Automatic Creation of 3D Models From Uncalibrated Image Sequences

Jason Repko University of North Carolina at Chapel Hill

Slides used in this presentation taken from the course notes for 3D Photography taught by Marc Pollefeys in the Fall '05

(Pollefeys et al. '98)

Feature matching vs. tracking

Image-to-image correspondences are key to passive triangulation-based 3D reconstruction

Extract features independently and then match by comparing descriptors

Extract features in first images and then try to find same feature back in next view

What is a good feature?

Comparing image regions

Compare intensities pixel-by-pixel

Dissimilarity measures

Sum of Square Differences

$$SSD = \iint_{W} [I'(x, y) - I(x, y)]^2 dxdy$$

Comparing image regions

Compare intensities pixel-by-pixel

Similarity measures

Zero-mean Normalized Cross Correlation

 $NCC = \frac{N(I', I)}{\sqrt{N(I', I')N(I, I)}}$

$$N(A,B) = \iint_{W} \left(A(x,y) - \overline{A} \right) \left(B(x,y) - \overline{B} \right) dxdy$$

Feature points

- Required properties:
 - Well-defined

(i.e. neigboring points should all be different)

- Stable across views

(i.e. same 3D point should be extracted as feature for neighboring viewpoints)

Feature point extraction

Find points that differ as much as possible from all neighboring points

Feature point extraction

Harris corner detector

- Use small local window:
- Maximize ,,cornerness":

- Only use local maxima, subpixel accuracy through second order surface fitting
- Select strongest features over whole image and over each tile (e.g. 1000/image, 2/tile)

Simple matching

- for each corner in image 1 find the corner in image 2 that is most similar (using SSD or NCC) and vice-versa
- Only compare geometrically compatible points
- Keep mutual best matches

Feature matching: example

What level of transformation do we need?

Wide baseline matching

- Requirement to cope with larger variations between images
 - Translation, rotation, scaling
 - Foreshortening
 - Non-diffuse reflections
 - Illumination

geometric transformations

photometric changes

Lowe's SIFT features (Lowe, ICCV99)

Recover features with position, orientation and scale

Position

- Look for strong responses of DOG filter (Difference-Of-Gaussian)
- Only consider local maxima

$$DOG(x,y) = \frac{1}{k}e^{-\frac{x^2+y^2}{(k\sigma)^2}} - e^{-\frac{x^2+y^2}{\sigma^2}}$$

 $k = \sqrt{2}$

Scale

- Look for strong responses of DOG filter (Difference-Of-Gaussian) over scale space
- Only consider local maxima in both position and scale
- Fit quadratic around maxima for subpixel

Orientation

- Create histogram of local gradient directions computed at selected scale
- Assign canonical orientation at peak of smoothed histogram
- Each key specifies stable 2D coordinates (x, y, scale, orientation)

Minimum contrast and "cornerness"

Figure 5: This figure shows the stages of keypoint selection. (a) The 233x189 pixel original image. (b) The initial 832 keypoints locations at maxima and minima of the difference-of-Gaussian function. Keypoints are displayed as vectors indicating scale, orientation, and location. (c) After applying a threshold on minimum contrast, 729 keypoints remain. (d) The final 536 keypoints that remain following an additional threshold on ratio of principle curvatures.

SIFT descriptor

- Thresholded image gradients are sampled over 16x16 array of locations in scale space
- Create array of orientation histograms
- 8 orientations x 4x4 histogram array = 128 dimensions

Three questions:

- (i) Correspondence geometry: Given an image point x in the first image, how does this constrain the position of the corresponding point x' in the second image?
- (ii) Camera geometry (motion): Given a set of corresponding image points {x_i ↔ x'_i}, i=1,...,n, what are the cameras P and P' for the two views?
- (iii) Scene geometry (structure): Given corresponding image points x_i ↔ x'_i and cameras P, P', what is the position of (their pre-image) X in space?

C,C',x,x' and X are coplanar

What if only C,C',x are known?

All points on π project on 1 and 1'

Family of planes π and lines I and I' Intersection in e and e'

epipoles e,e'

- = intersection of baseline with image plane
- = projection of projection center in other image
- = vanishing point of camera motion direction

an epipolar line = intersection of epipolar plane with image (always come in corresponding pairs)

Example: converging cameras

Example: motion parallel with image plane

(simple for stereo \rightarrow rectification)

Example: forward motion

algebraic representation of epipolar geometry: $I' \sim F x$ $x'^{T} F x = 0$

we will see that mapping is (singular) correlation (i.e. projective mapping from points to lines) represented by the fundamental matrix F

geometric derivation

correspondence condition

The fundamental matrix satisfies the condition that for any pair of corresponding points $x \leftrightarrow x'$ in the two images

$$\mathbf{x'}^{\mathrm{T}} \mathbf{F} \mathbf{x} = \mathbf{0} \qquad (\mathbf{x'}^{\mathrm{T}} \mathbf{l'} = \mathbf{0})$$

F is the unique 3x3 rank 2 matrix that satisfies $x'^TFx=0$ for all $x\leftrightarrow x'$

- (i) **Transpose:** if F is fundamental matrix for (P,P'), then F^T is fundamental matrix for (P',P)
- (ii) Epipolar lines: $I'=Fx \& I=F^Tx'$
- (iii) Epipoles: on all epipolar lines, thus e'^TFx=0, ∀x ⇒e'^TF=0, similarly Fe=0
- (iv) F has 7 d.o.f., i.e. 3x3-1(homogeneous)-1(rank2)
- (v) F is a correlation, projective mapping from a point x to a line l'=Fx (not a proper correlation, i.e. not invertible)

relation to homographies

valid for all plane homographies

Epipolar geometry: basic equation

 $\mathbf{x'}^{\mathrm{T}} \mathbf{F} \mathbf{x} = \mathbf{0}$

 $x' x f_{11} + x' y f_{12} + x' f_{13} + y' x f_{21} + y' y f_{22} + y' f_{23} + x f_{31} + y f_{32} + f_{33} = 0$

separate known from unknown

$$\begin{split} [x'x, x'y, x', y'x, y'y, y', x, y, 1] & [f_{11}, f_{12}, f_{13}, f_{21}, f_{22}, f_{23}, f_{31}, f_{32}, f_{33}]^{T} = 0 \\ & \text{(data)} & \text{(unknowns)} \\ & \text{(linear)} \end{split}$$

$$\begin{bmatrix} x'_{1} x_{1} & x'_{1} y_{1} & x'_{1} & y'_{1} x_{1} & y'_{1} y_{1} & y'_{1} & x_{1} & y_{1} & 1 \\ \vdots & \vdots \\ x'_{n} x_{n} & x'_{n} y_{n} & x'_{n} & y'_{n} x_{n} & y'_{n} y_{n} & y'_{n} & x_{n} & y_{n} & 1 \end{bmatrix} \mathbf{f} = \mathbf{0}$$

Af = 0

the NOT normalized 8-point algorithm

the normalized 8-point algorithm

Transform image to \sim [-1,1]x[-1,1]

normalized least squares yields good results (Hartley, PAMI´97)

Epipolar geometry computation: robust estimation (RANSAC)

Step 1. Extract features

Step 2. Compute a set of potential matches

Step 3. do

Step 3.1 select minimal sample

Step 3.2 compute solution(s) for F

Step 3.3 count inliers, if not promising stop until $\Gamma(\# inliers, \# samples) < 95\%$

Step 4. Compute F based on all inliers Step 5. Look for additional matches Step 6. Refine F based on all correct matches

Epipolar geometry computation

geometric relations between two views is fully described by recovered 3x3 matrix F

Cameras given F

Possible choice:

$$P = [I | 0] \quad P' = [[e']_{\times} F | e']$$

$$F = [e']_{\times} P'P^{+} = [e']_{\times} [[e']_{\times} F | e'] \begin{bmatrix} I \\ 0 \end{bmatrix}$$

$$([e']_{\times} [e']_{\times} = e'.e^{r} - (e^{r}.e')I)$$

$$= (e'.e^{r} - (e^{r}.e'))F = \lambda F$$

representation:

$$P = [I | 0] P' = [[e']_{\times}F + e'v^{T} | \lambda e']$$

Structure and motion recovery

- Sequential approach
- Initialize motion from two images
- Initialize structure
- For each additional view
 - Determine pose of camera
 - Refine and extend structure
- Refine structure and motion

Initial projective camera motion

Choose P and P' compatible with F

$$\mathbf{P} = \begin{bmatrix} \mathbf{I}_{3\times3} & \mathbf{0}_3 \end{bmatrix}$$
$$\mathbf{P}' = \begin{bmatrix} \mathbf{e}' \times \mathbf{F} + \mathbf{e}' \\ \mathbf{e}' \end{bmatrix}$$
(reference plane; arbitrary)

Reconstruction up to projective ambiguity (Faugeras' 92, Hartley' 92)

- Initialize motion
- Initialize structure
- For each additional view
 - Determine pose of camera
 Refine and extend structure
- •Refine structure and motion

Initializing projective structure

- Reconstruct matches in projective frame
- by minimizing the reprojection error

$$D(\mathbf{m}_1, \mathbf{P}_1\mathbf{M})^2 + D(\mathbf{m}_2, \mathbf{P}_2\mathbf{M})^2$$

Non-iterative optimal solution (see Hartley&Sturm,CVIU' 97)

- Initialize motion
- Initialize structure
- For each additional view
 - •Determine pose of camera
 - *Refine and extend structure
- Refine structure and motion

Optimal 3D point in epipolar plane

Given an epipolar plane, find best 3D point for (m₁,m₂)

Select closest points (m₁′,m₂′) on epipolar lines Obtain 3D point through exact triangulation Guarantees minimal reprojection error (given this epipolar plane)

Initializing projective structure

- Reconstruct matches in projective frame by minimizing the reprojection error $D(\mathbf{m}_1, \mathbf{P}_1 \mathbf{M})^2 + D(\mathbf{m}_2, \mathbf{P}_2 \mathbf{M})^2$ 3DOF
- Non-iterative method (Hartley and Sturm, CVIU'97)
 Determine the epipolar plane for reconstruction

 $D(\mathbf{m}_1, \mathbf{I}_1(\alpha))^2 + D(\mathbf{m}_2, \mathbf{I}_2(\alpha))^2$ (polynomial of degree 6)

1DOF

Reconstruct optimal point from selected epipolar plane

Projective pose estimation

- Infere 2D-3D matches from 2D-2D matches
- Compute pose from $m \sim PM$ (RANSAC,6pts)

$$\begin{bmatrix} \mathbf{M}^{\mathsf{T}} & \mathbf{0} & \mathbf{M}^{\mathsf{T}} \mathbf{x} \\ \mathbf{0} & \mathbf{M}^{\mathsf{T}} & \mathbf{M}^{\mathsf{T}} \mathbf{y} \end{bmatrix} \mathbf{p} = \mathbf{0}$$

Inliers: $\exists M \forall m_i D(\mathbf{P}_i M, m_i) < D_{in}$ Initialize motion

- Initialize structure
- For each additional view
 Determine pose of camera
 Refine and extend structure
 Refine structure and motion

Refining and extending structure

Refining structure

$$\frac{1}{P_{3}\widetilde{M}} \begin{bmatrix} P_{3}x - P_{1} \\ P_{3}y - P_{1} \end{bmatrix} M = 0 \quad \text{(Iterative linear)}$$

 Extending structure Triangulation (Hartley&Sturm,CVIU'97)

Initialize motion

Initialize structure

For each additional view

Determine pose of camera
 Pafina and extend cturcture

Refine and extend structure
 Refine structure and motion

Sequential Structure and Motion Computation

Initialize Motion (P1,P2 compatibel with F)

Extend motion (compute pose through matches seen in 2 or more previous views)

Extend structure (Initialize new structure, refine existing structure)

Initialize Structure

(minimize reprojection error)

Refining structure and motion

Minimize reprojection error

$$\min_{\hat{\mathsf{P}}_k, \hat{\mathsf{M}}_i} \sum_{k=1}^m \sum_{i=1}^n D(\mathsf{m}_{\mathsf{k}i}, \hat{\mathsf{P}}_k \hat{\mathsf{M}}_i)^2$$

- Maximum Likelyhood Estimation (if error zero-mean Gaussian noise)
- Huge problem but can be solved efficiently (Bundle adjustment)

Bundle adjustment

Developed in photogrammetry in 50's

Hierarchy transformations

Five points define a conic

For each point the conic passes through

$$ax_{i}^{2} + bx_{i}y_{i} + cy_{i}^{2} + dx_{i} + ey_{i} + f = 0$$

or

$$(x_i^2, x_i y_i, y_i^2, x_i, y_i, 1)$$
.**c** = 0 **c** = $(a, b, c, d, e, f)^{\mathsf{T}}$

stacking constraints yields

$$\begin{bmatrix} x_1^2 & x_1y_1 & y_1^2 & x_1 & y_1 & 1\\ x_2^2 & x_2y_2 & y_2^2 & x_2 & y_2 & 1\\ x_3^2 & x_3y_3 & y_3^2 & x_3 & y_3 & 1\\ x_4^2 & x_4y_4 & y_4^2 & x_4 & y_4 & 1\\ x_5^2 & x_5y_5 & y_5^2 & x_5 & y_5 & 1 \end{bmatrix} \mathbf{c} = \mathbf{0}$$

Quadrics and dual quadrics

 $X^{T}QX = 0$ (Q : 4x4 symmetric matrix)

- 9 d.o.f.
- in general 9 points define quadric
- det Q=0 ↔ degenerate quadric
- tangent plane $\pi = QX$

$$\boldsymbol{\pi}^{\mathsf{T}}\boldsymbol{Q}^{*}\boldsymbol{\pi}=\boldsymbol{0}$$

٠

relation to quadric $Q^* = Q^{-1}$ (non-degenerate)

The line at infinity

$$\mathbf{l}_{\infty}' = \mathbf{H}_{A}^{-\mathsf{T}} \mathbf{1}_{\infty} = \begin{bmatrix} \mathbf{A}^{-\mathsf{T}} & \mathbf{0} \\ -\mathbf{A}\mathbf{t} & \mathbf{1} \end{bmatrix} \begin{pmatrix} \mathbf{0} \\ \mathbf{0} \\ \mathbf{1} \end{pmatrix} = \mathbf{1}_{\infty}$$

The line at infinity I_{∞} is a fixed line under a projective transformation H if and only if H is an affinity

Note: not fixed pointwise

The plane at infinity

$$\boldsymbol{\pi}_{\infty}^{\prime} = \mathbf{H}_{A}^{-\mathsf{T}} \boldsymbol{\pi}_{\infty} = \begin{bmatrix} \mathbf{A}^{-\mathsf{T}} & \mathbf{0} \\ -\mathbf{A} \mathbf{t} & \mathbf{1} \end{bmatrix} \begin{bmatrix} \mathbf{0} \\ \mathbf{0} \\ \mathbf{0} \\ \mathbf{1} \end{bmatrix} = \boldsymbol{\pi}_{\infty}$$

The plane at infinity π_{∞} is a fixed plane under a projective transformation H iff H is an affinity

- $\pi_{\infty} = (0, 0, 0, 1)^{\mathsf{T}}$ canical position 1.
- contains directions $D = (X_1, X_2, X_3, 0)^T$ two planes are parallel \Leftrightarrow line of intersection in π_{∞} 2.
- 3.
- line // line (or plane) \Leftrightarrow point of intersection in π_{∞} 4.

The absolute conic

The absolute conic Ω_{∞} is a (point) conic on π_{∞} .

In a metric frame:
$$X_1^2 + X_2^2 + X_3^2 = 0$$

 X_4

or conic for directions: (with no real points)

$$(X_1, X_2, X_3)$$
I $(X_1, X_2, X_3)^{\mathsf{T}}$

The absolute conic Ω_{∞} is a fixed conic under the projective transformation **H** iff **H** is a similarity

- 1. Ω_{∞} is only fixed as a set
- 2. Circle intersect Ω_{∞} in two circular points
- 3. Spheres intersect π_{∞} in Ω_{∞}

Stratification of geometry

Projective

15 DOF

colinearity, cross-ratio

12 DOF plane at infinity parallelism

7 DOF absolute conic angles, rel.dist.

More general

More structure

(福田)

Constraints ?

Scene constraints

- Parallellism, vanishing points, horizon, ...
- Distances, positions, angles, ...

Unknown scene \rightarrow no constraints

Camera extrinsics constraints

-Pose, orientation, ...

Unknown camera motion \rightarrow no constraints Camera intrinsics constraints

-Focal length, principal point, aspect ratio & skew

Perspective camera model too general \rightarrow some constraints

Self-calibration

- Upgrade from *projective* structure to *metric* structure using *constraints on intrinsic* camera parameters
 - Constant intrinsics (Faugeras et al. '92; Hartley '93; Pollefeys and Van Gool '96; Triggs '97, ...)
 - Some known intrinsics, other varying (Pollefeys et al. '98 ...)
 - Constraints on intrincs and restricted motion (e.g. pure translation, pure rotation, planar motion)

(Moons et al. '94, Hartley '94, Armstrong et al. '96,...)

Euclidean projection matrix

Factorization of Euclidean projection matrix $P = K[R^T - R^T t]$ Intrinsics: $\mathbf{K} = \begin{bmatrix} f_x & s & c_x \\ & f_y & c_y \\ & & 1 \end{bmatrix}$ (camera geometry) Extrinsics: (R,t) (camera motion)

Note: every projection matrix can be factorized, but only meaningful for euclidean projection matrices

Constraints on intrinsic parameters

$$\mathbf{K} = \begin{bmatrix} f_x & s & c_x \\ & f_y & c_y \\ & & 1 \end{bmatrix}$$

Constant

e.g. fixed camera: $\mathbf{K}_1 = \mathbf{K}_2 = \cdots$

Known

e.g. rectangular pixels: s = 0 (sufficient in general, Pollefeys et al. '98) square pixels: $s = 0, f_x = f_y$ principal point known: $(c_x, c_y) = \left(\frac{w}{2}, \frac{h}{2}\right)$

The Absolute Quadric

Eliminate extrinsics from equation $K[R^T - R^T t] \rightarrow KR^T RK^T \rightarrow KK^T$ Equivalent to projection of guadric $\mathbf{P}\Omega\mathbf{P}^{\mathsf{T}} = \mathbf{K}\mathbf{K}^{\mathsf{T}}$ $\Omega^* = \operatorname{diag}(1110)$ Absolute Quadric Absolute Quadric also exists in projective world $\mathbf{K}\mathbf{K}^{\mathsf{T}} = \mathbf{P}\boldsymbol{\Omega}^{*}\mathbf{P}^{\mathsf{T}} = (\mathbf{P}\mathbf{T}^{-1})(\mathbf{T}\boldsymbol{\Omega}^{*}\mathbf{T}^{\mathsf{T}})(\mathbf{T}^{-\mathsf{T}}\mathbf{P}^{\mathsf{T}})$ $= \mathbf{P}' \mathbf{Q}'^* \mathbf{P}'^{\mathsf{T}}$ Transforming world so that $\Omega' \to \Omega^*$ reduces ambiguity to metric

Absolute quadric and self-calibration

projection

Projection equation:

$$\boldsymbol{\omega}_i^* = \boldsymbol{P}_{\!i} \boldsymbol{\Omega}^* \boldsymbol{P}_{\!i}^\mathsf{T} = \boldsymbol{K}_i \boldsymbol{K}_i^\mathsf{T}$$

- Translate constraints on K
- through projection equation
- to constraints on Ω^{*}

Absolute Quadric = calibration object which is always present but can only be observed through constraints on the intrinsics

Refine Metric Structure and Motion

- Use metric bundle adjustment
 - Use Euclidean parameterization for projection matrices
 - Same sparseness advantages, also use radial distortion

$$\arg\min_{\mathbf{P}_{k},\mathbf{M}_{i}}\sum_{k=1}^{m}\sum_{i=1}^{n}D(\mathbf{m}_{ki},\mathbf{P}_{k}(\mathbf{M}_{i}))$$

Practical linear self-calibration $K = \begin{bmatrix} f_x & s \\ f_y \end{bmatrix}$

Don't treat all constraints equal

$$\mathbf{K}\mathbf{K} = \mathbf{P}\boldsymbol{\Omega}^* \mathbf{P}^\mathsf{T} \approx \begin{bmatrix} \hat{f}^2 & \mathbf{0} \\ \mathbf{0} & \hat{f}^2 \\ \mathbf{0} & \mathbf{0} \end{bmatrix}$$

after normalization!

55

(relatively accurate for most cameras)

 $\hat{f} \approx 1$

(only rough aproximation, but still usefull to avoid degenerate configurations)

> when fixating point at image-center not only absolute quadric diag(1,1,1,0) satisfies ICCV98 eqs., but also diag(1,1,1,a), i.e. real or imaginary spheres!

$$\frac{1}{2} (\mathbf{P} \mathbf{\Omega}^* \mathbf{P}^T)_{11} - (\mathbf{P} \mathbf{\Omega}^* \mathbf{P}^T)_{22} = 0$$

$$\frac{1}{0.01} (\mathbf{P} \mathbf{\Omega}^* \mathbf{P}^T)_{12} = 0$$

$$\frac{1}{0.1} (\mathbf{P} \mathbf{\Omega}^* \mathbf{P}^T)_{13} = 0$$

$$\frac{1}{0.1} (\mathbf{P} \mathbf{\Omega}^* \mathbf{P}^T)_{23} = 0$$

$$(\mathbf{P} \mathbf{\Omega}^* \mathbf{P}^T)_{11} - (\mathbf{P} \mathbf{\Omega}^* \mathbf{P}^T)_{33} = 0$$

$$(\mathbf{P} \mathbf{\Omega}^* \mathbf{P}^T)_{22} - (\mathbf{P} \mathbf{\Omega}^* \mathbf{P}^T)_{33} = 0$$

Upgrade from projective to metric

Locate Ω^* in projective reconstruction (self-calibration) Problem: not always unique (Critical Motion Sequences) Transform projective reconstruction to bring Ω^* in canonical position

