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Abstract

We show that a vertex-based data structure that keeps only 6 pointers per vertex

can store triangulations, navigate them, and maintain them under swap operations.

By comparison, edge-based structures such as the winged-edge take 18{24 pointers per

vertex, and triangle-based structures take 12 pointers per vertex.

Introduction Representations of planar subdivisions are central to applications of geo-

metric computing. Triangulations are particularly important: In solid modelling, boundary

representations are often composed of triangulations because graphics hardware is optimized

for triangles and triangle strips; In �nite element analysis, triangle meshes are fundamen-

tal; In geographic information systems, triangulated irregular meshes (TINs) model digital

terrain data. Even planar subdivisions that are not triangulations may be represented as

such: the Voronoi diagram, for example, is commonly represented through its dual Delaunay

triangulation.

Edge-based structures, such as the winged-edge [1], are commonly used to support op-

erations for embedded graphs. For each edge, these structures store pointers to the two

incident vertices, the next edges clockwise (cw) and counter-clockwise (ccw) around these

two vertices, and possibly pointers to faces, if there is data that must be associated with

faces. Face-based (or triangle-based) structures store, for each triangle, pointers to the ad-

jacent triangles and incident vertices. Since, by Euler's relation, the number of edges in a

planar triangulation with n vertices is 3n� 6, the edge-based structures take 18{24 pointers

per vertex and face-based structures take 12 pointers per vertex.

We investigate a vertex-based structure suggested by Martin Heller of the University of

Zurich. We show that this structure with only 6 pointers per vertex is well-de�ned, and that

it can support maintenance operations (including insert and swap), although not in constant

time. All winged-edge navigation operations are supported in constant time.

The Tripod structure We de�ne the tripod data structure for an embedded planar graph

in which every face, including one distinguished outer face, is a triangle. We assign directions
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to the edges such that the outer face is a cycle with the rest of the graph to the left, and

every vertex not on the outer face has exactly three outgoing edges.

Schnyder [2] has shown that every planar triangulation has such
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Figure 1: Labels

a representation, and that the outgoing edges from a vertex v can be

labeled 0, 1, and 2 in ccw order around v such that all incoming edges

between i and i+1 are labelled i+2 for integers 0 � i � 2 and addition

modulo 3. See Figure 1. This labelling induces a partition of the edges

into three sets that de�ne three spanning trees, each including one

vertex of the outer face and all vertices inside. For an edge e that is

outgoing from v, we let e:inc and e:dec be the outgoing edges from v

that correspond to incrementing and decrementing the label of e.

Each edge e that is outgoing from vertex v carries cw and ccw pointers, named e:ccw and

e:cw. Let f be the next edge ccw (cw) from e around vertex v. The ccw pointer e:ccw (cw

pointer e:cw) indicates the vertex that is the non-v endpoint of f . In the four examples in

Figure 2, the circled vertex is e:ccw.

Let us make two remarks: First, note that an edge does not point to its own destination;

that pointer will be recovered from edges incident on the same triangle. Second, there are

two essentially di�erent cases for the edge f : when f is incoming at v, then e:ccw points to

the vertex that holds f , as one would expect, but when f is outgoing, then e:ccw and f:cw

point to triangle vertices, only one of which will contribute the third edge to the triangle.
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Figure 2: Cases for triangles left of edge e

Figure 2 illustrates four types of triangles that can occur to the left of an outgoing edge

e. We observe that the type of triangle can be tested in constant time.

Theorem 1 The four types of triangles of Figure 2 can be identi�ed by the following tests:

cycle Triangle edges form a ccw cycle. Test by e:ccw3 == e.

mouth Non-e triangle edges outgoing from same vertex. Test by e:ccw:inc:cw == e.

wedgepar Two edges out of v; third points in direction of e. Test by e:ccw:cw:dec == e.

wedgerev Two edges out of v; third in opposite of direction of e. Test by e:inc:cw:ccw == e.

Proof: Verifying that each test accepts its type is easy. Showing that each fails for the

other types is tedious, and is omitted in this abstract.

Tests for the triangle right of e can be obtained by swapping :ccw with :cw and :inc with

:dec.
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The cases have corresponding Schnyder
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Figure 3: Labels for the cases

labels as in Figure 3, which allow us to iden-

tify the relevant edges out of the vertex e:ccw.

An alternative is to have e:ccw point to a

particular edge of a vertex; this can be done

so that the labels are relative rather than

absolute, which can make some manipula-

tions more e�cient.

Operations With this structure, an oriented edge can be identi�ed by specifying its vertex,

Schnyder label, and direction. By determining the type of an adjacent triangle, all standard

navigation operations on triangulations, such as determining the next edge around a face or

vertex, can be supported in O(1) time.

Many maintenance operations can also be supported in
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Figure 4: Diagonal swap

O(1) time: When a vertex v is inserted into a triangle, v is

created with three new outgoing edges, and pointers are set

after determining the type of the triangle. When an edge e,

outgoing from v, is swapped and a neighboring triangle has an

edge f incoming to v, then the roles of e and f can be changed

while preserving three edges per vertex and Schnyder labels.

This is illustrated in Figure 4. There is one exception: when

the triangles right and left of edge e are in the wedge cases, then a swap operation on e

cannot proceed until some new edge is found that can be outgoing for v. We prove

Lemma 2 There is a directed cycle of edges through v that does not include edge e.

We can reverse the edges on this cycle to obtain the case where we can swap.

Evaluation The Tripod data structure has one obvious advantage in its low memory re-

quirements. A less obvious advantage has been suggested by Martin Heller: since it is based

on vertices, which are the least ephemeral elements in most applications that use triangu-

lation data structures. Thus, on can use static memory allocation, and, in large data sets,

one can partition the structure based on spatial position for better locality of reference and

organization of secondary storage.

The obvious disadvantages are increase in access time and some added programming

complexity due to its parsimonious use of pointers.
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