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Feature matching vs. tracking

Extract features independently and 
then match by comparing descriptors

Extract features in first images and 
then try to find same feature back in 
next view

What is a good feature?

Image-to-image correspondences are key to passive 
triangulation-based 3D reconstruction



Compare intensities pixel-by-pixel

Comparing image regions
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Dissimilarity measures



Compare intensities pixel-by-pixel

Comparing image regions
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Zero-mean Normalized Cross Correlation

Similarity measures



Feature points

● Required properties:
– Well-defined 

(i.e. neigboring points should all be different)

– Stable across views

(i.e. same 3D point should be extracted
 as feature for neighboring viewpoints)



Feature point extraction

homogeneous

edge

corner

Find points that differ as much as possible from all neighboring 
points



Feature point extraction

homogeneous

edge

corner



Harris corner detector

● Only use local maxima, subpixel accuracy through second order 
surface fitting

● Select strongest features over whole image and over each tile (e.g. 
1000/image, 2/tile)

● Use small local window:
● Maximize „cornerness“: 



Simple matching
● for each corner in image 1 find the corner in image 2 that is 

most similar (using SSD or NCC) and vice-versa
● Only compare geometrically compatible points
● Keep mutual best matches

What transformations does this work for?



Feature matching: example
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What transformations does this work for?  

What level of transformation do we need?



Wide baseline matching 
● Requirement to cope with larger variations 

between images
– Translation, rotation, scaling
– Foreshortening
– Non-diffuse reflections
– Illumination

} geometric 
transformations

photometric 
changes}



Lowe’s SIFT features 

Recover features with position, orientation and 
scale

(Lowe, ICCV99)



Position

● Look for strong responses of DOG filter 
(Difference-Of-Gaussian)

● Only consider local maxima 



Scale
● Look for strong responses of DOG filter 

(Difference-Of-Gaussian) over scale space
● Only consider local maxima in both position and 

scale 
● Fit quadratic around maxima for subpixel



Orientation

● Create histogram of local 
gradient directions computed 
at selected scale

● Assign canonical orientation 
at peak of smoothed 
histogram

● Each key specifies stable 2D 
coordinates (x, y, scale, 
orientation)

0 2 π



Minimum contrast and “cornerness”



SIFT descriptor
● Thresholded image gradients are sampled over 16x16 array 

of locations in scale space
● Create array of orientation histograms
● 8 orientations x 4x4 histogram array = 128 dimensions



(i) Correspondence geometry: Given an image point x in the first 
image, how does this constrain the position of the corresponding 
point x’ in the second image?

(ii) Camera geometry (motion): Given a set of corresponding image 
points {xi ↔x’i}, i=1,…,n, what are the cameras P and P’ for the two 
views?

(iii) Scene geometry (structure): Given corresponding image points 
xi ↔x’i  and cameras P, P’, what is the position of (their pre-image) 
X in space?

Three questions:



The epipolar geometry

C,C’,x,x’ and X are coplanar



The epipolar geometry

What if only C,C’,x are known?



The epipolar geometry

All points on π project on l and l’



The epipolar geometry

Family of planes π and lines l and l’ 
Intersection in e and e’



The epipolar geometry

epipoles e,e’
= intersection of baseline with image plane 
= projection of projection center in other image
= vanishing point of camera motion direction

an epipolar plane = plane containing baseline (1-D family)

an epipolar line = intersection of epipolar plane with image
(always come in corresponding pairs)



Example: converging cameras



Example: motion parallel with image plane

(simple for stereo → rectification)



Example: forward motion

e

e’



The fundamental matrix F

algebraic representation of epipolar 
geometry: 

l' ~ F x
x'T F x = 0

we will see that mapping is (singular) correlation (i.e. 
projective mapping from points to lines) represented by 
the fundamental matrix F



The fundamental matrix F

geometric derivation

xHx' π=
x'e'l' ×= [ ] FxxHe' π == ×

mapping from 2-D to 1-D family (rank 2)



The fundamental matrix F

correspondence condition

0Fxx'T =

The fundamental matrix satisfies the condition that for 
any pair of corresponding points x↔x’ in the two 
images

( )0l'x'T =



The fundamental matrix F

F is the unique 3x3 rank 2 matrix that 
satisfies x’TFx=0 for all x↔x’ 

(i) Transpose: if F is fundamental matrix for (P,P’), then FT is 
fundamental matrix for (P’,P)

(ii) Epipolar lines: l’=Fx & l=FTx’
(iii) Epipoles: on all epipolar lines, thus e’TFx=0, ∀x ⇒e’TF=0, 

similarly Fe=0
(iv) F has 7 d.o.f. , i.e. 3x3-1(homogeneous)-1(rank2)
(v) F is a correlation, projective mapping from a point x to a line 

l’=Fx (not a proper correlation, i.e. not invertible)



The fundamental matrix F

relation to homographies

lHl' -T

π=[ ] FHe' π =×

valid for all plane homographies 

eHe' π=



Epipolar geometry: basic equation

0Fxx'T =

separate known from unknown
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Orders of magnitude difference
between column of data matrix
→ least-squares yields poor results

the NOT normalized 8-point algorithm



Transform image to ~[-1,1]x[-1,1]
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normalized least squares yields good results   (Hartley, 
PAMI´97)

the normalized 8-point algorithm



Epipolar geometry computation:
robust estimation (RANSAC)

Step 1. Extract features
Step 2. Compute a set of potential matches
Step 3. do

Step 3.1 select minimal sample  
Step 3.2 compute solution(s) for F
Step 3.3 count inliers, if not promising stop

   until Γ(#inliers,#samples)<95% 

( ) samples#7 )1(1
matches#

inliers#−−=Γ

#samples

#inliers

38210635135

50%60%70%80%90%Step 4. Compute F based on all inliers
Step 5. Look for additional matches
Step 6. Refine F based on all correct matches 

(generate hypothesis)

(verify hypothesis)

}



Epipolar geometry computation

geometric relations between two views is fully described by recovered 3x3 
matrix F



Cameras given F

Possible choice:

  ]e'|F][[e'P'   0]|[IP ×==

representation:
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Triangulation

C1
m1

L1

m2

L2

M

C2

Triangulation
- calibration
- correspondences























Hierarchy transformations
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Projective
8dof

Affine
6dof

Similarity
4dof

Euclidean
3dof

Concurrency, collinearity, order of 
contact (intersection, tangency, 
inflection, etc.), cross ratio

Parallellism, ratio of areas, ratio 
of lengths on parallel lines (e.g 
midpoints), linear combinations of 
vectors (centroids). 
The line at infinity l∞

Ratios of lengths, angles.
The circular points I,J

lengths, areas.

invariantstransformed 
squares



Five points define a conic

For each point the conic passes through
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stacking constraints yields



Quadrics and dual quadrics

(Q : 4x4 symmetric matrix)0QXX =T

• 9 d.o.f.
• in general 9 points define quadric 
• det Q=0 ↔ degenerate quadric
• tangent plane 
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0πQπ * =T

-1* QQ =• relation to quadric                     (non-degenerate)



The line at infinity
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The line at infinity l∞ is a fixed line under a projective 
transformation H if and only if H is an affinity

Note: not fixed pointwise



The plane at infinity
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The plane at infinity π∞ is a fixed plane under a projective 
transformation H iff H is an affinity

1. canical position
2. contains directions 
3. two planes are parallel ⇔ line of intersection in π∞

4. line // line (or plane) ⇔ point of intersection in π∞

( ) T1,0,0,0π =∞
( ) T0,,,D 321 XXX=



The absolute conic

The absolute conic Ω∞ is a fixed conic under the projective 
transformation H iff H is a similarity
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The absolute conic Ω∞ is a (point) conic on π∞. 
In a metric frame:  

( ) ( ) T
321321 ,,I,, XXXXXXor conic for directions:

(with no real points)

1. Ω∞ is only fixed as a set
2. Circle intersect Ω∞ in two circular points
3. Spheres intersect π∞ in Ω∞ 





Constraints ?

Scene constraints
– Parallellism, vanishing points, horizon, ...
– Distances, positions, angles, ...
Unknown scene → no constraints

Camera extrinsics constraints
–Pose, orientation, ...

Unknown camera motion → no constraints 
Camera intrinsics constraints

–Focal length, principal point, aspect ratio & skew

Perspective camera model too general
→ some constraints




















