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Figure 1: When Levin’s MLS projection is applied to a point set with a sharp angle, the MLS surface can pinch in an undesirable way (left, above). The surface pinches because
the optimal local reference frame does not allow any functional approximation to the points, regardless of the density of input points. Our new unified projection operator avoids
this artifact and behaves as expected (left, middle). Additionally, it allows the use of different function spaces, which behave as different priors, offering richer reconstruction spaces
(bottom-left). On the center, we show a reconstruction of a synthetic model using a quadratic function space. On the top-right corner, the inset shows a closeup of the same model.
The bottom-right corner shows the same piece of the model reconstructed with a function space that incorporates C0 sharp features.

Abstract

Moving-Least Squares (MLS) surfaces are a popular way to define
a smooth surface from a set of unorganized points. In this paper
we introduce a unified MLS projection consisting of the confluence
of several different ideas, each of which independently enhances
current MLS strategies or ameliorates MLS deficiencies. We be-
gin by elucidating the shortcomings of the two-phase minimization
procedure proposed by Levin [2003]. We show that there are cases
intrinsic to the geometry of the underlying surface from which the
points are sampled where Levin’s projection fails to find an ade-
quate approximation. These shortcomings occur regardless of sam-
pling density or the amount of noise. Our formulation solves this
problem by directly fitting a local approximating function to the
surface using a unified minimization scheme. Our scheme can be
used to create different families of MLS surfaces, depending on the
function space used for the fit. This allows specific priors to be
used in the approximation, leading to better reconstructions. We
present experimental results that show our technique performs well
in a wide range of conditions.
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1 Introduction

Recently, there has been substantial interest in the area of surface
reconstruction from point-sampled data. This work is driven by a
set of important applications where the ability to define surfaces out
of a set of discrete samples is necessary. For instance, devices capa-
ble of acquiring high-resolution 3D models have become affordable
and commercially available, and such reconstruction techniques are
required for the effective use of these devices. A particularly pow-
erful approach has been the use of the moving least-squares (MLS)
technique of Levin [2003] for modeling point set surfaces [Alexa
et al. 2001; Amenta and Kil 2004b]. Variants of this framework

have become the basis for much of the current point-based model-
ing work in the graphics, visualization, and computational geome-
try communities.

The key idea in Levin’s formulation is to define the surface in terms
of a projection operator, the fixed points of which are the MLS
surface. The idea is similar to the seminal work of Lancaster and
Salkauskas [1981] for the interpolation and approximation of func-
tions. Levin generalizes this previous work in function approxima-
tion theory to accommodate manifolds. Levin’s operator involves a
non-linear optimization for each point projection, but unlike sim-
pler, subsequent definitions [Adamson and Alexa 2003], it does
not require normal information at the points as input. The oper-
ator is defined as a two-phase optimization procedure. The first
phase computes a reference frame for a local neighborhood of the
point being projected with a non-linear weighted least squares fit
(Note that this is the main difference from [Lancaster and Salka-
uskas 1981]). The second (linear) phase finds a best-approximating
function in the reference frame computed during the first phase.
Typically a tensor-product quadratic is fit to the input points, from
which differential-geometric properties of the MLS surface can be
approximated. It is possible to skip the second phase, which is
equivalent to fitting a zero degree function to the point set; this is ad-
vocated in many works (e.g., [Amenta and Kil 2004b]). This second
phase is critical for our reformulation of the projection procedure.
We show that assuming a constant function will make the original
MLS definition fail to produce a suitable surface reconstruction for
certain geometric configurations, regardless of neighborhood size
or sampling density.

There exist cases in which, during the finding of a non-constant
function f in the second phase, the reference frame computed by
the first phase will generate a poor fit to the input points. The moti-
vating insight for our reformulation lies in the observation that for
the same input configuration there exists another reference frame
that allows an accurate fit (see Figure 3). We address this issue by
incorporating the function fitting into the non-linear optimization,
thereby unifying the projection procedure into a single fitting phase.
Furthermore, we show that it is possible to tailor this new MLS for-
mulation for a variety of geometric processing tasks by changing
the function space from which the function f is selected.

This paper makes the following two contributions to the area of



point set surface reconstruction: (1) We propose an alternative, uni-
fied MLS projection that improves on the work of Levin [2003]
in significant ways. In particular, our work corrects and increases
the robustness of this seminal technique. Our formulation further
develops the theoretical foundations of this approach, helping to
elucidate failure points that have existed since the technique’s in-
ception over five years ago. Our MLS formulation also provides
a conceptually simple way to handle a large class of different pri-
ors. We are able to handle sharp features that are not easily handled
with other approaches. (2) We show how to implement these tech-
niques in practice. Notably, we describe how to integrate different
functional spaces into MLS as a means of capturing sharp features.

2 Related Work

The problem of defining surfaces out of point samples has been ac-
tively approached by researchers for many years. Pioneering work
has been done by Hoppe et al. [1992] and others [Curless and Levoy
1996; Turk and Levoy 1994; Wheeler et al. 1998] in the context of
surface reconstruction, where the primary focus was on building
triangle meshes of sampled surface. Early important work in the
area was also done in the computational geometry community, par-
ticularly in the area of connectivity reconstruction using techniques
based on the Delaunay triangulation [Amenta et al. 1998].

During the development of Point-Based Graphics as an independent
sub-area of interest [Pfister et al. 2000; Rusinkiewicz and Levoy
2000], it was natural to consider the more general problem of defin-
ing surfaces directly from point sets. Alexa et al. [2001]’s Point Set
Surfaces was one of the first papers in this area. It showed how a
simple and effective representation could be achieved by the use of
a moving least-squares (MLS) technique [Levin 2003], even in the
case of noisy sets of points. Other related formulations followed,
e.g., [Amenta and Kil 2004b; Fleishman et al. 2003; Pauly et al.
2003; Xie et al. 2003].

At this point, there are many variations and extensions of the ini-
tial MLS approach to defining point set surfaces. A set of popular
techniques are based on defining the point projection in terms of a
combination of weighted centroids and a normal field [Alexa and
Adamson 2007; Alexa and Adamson 2004; Adamson and Alexa
2003; Amenta and Kil 2004b]. This type of projection defines the
surface in terms of a level set of a scalar function. This function
can be evaluated very efficiently, but an iterative method is required
to project points onto the surface. Also, their simplicity makes
them more suitable for analysis that give strong theoretical guaran-
tees [Kolluri 2005; Alexa and Adamson 2007; Dey and Sun 2005;
Amenta and Kil 2004b; Bremer and Hart 2005]. We note that some
of these linear techniques require normal information, which may
be unavailable or unreliable. Guennebaud and Gross [2007] pro-
pose an algebraic framework for defining MLS projections; their
work includes a more robust technique for normal estimation.

There is also continued interest in further analysis of the two-phase
approach using Levin’s MLS [Levin 2003] which involve a non-
linear projection, e.g., [Lipman et al. 2006; Fleishman et al. 2005;
Gal et al. 2007]. The work of Amenta and Kil [2004a] raised many
important practical and theoretical issues, including what happens
to the projection near edges and corners; they show that the orig-
inal projection sometimes has undesirable behavior in those loca-
tions. Fleishman et al. [2005] propose to use robust statistics and
a modified projection scheme for recovering sharp features as well
as increasing stability of the projection operator near features. This
approach is sound and produces good results, but it introduces extra
processing steps which break the natural elegance of Levin’s formu-
lation. Their work can be seen as introducing the use of priors in
the reconstruction. An alternative formulation is done in [Gal et al.

Figure 2: Flood contours of the energy function for several input point configu-
rations are shown for Levin’s projection PL (Equation (1), top row), and our unified
approachPU (Equation (6), bottom row). The horizontal and vertical axis correspond
to a parameterization of all possible reference frames, whose normal is at angle θ from
(0, 1), and a distance ρ from the center point of the wedge, respectively. Notice that
for the sharpest wedge, the minimum (always encircled in a white contour) of the en-
ergy function forPL appears at θ = π/2 for Levin’s formulation, while the minimum
for PU is at θ = 0 in all situations.

2007].

3 Mathematical Formulation

The final mathematical result of this paper, which we call a uni-
fied MLS projection, consists of several different ideas, each of
which independently enhances current MLS strategies or amelio-
rates MLS deficiencies. We split our discussion into the follow-
ing five steps. To create a consistent nomenclature for our dis-
cussion, we begin by reviewing Levin’s (two-phase) MLS projec-
tion operator [Levin 2003]. Secondly, we identify a deficiency in
the two-phase strategy: it misses the appropriate reference frame
for certain point set configurations. We introduce the concept of
a single-phase MLS projection operator with closest-point projec-
tion as a solution to the aforementioned problem. Thirdly, we em-
ploy the idea of enriched MLS spaces, which when combined with
closest-point projection operators, can capture local regions of non-
smoothness without compromising the smoothness of the rest of the
surface. Fourthly, we present our unified MLS operator – an oper-
ator which combines the idea of a single-stage minimization pro-
cess and the use of enriched spaces with closest-point projection.
The new unified operator finds the appropriate reference frame in
situations where Levin’s projection fails and allows sharp feature
reconstruction. As our final step, we prove that the new operator is
indeed a projection.

3.1 Levin’s Projection

Levin’s projection [Levin 2003],PL, consists of two stages: finding
a local reference frame for the surface analogous to the traditional
differential-geometric reference frame and selecting a function over
that frame which approximates the data. To be more specific, in
the first stage, a local reference frame Hr,q consisting of the plane
intersecting q and having a normal (q − r)/|q − r| must be deter-
mined. Let the orthogonal projection onto this plane be denoted by
hr,q : R3 → Hr,q . For a given point r, and input points pi, the
plane Hr,q is determined by finding q which satisfies the following



non-linear optimization problem:

arg min
q

P
i |hr,q(pi)− pi|2ω(|pi − q|)P

i ω(|pi − q|) , (1)

where ω is a strictly positive, smooth weighting function (often a
Gaussian) whose argument contains q. In practice, the minimum
is often found using a Powell method [Press et al. 1992, Chapter
10.5]. Once this local reference frame has been found, the second
phase is performed in which a function f ∈ F , f : Hr,q → R is
constructed to fit the data points pi in the weighted least-squares
sense. Let gr,q : (Hr,q × R) → R3 be the linear function mapping
the plane and a scalar value back into the global R3 domain (similar
to h−1). With r, q subscripts omitted for clarity, the function f can
then be found through the following minimization:

arg min
f

P
i |g(h(pi), f(h(pi)))− pi|2ω(|q − pi|)P

i ω(|q − pi|)
. (2)

For a fixed value of q, the weights are constant. This combined with
F being a finite-dimensional linear function space allows for the
function f to be computed directly by solving the resulting linear
system. After the function f is found, Levin’s projection of r onto
the MLS surface is defined as PL(r) = g(h(r), f(h(r))), i.e. the
projection of r onto f in the direction (q − r)/|q − r|.

3.2 Single-Phase Minimization with Closest-Point Pro-
jection

The two-phase formulation works well when applied to most, but
not all, point configurations. The breakdown of the two-phase pro-
cedure comes as a consequence of the explicit dependency of the
second phase on the results of the first phase. Even if the function
space used in the second phase of Levin’s procedure were capable
of accurately representing the local surface, it requires a reasonable
reference frame over which to construct the functional approxima-
tion. We know from differential geometry that an appropriate plane
must exist: the question is whether the first phase of PL can find it.

Unfortunately, the first phase of the process fails to produce the
expected local reference frame (in the differential-geometric sense)
when the points pi are in certain, but common, geometric configura-
tions. As an example, consider a wedge that is sampled noiselessly
with angle φ between the supporting lines which meet at (0, 0).
Examining the result of the first phase of PL(0, 0) as a function
of decreasing angle, the (unique) minimum of the energy function
will switch at φ ≤ π/2 from a reference frame which intersects
the two supporting lines away from (0, 0) to a reference frame con-
gruent to the bisector of the wedge. This reference frame is inad-
equate for accomplishing surface fitting: the two supporting lines
will be mapped to the same subset of the domain, so no function
will correctly approximate it. The consequence of this deficiency
is demonstrated in Figure 1(b), where the MLS projection operator
has pinches and extends away from the points pi.

This example demonstrates that the greedy approach of decompos-
ing the global optimization into two phases – the first phase be-
ing fundamentally limited to planar approximations and the second
phase consisting of a richer approximation space – fails to create
satisfactory approximations of the surface. Furthermore, enhance-
ment of the functions used in the second phase cannot, in general,
correct (or adequately compensate for) the problems generated by
the first phase. A similar issue was identified by Amenta and Kil
[2004a]; they proposed an integral-based formulation of the error
function. Their formulation solves all problems produced by inade-
quate sampling of the surface, but for geometric configurations that

are intrinsically bad, the integral-based formulation still produces
non-manifold surfaces.

Instead of applying the greedy approach to this problem as done
by Levin’s formulation, we propose that the finding of a surface
approximation should be done as single phase where the reference
frame is chosen so that it will minimize the error of the best function
space approximation in that reference frame, instead of the error
induced by the distance between the points and the plane. Since
g(h(pi), f(h(pi))) = h(pi), we can then combine Equations (1)
and (2) into a single-phase non-linear optimization problem given
by:

arg min
q,f

P
i |g(h(pi), f(h(pi)))− pi|2ω(|q − pi|)P

i ω(|q − pi|)
. (3)

Let the operatorPS based upon this optimization process be defined
as PS(r) = g(h(r), f(h(r))). Note that in the case where F =
{x 7→ 0}, Equation (3) is equivalent to Equation (1), and hence PS

is equivalent to PL. However, when F is non-trivial the minima of
Equation (3) will disagree with the minima of Equation (1). The
resulting projection operators will then be different.
In many situations, this modification ame-
liorates the deficiencies with PL since the
error landscapes look as shown in Fig-
ure 2. A tacit advantage of the two-phase
approach, however, is that it provides reg-
ularization by constraining the approxi-
mation. The new minimization process
within PS is not sufficiently constrained.
With q and f both changing simultane-
ously, the operator is now free to find min-
ima anywhere in the surface. The situation
in the inset figure illustrates the issue – suppose we are attempting
to approximate a surface with F chosen as the set of all possible
parabolas. Even though there exists a reasonable fit to the surface
close to r using q0, there is an even better fit further away from it
using q1, with a continuous, monotonically decreasing path in the
parameter space existing between the two points. Hence the opti-
mization procedure naturally proceeds down the path and finds the
best parabolic fit. Without the addition of further constraints, the
new procedure is not very useful as a surface reconstruction tech-
nique since there will not be any points on the MLS surface that are
close to r.

The constraint absent in PS which is present in PL is that pro-
jections onto the reference frame Hr,q are naturally closest-point.
This forces PL(r) to be close to r during the first phase of the
minimization, preventing optimizers from “running away” towards
globally good solutions. Based upon this observation, we redefine
PS as resulting from the following non-linear optimization prob-
lem:

arg min
q,f

P
i |Cf (pi)− pi|2ω(|Cf (r)− pi|)P

i ω(|Cf (r)− pi|)
, (4)

where Cf (x) is the closest point projection of x onto the function f .
This modification still has the property that when F = {x 7→ 0},
PS = PL, but is different otherwise.

3.3 Enriched MLS with Closest-Point Projection

Independent of the aforementioned issue, a second well-known de-
ficiency in Levin’s projection procedure is its inability to capture
sharp features. As has been identified by others, this deficiency
fundamentally due to the choice of function space F from with



Figure 3: When projecting a point r onto the surface, PL (left) may find a ref-
erence frame H that does not naturally allow the input points to be approximated by
a function. Our approach (right) searches for H and the approximating function f

simultaneously. Residuals are measured differently. In PL, the error residuals are
measured perpendicular to H , and weighted by the distance to q. In PU , the residu-
als are measured by closest point distances, weighted by the closest point projection of
r onto f .

which one attempts to approximate the surface. We propose to aug-
ment the classic polynomial space used for F by functions which
have the features we seek within our reconstruction. Our goal to
introduce a projection procedure that allows different families of
functions to be used; this enriched MLS projection allows recon-
struction of C0 features directly from the function space.

We define PE as being the same two-phase process as with PL

with F now chosen to contain both smooth functions (e.g. polyno-
mials) and non-smooth functions (e.g. finite element hat functions).
The Levin procedure would work with this minor adjustment, but
without modification might produce surfaces which are everywhere
continuous but nowhere differentiable. To avoid this problem, we
enforce that the projection to be used in the second phase will be a
closest-point projection onto the local surface approximation.

To recapitulate, the first phase of PE is identical to that of PL: the
minimization of Equation (1). We replace Equation (2) by

arg min
f

P
i |Cf (pi)− pi|2ω(|Cf (r)− pi|)P

i ω(|Cf (r)− pi|)
, (5)

where Cf (x) is the closest point projection of x onto the func-
tion f , and the projection is defined as PE = Cf (r). We note
that although PE ensures the projected points are locally closest to
the approximating surface, it suffers from the same reference plane
problem as PL.

The enrichment of F has the consequence that PE is capable of
naturally reconstructing sharp features if those features are present
onF . This happens because near a point with discontinuous deriva-
tives, there will be a k-dimensional neighborhood (k > 1) of points
B for which ∀b ∈ B, Cf (b) = x. In other words, all points in
B project to the singularity. Since the weights in Equation (5) are
determined only by Cf (r) and the input points pi, if a function is a
minimum for one point b in B, it will be one for all of them. This
means that the singularity will be exactly reconstructed: the surface
is only C0 on C(b). Figure 4 illustrates the argument.

3.4 The Unified MLS Operator

We propose a unified MLS operator which combines the single-
phase characteristics of PS with the enrichment ideas of PE . We
define the unified operator as the solution of the following non-
linear optimization problem:

arg min
q,f

P
i |CH,f (pi)− pi|2ω(|CH,f (r)− pi|)P

i ω(|CH,f (r)− pi|)
, (6)

Figure 4: PU can reconstruct C0 surfaces when the function space F contains
non-smooth functions (left), but still produces smooth surfaces away from the singu-
larities (right). See Sections 3.3 and 3.4.

where CH,f (x) is the closest point projection of x onto the function
f defined over the reference frame H (or simply Cf (x)). Then,
PU (r) = CH,f (r). This combines the advantages of both ap-
proaches. The closest point projection onto the local approximation
ensures that PU (r) will never drift too far from r.

Additionally, by incorporating richer function spaces into the
single-phase optimization, PU can exactly reconstruct functions
from F in the case of compactly supported weighting kernels (this
is a feature shared with the tagging-based system of Reuter et al.
[2005]). By this we mean that if there is a piece of the surface for
which the point set represents some function f ∈ F in some ref-
erence frame H , such that any point that fails to fit f exactly has
zero weight, PU will always project to a point with the same q and
f , namely the one for which the residuals are zero. Thus PU re-
constructs functions from F , even in the case of singularities. An
important consequence is that in the case of noiseless sampling, it
is theoretically possible to reproduce a set of desired surface fea-
tures from the acquired data by creating F as linear combinations
of basis functions that correspond to the features.

In the case where F contains non-smooth functions, a d-
dimensional ball R might collapse to a point Cf (r) at C0 features
under the closest point projection (see Figure 4). Since this is the
point that determines the weights, if PU (r) = Cf (r) for some
r ∈ R, then for any two points r1, r2 ∈ R, PU (r1) = PU (r2).
Hence the surface retains the C0 feature. The careful reader might
be concerned about the singularities in PU : if it generates a singu-
larity in a particular point on the MLS surface, will it not generate
singularities everywhere? The answer is no. If Cf (r) projects to a
smooth region of f , then small changes in r produce small changes
in PU (r), and the surface is still smooth.

3.5 Proof of Projection Property

An important question that must be answered is whether or not our
new operator, PU , is indeed a projection. If this were not the case,
the point set generated by PU could not possibly be a 2−manifold
embedded in R3, which is a primary goal of surface reconstruction.
We start by showing an alternative presentation of the proof thatPL

is a projection. We refer the reader to Step 1 of Section 3 in [Levin
2003]. Assume Levin’s operator was applied to a point r such that
PL(r) = q, and r 6= q. We will now examine the effect of PL

in a one-dimensional neighborhood of r along (q − r)/|(q − r)|
(Levin calls this direction a = a(q)). Let r′ = r + u(r − q), u ∈
(−ε, ε), with ε such that the minimum in Equation (1) is unique.
It is clear that a′ = (q − r′)/|q − r′| = a, so using q and a as
directions for projecting r′ is admissible. Then, the first and third
conditions in [Levin 2003] hold for r′, and the second is satisfied
by construction. The consequence is that q is the result of the first
stage of Levin’s projection for all u. Since the second stage of the
projection procedure only moves q in the direction a and does not
depend on r, the final result is

∇a(PL(r)) = 0. (7)



This implies that the null space of the Jacobian J(PL(r)) is non-
trivial, and the Jacobian is rank-deficient. From this observation it
follows that PL is a projection.

In order to prove that our operator is indeed a projection we will
similarly show that the Jacobian of PU (r) is rank-deficient. We
use notation as used previously: PU (r) = q, r 6= q, a = (q −
r)/|(q − r)|, and so forth. If q minimizes Equation (6) for r, then
there exists an ε for which any r′ = r + u(r − q), u ∈ (−ε, ε)
has the same minimizer. First note that CH,f (r′) = q for all u,
and therefore ∇a(CH,f (r)) = 0. This is because the closest point
projection follows a distance field whose gradient agrees with a.
Now, since the only dependence of Equation (6) on r is through
CH,f (r), applying the chain rule results in the following:

∇a(PU (r)) = 0. (8)

Again, since the null space of the Jacobian is non-trivial, PU is
a projection. In the case of r = q, we simply set a to be in the
direction of the normal of f at q, and the same argument applies.
This result is quite general, as any function space used in PU will
produce a projection operator.

4 Implementation

Implementing the unified projection operator proposed above is
only slightly more involved than the two-phase Levin MLS projec-
tion. In particular, the significant differences in the implementation
are how residuals are computed and how we actually specify the
function spaces. In this section, we begin by describing the de-
tails of our minimization procedure. We then present a discussion
of how to efficiently implement closest-point projections – first for
polynomial spaces and then for generalized (enriched) spaces.

4.1 The Optimization Procedure

In our implementation, we use Powell-set optimization, which does
not rely on derivative information but still offers quadratic conver-
gence in parabolic regions [Press et al. 1992]. For the actual op-
timization, we typically have n + 3 parameters involved, where n
is the dimension of F . The three extra parameters determine the
center q of the coordinate frame H . From this information we can
deduce the normal, which is given by (r− q)/|r− q|. A large class
of function spaces is closed under affine transformations of the co-
ordinate frame (in other words, f(x) ∈ F implies that there always
exist a g(x) ∈ F that is the composition of f with an affine map-
ping). However, sometimes it is desirable to use function spaces
where this is not the case (for example, F (x) = {f : f(x) = k|x|}
is not closed under non-uniform scaling of the coordinate axes). In
order for PU to be invariant under such transformation, we explic-
itly introduce the terms for M in the optimization.

As initial estimates for PU in the case of polynomial function
spaces, we use the values of q and f from PL. For the same rea-
sons outlined in Section 3.2, we use an additional initial estimate
of a point whose plane goes through q but whose normal is rotated
π/2 around the minor eigenvector of the neighborhood’s covariance
matrix. The initial f in this case is a linear least-squares fit. For the
sharp feature reconstruction, we use the same two initial estimates
for q, but pick the direction vectors to evenly spread around the nor-
mal, with zero latitude. Even though the error landscape of PU is
considerably more complicated than that of PL, we have found that
when using the initial estimates as described above, the Powell set
optimizer does not have significant problems with the optimization.

Figure 5: Like Levin’s MLS surface, our unified projection is quite resilient to
noisy and irregularly sampled inputs. With a smooth function space,PU has the extra
benefit of properly rounding sharp corners (right). The grey lines show the paths of the
point projections.

4.2 Closest-point projections

Our definition of PU allows different function spaces to produce
very different surfaces. Each different f in the function space F
is used by PU in essentially a single way: points p in R3 are pro-
jected to their closest point Cf (p). The error is then evaluated as
|p − Cf (p)|2. In what follows, we describe how we implemented
closest-point projection in the spaces we present.

Closest-Point Projection Onto Polynomials. The simplest func-
tion spaces we use are P n

d , the space of all polynomials of total
degree n in d dimensions. In particular, we have implemented the
projection procedure for P 2

2 and P 2
3 . Notice that because the center

of the coordinate system q is part of the optimization, the procedure
automatically closes the space of functions over transformations of
the form g(x) = f(x + k) and g(x) = f(x) + k. In the case
of polynomials, this means we can drop terms of total degree 1
or less. In the two dimensional case, we use the function space
F (x) = {f(x) = kx2}, and find the closest point by solving the
resulting cubic equation in closed form. In the three-dimensional
case, we use F (x, y) = {f(x, y) = ax2 + bx2}. This causes F
to not be closed under rotations of the coordinate frame. However,
we restore the property by using the technique described in Section
4.1 and introducing an extra parameter to the optimization that ro-
tates the coordinate system. By forcing any cross terms on P 2

3 to be
zero, projecting a point onto the closest point is reduced to finding
roots for a fifth-order polynomial, which we solve numerically by
performing a QR reduction on the companion matrix.

Alternative function spaces. One non-conventional function space
we use is capable of reconstructing sharp line-like features that
might join, n at a time. This achieves a result similar to what
Fleishman et al. [2005] have presented, but without the need for
sophisticated statistical machinery.

We define a function f ∈ F
by a set of n unit vectors,
v0, . . . , vn−1 that wind around
(0, 0) consistently. This is eas-
ily described by n pairs of
latitude-longitude values, con-
strained such that the longitude
values are ordered. The func-
tion is then defined as the set of
points created by non-negative combinations of consecutive vec-
tors. Equivalently, the function is the set of infinite triangles with
center (0, 0) and edges supported by consecutive vectors. In prac-
tice, we lift the ordering constraint and explicitly sort the vectors.
This makes the optimization algorithm much simpler, and the the-
oretical disadvantage of making the error landscape discontinuous
has not been found to be an issue in practice. Closest-point projec-
tion on this space is not only trivial to implement but is also very



Figure 6: Reconstructions of the Stanford bunny and the Twirl model using PU

and quadratic function spaces.

efficient: we simply perform projections on the infinite triangles
and pick the closest point (projecting a point on an infinite triangle
is just projecting on a regular triangle but ignoring one of the sup-
port lines). In our results, we use n = 4. Notice that in this case, if
bases {v0, v1, v2} and {v2, v3, v0} are not full-rank, then the func-
tion f will be an edge where the supporting planes are the spans of
the two sets.

A general algorithm for performing closest point projection on a
function space is also possible when information about the func-
tion’s fundamental forms is available. With the first fundamental
form we can evaluate the surface normal, and so we can define
closest point projection as one where the direction of the projection
agrees with the normal of the surface. If the second fundamental
form is available, we can use more sophisticated algorithms that
use derivative information, such as BFGS pseudo-Newton methods
[Press et al. 1992].

5 Experiments

Our proposed operator has several desirable features, compared to
the original MLS definition and subsequent work. It directly fits lo-
cal functions to the input, and so is less susceptible to incorrect min-
ima arising from an inadequate reference frame. Therefore, some
features from the sampled model might be “pinched” in these def-
initions. In our unified projection, these corners are “rounded” —
the behavior is more similar to a surface under low-pass filtering.
This can be seen in Figures 1, 5, and 6.

At the same time, our formulation can also be used to reconstruct
C0 features of the surface. If the functions we are using for the op-
timization are only C0, there will be 3-dimensional balls in R3 that
project down to a single point, as illustrated in Figure 4. This runs
counter to the intuition that our surfaces should be as continuous
as the weighting functions, as Levin conjectures for PL in [Levin
2003]. To the best of our knowledge, this is the first technique to di-
rectly incorporate sharp features, without formulations that use in-
tersections of smooth surfaces or explicit tagging [Fleishman et al.
2005; Reuter et al. 2005]. It is also possible to reconstruct sharp fea-
tures from 3D data. Figure 7 shows a reconstruction of the fandisk
and a CSG model using a function space that contains nonsmooth
functions. Notice that the reconstruction is smooth away from the
singularities.

The flexibility afforded by PU can be exploited for unusual appli-
cations. One can define the function space F used by the unified
operator to contain the expected local surfaces for the model be-
ing reconstructed. By changing the function space in this way, we
can interpret this unified formulation in terms of providing surface
priors for the reconstruction. One interesting application of this
technique is for automatic completion. In Figure 8, we show two
examples of reconstructions from an incomplete set of input points.
On the left, the function space F only contains smooth functions,

Figure 7: The 3D function space described in Section 4.2 can be used to recon-
struct models with sharp features. On the left, our reconstruction of a synthetic CSG
model. On the right, our reconstruction of the fandisk model.

so a smooth surface is reconstructed. In contrast, the right column
shows a case where F includes functions with sharp features, so a
sharp point is reconstructed to fill the gap.

Performance. Our prototype C++ implementation of PU performs
comparably to that of Fleishman et al. [2005]. Besides the tech-
niques in Section 4.1 used to make closest-point projection effi-
cient, our only other fundamental optimization was to run projec-
tions in parallel, taking advantage of modern multicore worksta-
tions. We believe that using GPUs would lead to large increases in
performance, as reported for example in [Guennebaud and Gross
2007], and believe this is an important avenue for further investiga-
tion. Using the function space P 3

2 in areas of large curvature, the
optimizer needs to perform more work, and our PU is between one
and two orders of magnitude slower than Levin’s PL. The function
space consisting of planar wedges is significantly faster, perform-
ing around five times faster than the quadratic function space. Our
memory usage is essentially the same as for other MLS implemen-
tations. Aside from the point set itself, the only data structure kept
in memory is a kd-tree used to perform k-nearest neighbor searches
and range queries.

6 Discussion

It is interesting to consider the conditions that cause the breakdown
of the original MLS operator. This happens when the minor eigen-
vector of the covariance matrix switches from being aligned with
the normal of the expected reference frame to being tangent to the
frame. We believe that this is related to the uniqueness of the minor
eigenvector of the covariance matrix and how it changes over the
surface. Bremer and Hart [2005] have recently used a related tech-
nique for proving sampling conditions under which an MLS formu-
lation properly reconstructs a surface. One can see the breakdown
of PL as a contrapositive analog of their result.

There have been many proposals to accommodate sharp features in
surface reconstruction using MLS. The work on enriched, repro-
ducing kernel Hilbert spaces by Reuter et al. [2005] requires ex-
plicit tagging of sharp features. Fleishman et al. [2005] have pro-
posed a statistical framework that automatically segments neigh-
borhoods into smooth subsets. While this makes it possible to re-
construct sharp curves, the scheme only works if the C0 feature is
reconstructible as the intersection of finitely many surfaces. In ad-
dition, the randomized nature of forward search causes the edge to
be discontinuous [Daniels et al. 2007]. Lipman’s data-dependent
MLS [2007] uses a different technique to segment the neighbor-
hood, based on regularity detectors. After that, Lipman’s projection
uses piecewise polynomials which suffer from the same shortcom-
ings of Fleishman’s robust MLS. As we argued in Section 3.4, our
proposed PU is capable of exactly reconstructing any feature that
is representable locally as a function in a function space F . Gal et



Figure 8: A function space F that contains predetermined priors that fit the
original surface can be used to complete missing details. On the left, F only contains
smooth functions, so the gap is filled with a smooth reconstruction. On the right, F
contains wedge shaped functions, so a sharp point is naturally reconstructed.

al. [2007] first upsample a point set based on a database of local
shape priors and then perform MLS reconstruction. Our technique
does not require upsampling of the point set; we instead incorpo-
rate the priors into the function space and reconstruct the surfaces
directly. Additionally, by allowing the function space to be closed
under affine transformations (see Section 4.1), we allow priors to
be transformed more freely, better fitting the local neighborhood.

In our work, we follow in the footsteps of Amenta and Kil [2004a]
by showing that the failures near corners and edges are unrelated
to sampling conditions – they are in fact intrinsic to the geometry
of the surface from which the points are sampled. Our work also
proposes an alternative way to define sharp features. Instead of us-
ing multiple steps, our technique is based on a conceptually simple
modification of Levin’s non-linear projection.

Our technique has some limitations. First, the resulting optimiza-
tion of PU is inherently more complex than that of PL. This means
the optimizer will necessarily require more work to reach the op-
tima. We have, however, observed that neighboring points tend to
generate similar local reference frame and approximations. One
way to mitigate this shortcoming might be to exploit this coherence
to speed up successive projections. In addition, similarly to Guen-
nebaud and Gross [2007], the more complicated energy field might
lead to spurious minima (manifested in their work as extra zeros).
As in their case, we have not found this to be a signficant issue in
practice. It remains an important topic to investigate the conditions
under which PU is convex.

7 Conclusions and Future Work

In this paper, we have proposed a unified MLS projection operator.
It is close in spirit to Levin’s PL and Lancaster and Salkauska’s
seminal work [2003; 1981], and it allows the use of rich function
spaces that contain functions relevant to the surface being recon-
structed. It is a natural extension to Levin’s approach, and addresses
a key shortcoming of the technique. We have provided an alternate
presentation of Levin’s proof that PL is a projection, which natu-
rally extends to our more general operator.

We believe that our approach has many applications. Our unified
projection allows manifolds to be defined on embedding spaces
richer than R3. For example, it should be possible to reconstruct
color information by operating on the product space of color and
geometric information. The same technique should be applicable
to texture coordinates, and other fields associated to the manifold.
Another possibility is to investigate function spaces that are closed
under a wider range of transformations — in particular, non-rigid
transformations. This can potentially allow much richer spaces
without having to create complicated projection definitions.
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