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Slides used in this presentation taken from the course notes for 3D Photography taught by Marc Pollefeys in the Fall '05
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Feature matching vs. tracking

Image-to-image correspondences are key to passive
triangulation-based 3D reconstruction

Extract features independently and Extract features in first images and
then match by comparing descriptors then try to find same feature back in
next view

What is a good feature?



Comparing 1image regions

Compare intensities pixel-by-pixel

Dissimilarity measures

Sum of Square Differences

SSD = Jﬁ['(x, y)—1(x, J/)] 2dxdy
W



Comparing 1image regions

Compare intensities pixel-by-pixel

Similarity measures

Zero-mean Normalized Cross Correlation
N(1', 1)

NCC =
NI, I)N(LLT

N(A,B) :J'J'W (A(x, y)— A)(B(x, y)— B)dxdy



Feature points

* Required properties:
- Well-defined

(i.e. neigboring points should all be different)
— Stable across views

(i.e. same 3D point should be extracted
as feature for neighboring viewpoints)



Feature point extraction

Find points that differ as much as possible from all neighboring
points
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Feature point extraction
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Harris corner detector

. _aty?
* Use small local window: w(z,y) =e 202 c=0.7
* Maximize ,,cornerness: R — detM — k (tracel\/[)2

k= 0.04

Only use local maxima, subpixel accuracy through second order
surface fitting

Select strongest features over whole image and over each tile (e.g.
1000/image, 2/tile)



Simple matching

* for each corner in image 1 find the corner in 1image 2 that 1s
most similar (using SSD or NCC) and vice-versa

* Only compare geometrically compatible points
* Keep mutual best matches

What trans



Feature matching: example

0.96 039 [ 0.19

-0.40 -0.16
-0.05 0.75 -0.47 0.51 0.72

-0.18 -0.39 0.73 0.15 -0.75

-0.27 0.49 0.16 0.79 0.21

0.08 0.50 -0.45 0.28 0.99

What transformations does this work for?

What level of transformation do we need?



Wide baseline matching

* Requirement to cope with larger variations

between 1images
— Translation, rotation, scaling

— Foreshortening Eg,eomfetrlc ’
— Non-diffuse reflections rar.1$ ormations
— Illumination photometric

changes




LLowe’s SIFT features

(Lowe, ICCV99)

Recover features with position, orientation and
scale




Position

* Look for strong responses of DOG filter
(Difference-Of-Gaussian)

* Only consider local maxima

1 224y 2242

DOG(z,y) = e ¢ —e k=3



Scale

* Look for strong responses of DOG filter
(Difference-Of-Gaussian) over scale space

* Only consider local maxima in both position and
scale

* Fit quadratic around maxima for subpixel

A o e
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Orientation

* (Create histogram of local
gradient directions computed
at selected scale

* Assign canonical orientation
at peak of smoothed
histogram

* Each key specifies stable 2D
coordinates (X, y, scale,
orientation)

2 T



Minimum contrast and “cornerness’
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SIFT descriptor

* Thresholded image gradients are sampled over 16x16 array
of locations 1n scale space

* (Create array of orientation histograms
* § orientations x 4x4 histogram array = 128 dimensions

Image gradients Keypoint descriptor



Three questions:

(i) Correspondence geometry: Given an image point X in the first
image, how does this constrain the position of the corresponding

point X’ in the second image?

(if) Camera geometry (motion): Given a set of corresponding image
points {x. <X}, i=1,...,n, what are the cameras P and P’ for the two

views?

(ili) Scene geometry (structure): Given corresponding image points
X, «<»X’; and cameras P, P’, what is the position of (their pre-image)

X in space?



The epipolar geometry

epipolar plane 1T

C,C’,x,x’ and X are coplanar



The epipolar geometry
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What if only C,C’,x are known?



The epipolar geometry

All points on Ttprojectonland I’



The epipolar geometry
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The epipolar geometry

epipoles e,e’

= intersection of baseline with image plane

= projection of projection center in other image
= vanishing point of camera motion direction
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an epipolar plane = plaﬁe containing baséline (1-D family)

an epipolar line = intersection of epipolar plane with image
(always come in corresponding pairs)



Example: converging cameras




Example: motion parallel with image plane
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(simple for stereo — rectification)



Example: forward motion




The fundamental matrix F

algebraic representation of epipolar
geometry:

"'~ F x

XTFx=0

we will see that mapping is (singular) correlation (i.e.
projective mapping from points to lines) represented by
the fundamental matrix F



The fundamental matrix F

geometric derivation

A N—
\
AN
Xx'=H_x
'=e'xx' = [e' H_xX =Fx

mapping from 2-D to 1-D family (rank 2)



The fundamental matrix F

correspondence condition

The fundamental matrix satisfies the condition that for
any pair of corresponding points x<x’ in the two

images
x'"TFx =0 xT1=0)



The fundamental matrix F

F is the unique 3x3 rank 2 matrix that
satisfies X TFx=0 for all x«<>Xx’

(i) Transpose: if F is fundamental matrix for (P,P’), then FT is
fundamental matrix for (P’,P)

(i) Epipolar lines: I'=Fx & I=F "X’

(iii) Epipoles: on all epipolar lines, thus e’ "Fx=0, x [ e’ TF=0,
similarly Fe=0

(iv) F has 7 d.o.f. , i.e. 3x3-1(homogeneous)-1(rank2)

(v) F is a correlation, projective mapping from a point x to a line
I'=Fx (not a proper correlation, i.e. not invertible)



The fundamental matrix F

relation to homographies

I M\\"'\-\. - ;

‘a MM"‘\ ,/ 1/
AN 4 /
f\ .-‘1{1,_'

Lo -

J.?‘ !I_;"' )/

.-"'f P N
“ ¢ SR,
e
", ‘\H baseline — !r"‘ pd
¥ f
x s

e¢|,H =F 1'=H'1 ¢'=He

valid for all plane homographies



Epipolar geometry: basic equation
x" Fx =0

X'xf Xy, X Sty X F Y Y Y s T st 3 =0
separate known from unknown

x'x,x'y,x',y'x,y'y,y',x,y,lufll,ﬁz,fl3,f21,fzz,f23,j‘31,]§2,]§3]T =0

(data) (unknowns)
(linear)

O x Xy Xy Y Yy v oxo oy 10
: : : '- ': 5 : =0
HLx, xLy, X, YL x, Yy, Y, x vy, 1H

Af =0



the NOT normalized 8-point algorithm
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- least-squares yields poor results



the normalized 8-point algorithm

Transform 1mage to ~[-1,1]x[-1,1]

normalized least squares yields good results (Hartley,
PAMI " 97)



Epipolar geometry computation:
robust estimation (RANSAC)

Step 1. Extract features
Step 2. Compute a set of potential matches
Step 3. do

Step 3.1 select minimal sample
Step 3.2 compute solution(s) for F

Step 3.3 count inliers, if not promising stop
until [ (#inliers,#samples)<95%

— 1 — (1 — | #inliers |7 \#samples

o I =1 (1 #matches )
Step 4. Compute F based on all inliers pities [ oo [ s [0 e | s0%
Step 5. Look for additional matches wamples | s | 1 | 35 | we | s

Step 6. Refine F based on all correct matches



Epipolar geometry computation

geometric relations between two views is fully described by recovered 3x3
matrix F



Cameras given F

Possible choice:

P=[I]0] P'=[[e'].F|e']

F=[¢]. PP =[] [[¢1F|¢']57
[e][e]. =¢'e"~{e".e)l)

=(e'.e"—{e".¢'||F=AF

representation:

P=[1|0] P'=[[e']|.F+e'v"|he']



M-

Triangulation

L.

Triangulation
- calibration

- correspondences
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Structure and motion recovery

Sequential approach
Initialize motion from fwo images
Initialize structure

For each additional view
- Determine pose of camera
- Refine and extend structure

Refine structure and motion




Initial projective camera motion

Choose P and P* compatible with F

P = I},.:g 0”;]

P=|e xFJrE'@\ ]

(reference plane:arbitrary)

Reconstruction up to projective ambiguity
(Faugeras’ 92 Hartley” 92)

s|nitialize mobion
s|pitialize structuro

s For each additional view
slietarmine pose of camera
*Refine and extend structure ﬁ
24 #Pafimg ofriictiro and FreETan , .



Initializing projective structure

* Reconstruct matches in projective frame
* by minimizing the reprojection error

D(m,.PM) + D(m,.P,M)’

Non-iterative optimal solution

i l | - . L N | o il
g | - e T F=/a | - 1
N - T E i i Ll e 'mi L L ]

et - = =i - |

s |nitialize motion
s |nitialize structure

*For each additional view
seterming pose of camers
+Hefine and extend struciure

35 # Refine structure and motion




Optimal 3D point in epipolar plane

@iven an epipolar plane, find best 3D point for (m;m.)

Kt/

Select closest points (m;" ,m;" ) on epipolar lines

Obtain 3D point through exact triangulation
Guarantees minimal reprojection error (given this epipolar plane)

&

36



Lnitializing projective structure

Reconstruct matches in projective frame by minimizing
the reprojection error

2 2
D(m, PM)" +D(m,,P,M)" 3DOF
Non-iterative method (Hartley and Sturm, CVIU 97)
Determine the epipolar plane for reconstruction

D(mp Iq(u))z + D(m;g: |g(ﬂ))2 (polynomial of degree 6)

#lyfee) [T ) 4
E’ M- [

4

Reconstruct optimal point from selected epipolar plane

37



Projective pose estimation

Infere 2D-3D matches from 2D-2D matches
Compute pose from 1m ~ PM (RANSAC 6pts)

M' 0 Mx|
T O
0 M My
; # |nitialize motion
Inliers: +|nitialize structure
M i;-fmr. j]{ PI.MJHI.] < _Dm «For each additional view

=etermine poase of camera
sHefine and extend struciure

8 o Refine structure and motion




Refining and extending structure

* Refining structure

1
P.M

P.y—P, |

_st‘— B

i

M=0 (lterative linear)

* Extending structure
Triangulation

39

(Hartley&Sturm,CVIU 97)

s |pitialize motion
s |nitialize structurea

s«For sach additional view
slgrarming pose of Camers
= H2afine and eatend structure

# Rafine structure and motion
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Sequential Structure and Motion
Computation

Tnitialize Motion
(P,.P, compatibel with F)
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Extend motion

(compute pose through matches
seen in 2 or more previous views)
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Initialize Structure
(minimize FE-PF"I:} jection error)

Extend sfru::'rur'e
(Initialize new structure,
refine existing structure)

o 2



Refining structure and motion

* Minimize reprojection error

ﬂTZZD(mm P.M, )2

k=1 I=
- Maximum Likelyhood Estimation
(if error zero-mean Gaussian noise)

- Huge problem but can be solved efficiently
(Bundle adjustment)

41



Bundle adjustment

Developed in photogrammetry in 50” s

(Slam

am o |
|

=

= O
o o
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Projective
8dof

Affine
o6dof

Similarity
4dof

Euclidean
3dof

Hierarchy transformations

transformed invariants
squares

Parallellism, ratio of areas, ratio

of lengths on parallel lines (e.g

midpoints), linear combinations of
. vectors (centroids).

The line at infinity I,

=
S
]

Concurrency, collinearity, order of
contact (intersection, tangency,
inflection, etc.), cross ratio
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Five points define a conic

For each point the conic passes through
ax; +bx,y, +cy; +dx, +ey, + [ =0

or
(xf,xiyl.,yf,xi,yi,l).c:O c=(a,b,c,d,e,f)T

stacking constraints yields

Ekf XyioWox% oy 1%
& Ny, »oX oy, 1f
%32 Xy, ¥io Xy, 1e=0

2 2

X XV, Ve X, Yy 1O
2 2
%s XsVs Vs X5 Vs IE



Quadrics and dual quadrics

X'QX =0 (Q : 4x4 symmetric matrix)

« 9d.o.f. Q-=
* in general 9 points define quadric
« det Q=0 < degenerate quadric

« tangent plane m=QX

(% N P T Y
mimimininin

1'Qmn=0

« relation to quadric Q* = Q'(lnon-degenerate)



The line at infinity
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The line at infinity |_ is a fixed line under a projective
transformation H if and only if H is an affinity

Note: not fixed pointwise




The plane at inﬁnity

DA‘T OEﬂj) D

- :H;l %

The plane at infinity 11_ is a fixed plane under a projective
transformation H iff H is an affinity

canical position  7_ (0 0.0 1)
contains directions = (X X,, X0
two planes are parallel <= line of inferséction in 1T,

line // line (or plane) = point of intersection in 1T,

B~ L=




The absolute conic

The absolute conic Q_ is a (point) conic on TT_.

In a metric frame: X12 +X22 +X32 []
0=0
X, ]

or conic for directions: (XIDXZ,X3)I(X1,X2,X3)T

(with no real points)

The absolute conic Q_ is a fixed conic under the projective
transformation H iff H is a similarity

1. Q. is only fixed as a set
2. Circle intersect Q_ in two circular points
3. Spheres intersect 1, in Q_



Stratification of geometry

Projective Affine Metric

15 DOF 12 DOF T DOF
plane at infinity absolute conic
colingarity, cross-ratio parallelism angles, ret.disi.

More general
-+

More structure

¢



Constraints ?

Scene constraints
— Parallellism, vanishing points, horizon, ...
— Distances, positions, angles, ...

Unknown scene — no constraints

Camera extrinsics constraints
—Pose, orientation, ...

Unknqwn camera motion - NO constraints
Camera intrinsics constraints

—Focal length, principal point, aspect ratio & skew

Perspective camera model too general
— some constraints



Self-calibration

* Upgrade from projective structure to meftric
structure using constraints on intrinsic

camera param eters

(Faugeras et al."92; Hartley 93;

- Constant intrinsics Pallefeys and Van Gool'96:Triggs 97, ...)

- Some known intrinsics, other varying (paliefeysetal. ‘9s...)

- Constraints on intrincs and restricted motion
(e.g. pure translation, pure rotation, planar motion)

(Moons et al “94, Hartley 94, Armstrong et al. "9, )

! E



Euclidean projection matrix

Factorization of Euclidean projection matrix

P-KRT -RTt]
v .
Intrinsics: K = Iy © (camera geometry)
1 =
Extrinsics: (RT t) (camera motion)

Note: every projection mainx can be factonzed,
but only meaningful for euclidean projection matrices

¢

al



Constraints on intrinsic parameters

f‘-l.' ¥ E.l'
K= Iy ey
l -

* Constant
e.g. fixed camera: K'I = KE =i
* Known
€.g. rec‘rﬂnguiur pi::-:E.'Is: s =0 (sufficient in general, Pollefeys et al '98)
square pixels: §=0.1 =7
principal point known: {EI__{‘J-_.}_(E_EJ

7 L |

5



The Absolute Quadric

Eliminate extrinsics from equation

KRT —RIt] — KRIRK KK

Equivalent to projection of quadric
POPT =KK™ Q" =diag(1110) Absolute Quadric

Absolute Quadric also exists in projective world
KK' =PQP' = (PT ') (TQ T (T 'P")
—pQ P! ;
Transforming world so that " — ()
reduces ambiguity to metric f
e

33




Absolute quadric and
self-calibration

Projection equation: - .
w; =PQ'P’ =KK} L

*
Tranzlate constraints on K

through projection equation
to constraints on (17

projection

Absolute Quadric = calibration object which
is always present but can only be observed
through constraints on the intrinsics

34



Refine Metric Structure and Motion

Use metfric bundle adjustment

- Use Euclidean parameterization for projection matrices
- Same sparseness udmn’ruges also use radial distortion

algu_uuZZD m, . P (M ))

P .M, =] §=1




£ x5 e
i . : . K= fi e
Practical linear self-calibration g

(Pollefeys et al., ECCV'02)

Don't treat all constraints equal

|
-

o0 o] oP@PT ) -(PQPT), =0
_I "
KK = PEE?/T': 0o 1o ﬁl’fl Pf)u =0
—|PQ'P" ). =0
after normalizationl | 0 0 1_ lEPg}‘PT }J b
(relatively aceurate for most cameras) - 3
! - (PHTTL "(PﬂtPTL} =0
f =] g - .
- L (PQP" )y - (PQPT); =0

(only rough aproximation,
but still usefull to aveoid
degenerate configurations)

when fixating point ot imoge-center not onky
absolute quadric diag(1.1.1.0) satisfies ICCVIR egs.
55 butalso disg(l,1.1.q0). i.e. real or imaginary spheres!




Upgrade from projective to metric

Locate Q7 in projective reconstruction (self-calibration)
Problem: not always unique (Critical Motion Sequences)

Transform projective reconstruction
to bring Q~ in canonical position

a7



Dense model reconstruction

Mztric structure
and motion

Dense Matching

|

Model Building




