that this reuses the InSphere tests already performed with p, and reduces the orientation determinant
to the difference of two dot products. When S1 = S2, a degenerate configuration, we would have to test the
plane, but this happens rarely enough that tess3 simply chooses the side randomly.
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To make the walks short, tess3 initially places all input points into a grid of N ×

Figure 1: Hilbert
curve for an
8 × 8 × 8 grid.

N ×N bins, which it visits in Hilbert curve order so that nearby points in space have
nearby indices [24]. To order a set of points with a Hilbert curve, tess3 subdivides
a bounding cube into (2i)3 boxes and reorders the points using counting sort on the
index of the box on the Hilbert curve that contains each point. Points in a box can be
reordered recursively until the number of points in each subbox is small. Parameter
i is chosen large enough so that few recursive steps are needed, and small enough
that the permutation can be done in a cache-coherent manner. We find that having
(23)3 = 512 boxes works well; ordering 1 million points takes between 1–2 seconds on
common desktop machines.

3.5 Numerical Computations

Each of the programs takes a different approach to reducing or eliminating errors in
numerical computation.

Qhull and tess3 use floating point operations exclusively, and are written so that they do not crash if the
arithmetic is faulty, but they may compute incorrect structures. Qhull checks for structural errors, and can
apply heuristics to repair them in postprocessing. Tess3 assumes that input points have limited precision
and are well distributed, and uses bit-leveling and Hilbert curve orders to try to ensure that the low-order
or high-order (or both) bits agree, and that the bit differences take even fewer bits of mantissa. We explore
this in more detail in the experiments.

CGAL uses an exact arithmetic, but uses floating point filters first, checking error bounds and using
exact computation only when necessary.

Hull uses an low bit-complexity algorithm for evaluating the sign of an orientation determinant that is
based on Graham-Schmidt orthogonalization. The idea is that since we only care about the sign of the
determinant, we can manipulate the determinant so far as its sign does not change. The implementation
uses only double precision floating operations and is able to compute the signs of InSphere determinants
exactly for input whose coordinates have less than 26 bits.

Pyramid uses adaptive precision [28]. to carry out the arithmetic on just enough significant bits that it
can guarantee the correct sign is computed for a predicate.

3.6 Perturbation to handle degeneracies

In Delaunay computation, InSphere determinants equal to zero are degeneracies—violations of the general
position assumption that affect the running of the algorithm. They occur when a point is incident either
on the Delaunay sphere of some tetrahedron or on the plane of the convex hull, which can be considered a
sphere through the point at infinity.

Qhull allows the user to select a policy when the input contains degeneracies or the output contains
errors: either it perturbs the input numerically and tries again, or it attempts to repair the outputs with
some heuristics.

Edelsbrunner and Mücke[18] showed how to simulate general position for the Delaunay computation
directly (handling 2), but advocated “perturbing in the lifted space” as easier. For lifted points, perturbation
can be handled by simple policies: either treat all 0s as positive or treat them all as negative. These are
consistent with perturbing a point outside or inside the convex hull in 4D, respectively. These perturbation
schemes have three short-comings; usually only the third has impact on practice.

1. The output from the perturbation is dependent on the insertion order

of the points.

2. Perturbing the lifted points in 4D may produce a tessellation that is not the Delaunay tetrahedralization
of any actual set of points.

3. The perturbation (either the “in” or the “out” version) may produce “flat” tetrahedra near the convex
hull. Figure 2 illustrates the 2D analog.

Hull and pyramid perturb points inside.
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Tess3 first perturbs a point p down in the lifted dimension so that it is

Figure 2: Perturbing point
inside (left) or outside
(right) produces flat
triangles (shaded).

not on any finite sphere; next, if p is on an infinite sphere S, p is perturbed
either into or away from the convex hull in 3D depending on these two cases:
If q is inside the finite neighbor of S, q is perturbed into the convex hull;
otherwise, q is perturbed away. This perturbation guarantees that there are
no flat tetrahedra (handling 3), yet is still simple to implement.

CGAL removes degeneracies by “perturbing the world”, a technique in-
troduced by Alliez et al. [3]. Their perturbation is consistent with an in-
finitesimal perturbation of the coordinate system so that it is independent
of the order in which the points are inserted. Another important feature of
their perturbation is that it is carried out before the points are lifted into
one higher dimension. Thus, they handle 1 and 2 (but not 3).

Program flipping? point location arithmetic caching
spheres?

degeneracy

CGAL (2.4) no Delaunay hierarchy Floating point
filter.

no perturbing E3

Hull no history dag exact arithmetic yes perturb points into hull
in E4

Pyramid yes jump-and-walk adaptive exact
arithmetic

no Perturb points into hull
in E4. Remove flat tetra-
hedra by post-processing

QHull
(2003.1)

no outside set floating point no Perturb points into hull
in E4. Remove flat tetra-
hedra by post-processing.

Tess3 no Hilbert ordering,
zig-zag walk

floating point yes Perturbation in E4 with
no flat tetrahedra.

Table 1: Program comparison summary.

4 Experiments

In this section we report on experiments running the five programs on randomly generated points and on
PDB files. We first report on running time. Then, because tess3 uses only standard floating point arithmetic,
we report on the (small number of) errors that it makes.

We have tried to use the latest available codes of these programs. Hull and Pyramid codes were given
to us by the authors. CGAL and Qhull codes were downloaded from their web sites. The latest version of
CGAL in April, 2004 is 3.0.1; however, we found that the it is more than two times slower than CGAL 2.4
due to possibly bugs in the gcc compiler. We therefore proceed to use CGAL 2.4. Qhull 2003.1 we used is
the latest version.

The plots in Figures 3 and 4 show the running time comparisons using random data and PDB data as
input, respectively, using a logarithmic scale on the x axis and the running time per point in micro-seconds
on the y axis. Using time per point removes the expected linear trend and allows easier comparison across
the entire x-coordinate range. Lines indicate the averages of ten runs; individual runs are plotted with
markers. Hull’s running time is much slower than the rest of the programs. So in Figure 4, we omitted its
plot so other plots can compare more easily. Its time per point are mostly between 0.4–0.6 ms. All timings
are performed on a single processor of a Dell with dual 2GHZ Intel Xeon processors and 2GB of memory,
running Red Hat Linux 7.3.

We generated random data by choosing coordinates uniformly from 10-bit non-negative integers. This
ensures that the floating point computations of both Qhull and tess3 are correct. For the PDB data, for
each input size n that is indicated on the x-axis, try to find 10 files whose number of atoms are closest to n,
though there is only one (with the indicated name) for each of the three largest sizes.
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2K 4K 8K 16K 32K 64K 128K 256K 512K 1024K # points
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0.2

0.3
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Time per point (ms)

tess3

qHull

CGAL

CGAL(fl pt)

(exact)

(exact)

(fl pt)
pyramid

pyramid

hull

1K

Figure 3: Running time of the programs with 10 bit random points.

There are a few immediate conclusions: The ordering of programs, tess3 < CGAL (fp) < pyramid (fp)<
Qhull & pyramid < CGAL < hull, is consistent, although hull had extra trouble with the PDB files and is
therefore not shown. There is clearly a penalty for exact arithmetic, because even when an exact arithmetic
package is able to correctly evaluate a predicate with a floating point filter, it must still evaluate and test
an error bound to know that it was correct. Time per point shows some increase for everything but CGAL
and tess3, which we believe is due to point location.

total created MakeSphere InSphere (µs) Update Point Location
spheres/tetra (µs) fl. pt. exact (µs) fl. pt. exact

CGAL (2.4) 2,760,890 – 0.06p

0.24t
18.5p

1.72t
0.1p

16.1t
21.8%p

22.1%t
25.3%p

27.9%t

Hull 2,316,338 10.02 0.14 – 2.40 – 73.1%
Pyramid 5,327,541f

2,662,496n
- 0.21 0.72 2.44 50.2% 38.1%

QHull (2003.1) 2,583,320 0.65 0.12 > 4.39 9.0% –
Tess3 2,784,736 0.13 0.04 – 2.42 3.88%h

0.43%w
–

Table 2: Summary of timings from profiler, running the programs against the same 100k randomly generated
points with 10 bit coordinates. Notes: For pyramid tetrahedra creation, numbers marked f include all initialized by
flipping and marked n include only those for which new memory is allocated—equivalently, only those not immediately
destroyed by a flip involving the same new point. For CGAL timings, p indicates profiler and t direct timing. For
tess3 point location, h includes the preprocessing to order the points along Hilbert curve; w is walk only.

To further explain the difference in these programs’ running time, we used the gcc profiler to determine
the time-consuming routines. There are caveats to doing so; function level profiling turns of optimizations
such as inlining, and adds overhead to each function call, which is supposed to be factored out, but may not
be. (This affects CGAL the most. , With its templated C++ functions we could not get reasonable profiler
numbers, so we also tried to time its optimized code, but this has problems with clock resolution.) The table
shows some of our findings for running the programs against the same 100k randomly generated points with
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2K1K 4K 8K 16K 32K 64K 128K # points

Time per point (ms)

tess3

qHull

CGAL

CGAL

pyramid

pyramid

0.05

0.1

0.15

0.2
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0.3

 1htq

 (907k)



1qce

(184k)

3ezb

(219k)

(exact)

(exact)

(fl pt)

(fl pt)

Figure 4: Running time of the programs with PDB files.

10 bit coordinates.
The “total created spheres/tetra” column shows that flipping must initialize many more tetrahedra.

“MakeSphere” and “InSphere” columns, which record time to make sphere equations and test points against
them, indicate that there are speed advantages to using native floating point arithmetic for numerical com-
putations. Even simple floating point filters must check error bounds for computations. Note that for the
programs that do not cache spheres, the InSphere test is a determinant computation. The “Update” column
indicates the time to update the tetrahedral complex and does not include any numerical computation time.
The “Point Location” column indicates the percentage of time a program spends in point location (for tess3,
this number includes the time for sorting the points along the Hilbert curve).

As we can see from the table, tess3 benefited particulary from its fast point location. Our data structure
for the tetrahedral complex, although requiring the smallest amount of space, is no more expensive than
others to be updated. We should also point out some observations about the bottlenecks of the other
programs: Qhull’s data structure is expensive to update and the code contains debugging and option tests;
Hull’s exact arithmetic incurs a significant overhead even when running on points with few bits; Pyramid
was bogged down mainly by its point location, which samples many tetrahedra.

4.1 Point Ordering

Since tess3 does not use exact arithmetic, we did additional runs using audit routines to check the correct-
ness of the output. We first check the topological correctness—that is, whether our data structure indeed
represents a simplicial complex (it always has)—then we then check the geometric correctness by testing
(with exact arithmetic) for each tetrahedron if any neighboring tetrahedron vertex is inside its sphere. We
also did some runs checking every InSphere test.
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For the random data with 10 bits there are no errors, although we do find

Figure 5: 1H1K points
and bad tetrahedra

geometric errors for larger numbers of bits. For 20,393 PDB files, our program
computes topologically correct output on all files and geometrically correct out-
put on all except one.

Figure 5 displays the 266 incorrect tetrahedra, and shows that the assump-
tions of uniform distribution are egregiously violated. The comments to 1H1K
state: “This entry corresponds to only the RNA model which was built into the
blue tongue virus structure data. In order to view the whole virus in conjunc-
tion with the nucleic acid template, this entry must be seen together with PDB
entry 2BTV.”

2K 4K 8K 16K 32K 64K 128K 256K 512K 1024K # points

0.01

0.1

0.8
1.

Fraction of InSphere errors

 13 bits

 15 bits

 17 bits

random

Hilbert 

Hilbert + bit leveling

Figure 6: Semilog plot showing percentage of InSphere tests with
sign errors by number of points n and number of coordinate bits,
for three orderings. We plot a dot for each of 10 runs for given n

and bit number, and draw lines through the averages of 10 runs.

We investigate how much the ordering points
along a Hilbert curve and bit-levelling helps
speed up tess3 and make it more resistent to
numerical problems. Figure 6 shows a log-log
plot of the the percentage of InSphere com-
putation that contain round-off errors with
three different ordering: random, Hilbert or-
dering only, and Hilbert ordering combined
with bit-levelling. The percentages of errors
are affected by both the number of coordi-
nate bits and the number of points in the
input; the plot illustrates variations in both
of these controls. Given an input with a cer-
tain number of coordinate bits, we can see
that the combined ordering has the lowest
amount of numerical errors—and the differ-
ence becomes more dramatic as the number
of input points increases. We should emphasize that the InSphere errors here are observed during the incre-
mental construction and the final output always contains much fewer errors. For example, for the combined
ordering, no output contains an error until the number of coordinate bits reaches 17.

Since BRIO [4] also uses a spatial-locality preserving ordering to speed up point location, we close by
comparing BRIO insertion order with a Hilbert curve order. Figure 7 compares the running times of CGAL,
which uses a randomized point location data structure, under the BRIO and Hilbert insertion orders. The
Hilbert curve is faster on average and has a smaller deviation. This suggests that for input points that
are uniformly distributed, adding randomness into the insertion ordering perhaps will only slow down the
program.

5 Conclusions

We have surveyed five implementations of 3D Delaunay tessellation and compared their speed on PDB files
and randomly generated data. We find that the biggest bottlenecks of the programs are, first, overhead
imposed by exact arithmetics and, second, point location. Exact arithmetic is required if the input bit
precision is arbitrary and the output is required to be exact. However, for particular application data, such
as PDB files, we show that it is possible to have an implementation that works well even when straightforward
bit-complexity analysis suggests otherwise. For point location, our experiments suggest that randomization
should be avoided if the input points are uniformly distributed in space.
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Figure 7: Running time of the CGAL Delaunay hierarchy using BRIO and Hilbert point orders.
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