
A Simple On-line Randomized Incremental Algorithm for Computing

Higher Order Voronoi Diagrams*

Franz Aurenhammer

Otfried Schwarzkopf
Institut fiir Informatik, Fachbereich Mathematik, Freie Universitit Berfin,

Arnirnallee 2-6, W1OOOBerlin 33, Germany

Abstract

We present a very simple algorithm for maintaining order-k Voronoi

diagrams in the plane. By using a duatity transform that is of

interest in its own right we show that the insertion or deletion of

a site involves little more than the construction of a single convex

hull in three-space. In particular, the order-k Voronoi dlagratn for n

sites can becomputedin time 0(nk2 log n+nk log3 n) and optimal

space O(k (n — k)) by an on-line randomized incremental algorithm

whose practictdity can be compared with the recent Voronoi dlagmrn

algorithm by Guibas, Knrrth, and Sharir. The time bound can be

improved by a log-factor without losing much sitnpticity. For k ~

log2 n, this is optimal for a randomized incremental construction;

we show that the expected number of structural changes during the

construction is t3(nk2). Finally, by going back to the primal space,

we automatically obtain a dynamic data structure that supports

k-nearest neighbor queries, insertions, and deletions in a planar

set of sites. The structure is very easy to irnplemen~ exhibits a

satisfactory expected performance, and occupies not more storage

than the current order-k Voronoi diagram.

1 Introduction

Ever since the introduction of randomized incremental con-

struction into computational geometry by ClarkSon and

Shor [CS], the paradigm has gained considerable popularity

*This research was partially supported by the Deutsche Forschungsge-
mein schaft under grant AI 253/1–3, .%hwerpunktprog- “Datenstmk-
turen und effiziente Atgorithrnen’’and by the ESPRIT I Basic Research

Action of the European Community under contract Nos. 3075 and 3299
(pmjc..t ALCOM and woking group “Computing by Graph Tmnsfonna-
tions”). Furthermotc, part of this work was done wh]le the second author
was visiting Utrecht University.

Permission to copy without fee all or part of this material is granted pro-
vided that the copies are not made or distributed for d]rect commercial
advantage, the ACM copyright notice and the title of the pubhcation and
its date appear, and notice is gwen that copying is by permission of the
Association for Computmg Machinmy. To copy othemise, or to

republish, requires a fee and/or spectflc pet-rmsslon.

@ 1991 ACM 0-89791-426-0/91/0006/0142 $1.50

within the field. It allows for algorithms which are efficient in
the expected case — where the expectancy does not depend
on an input distribution, but only on random choices made
by the algorithm — and which are very often redly practi-
cal since being conceptually simple and lending themselves
to implementation easily. It is thus not astonishing that a
considerable number of geometric problems has been shown
to be solvable by randomized incremental construction, see
e.g. [MMO, S 1, S2, W, GKS, BDSTY, BDT, CEGSS].

One of the problems that has eluded efficient implementa-
tion by randomized incremental construction is the compu-
tation of order-k Voronoi diagrams. Given n points (called
sires) in the Euclidean plane, and an integer k between 1 and
n, the order-k Voronoi diagram partitions the plane into re-
gions such that each point within a fixed region has the same

k closest sites. These regions are convex polygons since they
come from intersecting halfplanes bounded by perpendicular
bisectors of sites. The total number of regions and edges is
in O(k(n – k)) since the diagram maybe viewed as a planar
graph with as many vertices; see Lee ~].

An algorithm to compute the order-k Voronoi diagram is
called randomized incremental if it takes a random permu-
tation PI,p~ of the given sites and considers them in
this order. At stage i, it maintains the order-k Voronoi di-
agramof{pl, . . . ,pi }. Such an algorithm is called on-line

if it does not consider a site pj in stage i for i < j. An
on-line randomized incremental algorithm can thus be used
in a dynamic setting, although the time bounds are valid onl y
if sites are added in random order.

There is a recent on-line randomized incremental rdgo-

rithm by Boissonnat et al. [BDTl which takes expected time
0(nk4 log n) and expected space 0(rtk3). Since the output
size is in O(k(n – k)), this calls for improvement. In fact,
several deterministic (off-line) algorithms have been devel-
oped, the fastest (but not simplest) of which for small k is
by Aggarwal et al. [AGSS] and achieves a running time of

O(nkz + n log n). Randomized (but not incremental) al-
gorithms taking time 0(nk2 + nlog n) and O(knl+’) have

been proposed by Mulmuley [Ml and by Clarkson [C], re-

142

spcctively.

We investigate why it is so difficult to devise an efficient
randomized incremental algorithm for this problem and ob-

tain the following results: If then sites are added at random
while their order-k Voronoi diagram is maintained, the ex-
pected number of Voronoi vertices that appear at some inter-
mediate stage during the algorithm is @(nkz). This implies

that we cannot even hope to get somewhere near O(nk) by
randomized incremental construction, since the number of

structural changes alone is much bigger. The situation gets
even worse if we consider the expected size of the conjlict

graph (introduced by Clarkson and Shor [CS]) which arises

during the incremental construction: it is El(nk3 log ~). This
explains neatly the result by Boissonnat et ‘&. [BDfi: Since
they cannot compute the order-k Voronoi diagram alone, but
compute all diagrams of order j, for 1 < j ~ k (a problem
shared by most other algorithms cited above), they obtain an
additional factor of O(k).

We use aduality transform to construct the order-k Voronoi

diagram via a single convex hull in three dimensions. This
releases us from computing all the order-j diagrams forj < k

at the same time. In the dual setting, the insertion (and also
the deletion) of a site amounts to little more than computing
a convex hull in three-space. Exploiting duality further, we
are able to apply a simple point location technique to get rid
of the conflict graph. What is obtained is an unrivaled simple
on-line algorithm for inserting and deleting sites in a planar
order-k Voronoi diagram. In particular, the diagram can be
computed in 0(nk2 log n + nk log3 n) expected time by an
on-line atgorithm which we believe to be highly practicat.

By doing things in a bit more sophisticated but still simple
fashion, we are able to improve the running time by a log-

factor, that is, to 0(nk2 + nk log2 n). This is optimal for

a randomized incremental construction if k z log2 n. Sites
can now be inserted and deleted in time proportional to the
number of structural changes in the diagram, which nicely

generalizes a similar result for the usual (order-1) Voronoi
diagram [AGSS]. The time for locating a site to be inserted
reduces to O(k log2 n).

We then consider the memory space requirements of our
algorithms. For an off-line application (all sites are known

in advance) we only have to store, at any stage, the current

order-k Voronoi diagram and an edge of conflict for each not-

yet inserted site. So we can do with optimal O(k(n – k))

space. However, if we implement the algorithms in a manner
which is on-line, we have to remember older copies of the
diagram in order to facilitate point-location. This seems to
lead to 0(k2(n – k)) expected space. We present a simple
possibility to reduce this to optimal O(k(n – k)) worst-
case space, again making use of our duality transform. This
modification does not require any new tools and thus retains
the simplicity of the algorithms.

Finally, by going back to the primal space — while still
remaining in three dimensions — we automatically get a

dynamic data structure for k-nearest neighbor search, allow-
ing both insertions and deletions. We show that the k sites

closest to a query point can be collected during the point
location, hence keeping the space requirement of this easily
implemented structure proportional to the size of the order-k
Voronoi diagram of the current set of sites.

2 Complexity of Randomized Incremental

Construction

In this section we obtain a general result on the incremen-
tal construction of higher order Voronoi diagrams. Let

S={pl,... , P~ } be a set of sites in the plane, and let

k- Vor(S) denote their order-k Voronoidiagram. To simplify
the exposition, we assume that the sites in S are in generat
position, meaning that no three sites are collinear and no four
sites are cocircukw. We need the following well-known fact.

Fact 1 Each vertex of k-Vor(S) is the center ofa circle wifh

exactly 3 sites of S on the boundary and either k – 1 or k – 2

sites of S in its interior.

Such a vertex v is said to be of the close-type if the corre-
sponding circle contains k – 1 sites, and v is of the~ar-type,

otherwise.
We observe that any incremental atgorithm that constructs

k- Vor-(S) by inserting the sites PI,. . . . p~ in this order must
create all the vertices appearing in all the intermediate di-
agrams k- Vor({pl, . . ., Pk+I}), k-Vor({pl,.. .)pn}).

Note that k- Vor({pl, pi}) is undefined for i < k; it con-
tains only one region covering the whole plane if i = k, and it
is the furthest-site Vomnoi diagram of {PI, ..., p~+l } (which

has only O(k) vertices) if i = k + 1. We will thus assume
in the following that the construction starts at stage k + 2.

Let us now take a random permutation PI, pn of S
and determine the expected number of vertices that are
created in stage i, for i > k + 2. These are exactly
the vertices of k- Vor({pl, pi}) that are not vertices of
k- Vor({pl, pi_l }). Using Seidel’s backwards analysis

[S 1], we can reformulate our question as follows: What is
the expected number of vertices in k- Vor({pl, p,}) that

disappear when a random site in {PI, ..., p,} is removed?
This number can be expressed as

E Prob{v disappears}.

vEk-VOr({pl, ,p, })

When does a fixed vertex v disappear? By Fact 1 this is the
case iff we remove one of the three sites whose circumcircle
defines v, or one of the k – 1 or k – 2 sites in that circle.
The probability for this event is ~ or ~, and we sum
over @(k(i – k)) vertices, according to the complexity of

an order-k Voronoi diagram for i sites. This shows that the

expected number of vertices created in stage i is @(kz(1 –

~)). Interestingly, this number does not depend much on i.

Summing over i, we obtain:

143

Lemma 2 ‘Ihe expectednumberof order-k Voronoi diagram

vertices created by a randomized incremental algorithm for

a set of n sites in the plane is in @(k*(n – k)).

This is a disappointing result, since the size of the order-k
Voronoi diagram is only @(k-(n – k)). It is thus not possible

to find a randomized incremental algorithm which works in
time optimal with respect to the output size. However, most
known algorithms for the computation of order-k Voronoi
diagrams atso take time Q(k2n), so we might still want to
find a randomized incremental atgorithm with its typical and
desirable properties, namely being simple and perhaps on-
line.

3 A Duality lhnsform for Order-k Voronoi

Diagrams

In this section we introduce a duality transform that relates
order-k Voronoi diagrams in the plane to certain convex hulls
in three-space. This transform is the heart of the algorithms
to be described in this paper. It allows us to insert and delete
sites in an order-k Voronoi diagram in a smooth fashion via
the computation of convex hutls. It further provides a possi-
bility to detersnine a Voronoi vertex that gets destroyed when
inserting a site by simply locating that site in a triangulation.

The transform works as follows. Recall that a region of

the order-k Voronoi diagram is the locus of all points in the

V-Plane that have the same k closest sites. ~t now T c s
be any subset of k sites. We transform T — and thus the
region it may define in thediagram-into aduatpoint, q(T),

in three-dimensional space by taking the centroid of T and
lifting it up in z-direction. More precisely,

‘(T)=(2p%p1p))-
Note that the first term gives the z- and y-coordinates and

expresses the centroid ~ ~PE~ p of T (also called center

of mass), while the other term gives the z-coordinate of the
point q(T) in three dimensions.

Consider the set, Qk (S), of all dust points that can be
obtained from k-subsets of S in this way. That is, Qk(S) =

{’(T) I T C s, Wl = k}. CleiWIY, lQ~(S)l = ~). Take
the convex hull of Qk (S) and ignore all of its facets that are
invisible from (O, O, –co). The remaining lower convex hull

has the following surprising property.

Lemma 3 7he lower convex hull of Qk(S) is dual to

k-Vor(S).

A proof has been given in [A 1]. Here we prove a stronger
result, by mapping each k-subset T of S into a non-vertical
plane in three-space,

p/ane(T) : .=; ~(.,P)-@P,P)j

PET PET

and considering the (unbounded) convex polyhedron,
po/y(S), that comes from intersecting the halfspaces above

all p/ane(T).

Lemma 4 k-Vor(S) is the vertical projection of poly(S)

onto the zy-plane.

Pro& Let z be a point in the zy-plane, lying in the region
of TO c Sin the order-k Voronoi diagram. We have to show
that To is the k-subset whose plane intersects the vertical line
through x in the uppermost position.

Let T and T’ be two k-subsets of S and suppose them to be
of the form T’ = (T\ {s}) U {s’}, fors # s’. We show that

if d(z, s) < d(z, s’) then p/ane(T) lies above p/ane(T’) at

point z. (d is the Euclidean distance function.) This proves

the claim, since for any k-subset T* # To we can find a
sequence TO,Tl, . . . ,Tm = T* such that consecutive subsets

are of this speciat form and the argument can be applied
repeatedly, showing that plane(Ti) lies above p/ane(Ti+l)

at point Z.
From d(z, s) < d(z, s’) we immediately get 2(z, s) –

(s,s) > 2(z, s’) – (s’, s’). Adding

2&(zjP) – ~ (P!’)
pcTnTf

to both sides yields

PCT PET PET’ PET’

If we further divide by k, these terms express the heights of
the vertical projections of z onto p/ane(T) and p/ane(T’).

•l

Lemma 4 implies Lemma 3 if we apply the point-plane
polarity with respect to the paraboloid of revolution z =
(z, z). This polarity maps a point (a, b, c) into the plane
z = 2az + 2by — c and vice vers% and preserves the relative

position between points and planes; see e.g. [A2, E]. In
our case, itmaps the plane p/ane(T) into the point q(T).

Consequently, the polyhedron poly(S) — and thus its pro-
jection k- Vor(S) — are dual to the lower convex hull, C(S),
of Qk (S). Regions of k- Vor(S) correspond to vertices of
C(S) which will be catled corners to avoid confusion with
the vertices of the diagram. The latter translate to facets of
the lower convex hull. By our generat position assumption
all these facets are triangles. Finatly, the dual object of an
edge separating two regions of k- Vor(S) is again an edge
that now connects the two corresponding corners. It should
be noted that for the case k = 1, we have just described
the usual embedding of a closest-site Voronoi diagram in
three-dimensional space.

In order to construct k- Vor(S), we thus could just compute
the set Qk (S) and determine its lower convex hull. Unfor-
tunately, Qk(S) contains O(nk) points, only O(k(n – k))

144

of which are comers. However, we can apply our duality
transform to parts of the order-k Voronoi diagram where we
already know which k-subsets will give rise to comers, and

we will use this in the next section.

4 Inserting a Site

In the light of this duality, we choose to maintain the lower

convex hull C~of Qk ({PI, ..., pi }) during the incremental
construction instead of the order-k Voronoi diagram itself.
We show that the insertion of a site involves little more than
the computation of the lower convex hull of a certain set of
new comers which can be found easily.

Besides the coordinates of the comers and the triangula-
tion representing C~the algorithm only needs to store labels

for the hull edges. Each edge e of Ci is dual to an edge

of k-vm’({pi, . . . , pi}). The latter is a piece of the bisec-
tor of two sites p, q E {pl, pi}, and we label e with
the pair {p, q}. This labeling will be maintained with Ci.
Note that the labels of a triangle A of Ci are of the form

{P, q}, {q, ~}, {~, P}. me Voronoi vertex corresponding to
A is just the center of the circumcircle of p, q, and r; see
Fact 1. So the vertex and its circle can be restored from the
labels in constant time.

The construction is initialized with the determination

of Ck+l. Qk({Pl ,... , Pk+l}) contains (k~l) = ~ + 1

points and can be found in time O(k), by tirst calculat-

ing the centroid of pl, p~+l (and its height) and sub-
tracting from it each particular site pi which gives the
point q({pl, . . . , pk+l } \ {pi}). we compute Ck+l h the
O(k log k), using the randomized incremental algorithm by
Guibas, Knuth, and Sharir [GKS]. An edge of Ck+l is la-
beled by {p, q} if the comers it connects have been obtained
from the centroid above by subtracting p and q, respectively.
Note that we have just described an unusual way to compute
the furthest-site Voronoi diagram of k + 1 sites.

The generic step of the algorithm will be the insertion of

Site pi intOCi-l, fOri ~ k+2. Since Qk({pl, . . . jfli-1}) C

}), we can find Ci by determining the set PQk({Pl, . . .,P*

of all new comers and constructing the lower convex hull of

T and the comers of C~_l. Intuitively speaking, the insertion
of pi looks as follows.

● Identify all triangles of Ci_ 1 destroyed by pi and cut

them out. Let f? be the set of comers on the boundary
of the hole.

● Calculate the set P of all new comers created by pi.

● Compute the lower convex hull of ‘P U B, using the

algorithm by Guibas, Knuth, and Sharir [GKS], and till

the hole. l%is gives Ci.

● Lidwl the newly constructed edges of Ci.

All these tasks have a simple and nice implementation which
is to be described in the remainder of this section.

Let us for the moment assume that we have a point location

oracle, which — given a new site p; — presents us a triangle
of Ci- 1 which is destroyed by pi. By Lemma 5 below, the
triangles of Ci_l that are no longer part of Ci forma simply
connected surface, U, on Ci-. 1. A triangle A gets destroyed
iff pi happens to lie within the circumcircle whose center
is the dual Voronoi vertex of A. According to Fact 1, this

vertex then either changes type or disappears. In both cases
A will not be present in Ci. So we can test in constant time
whether A will be destroyed. Using the point location oracle
and a graph search, the surface U can thus be removed from
Ci-l in time O(ni), where nj is the number of triangles in
U. Clearly the set B of comers on the boundary of U can be
identified during this process.

For a region R of an order-k Voronoi diagram, let

near(ft) denote its defining k-subset. Let further near(e) =

near(R,) n near(lt’) if the edge e separates the regions R

and R’.

Lemma 5 The union, 7?, of all regions R of

k-Vor({pl,. . ., pi }) with pi E near(R) is a polygon

which is star-shaped as seen from pi. The edges of

k-Vor({pl, . . . ,pi-1 }) in the interior of ‘R form a comected

graph, ~.

Prod ‘R is the union of intersections of halfplanes that
contain pi and are bounded by bisectors of pi and some other

site. Since such halfplanes are star-shaped with respect to

Pi, ‘R has the same property.
Assume now that ~, the part of k- Vorf{pl, pi-l})

lying in 7?, is disconnected. This implies that there is a region
A of k-Vor({pl, . . .,pi-l }) which intersects the boundary
of 7? in a disconnected set r. Now, consider the order-(k + 1)
Voronoi diagram of {pl, pi}. There is region A’ in that

diagram with near(A’) = near(A)U {pi}, and Ann c A’.

In fact, A (l 7? is exactly that part of A’ where pi is not the

furthest point in near(A’). Furthermore, r coincides with

the boundary of the region of pi in the furthest-site Voronoi
diagram of near(A’) within A’, which is well known to be
connected. •l

Figure 1 illustrates the insertion of site pi into the order-3
Voronoi diagram of 7 sites. The boundary of 72 is drawn
with bold lines. The graph ~ of destroyed edges is shown
dashed.

Now we want to determine the set ‘P of new comers.
Luckily, we have the following.

Lemma 6 Each edge e in k-Vor({pl, pi-l}) that gets

totally or partially destroyed by the insertion of pi gives

n“se to a new region R in k+b-({pi, pi }). All new

regions are generated in this way. h particulx, near(R) =

near(e) U {p~}.

145

●

‘

●

Figure 1: Insefiing a site.

Proof: Let z be a point in the part of e which gets destroyed.
Then there exists a circle around z that encloses near(e)

“}.and pi but does not enclose any other site in {PI, . . ., p>

But this means that z is contained in the region R of

k-vo?-({pi ,.. . , Pi}) with near(12) = near(e) u {pi}.

For the reverse direction, let R be a region in

k-vo?-({pi, pi}) with pi E near(R). Then there ex-
ists a circle enclosing only the sites in near(ft). When

removing pi and shrinking the circle until two sites lie on
its boundary, its center will be a point on an edge e of
k-Vor({pl, . . ,pi-l}) with near(e) = near(R) \ {pi]. ❑

Lemma 6 implies that we can collect T while walking along
the surface 24, and it also implies that 17J1 G O(~i). Note

that we can compute the coordinates of the new comer that
arises from an edge e of U in constant time, by subtracting
from one comer of e the appropriate site in the label of e and

then adding pi.

After having computed the lower convex hull of P U B in
time O(ni log ni) we finally have to label this newly created
edges of Ci. It is possible to do this in time O(ni), via the
coordinates of the comers since we already know the labels
of the edges on the boundary of U. LetA be a triangle
with only one labeled edge e and let c be its comer opposite
to e. The coordinates of the unknown third site appearing
in the labels of A are obtained by subtracting from c one

comer of e and adding the appropriate site in the label of e.

Here it is necessary to know whether A is dual to a close-

type or a faMype vertex; the type can be read off from e’s
label, provided we store edge labels as oriented pairs of sites.
There might arise numerical problems if we try to identify
a site via its coordinates. However, it should be observed
that if the sites are given in integer coordinates then also all
comers will have this property. (Of course, we would use
the coordinates of the comers g(T) only multiplied by k, to
avoid unnecessary divisions and roundoff errors.) Anyway,
we shall see another — quite simple — technique of labeling
all the edges of U in Section 7.

We have just proved

Lemma 7 Given Ci_l we can irtsert a new site pi — which

was not known before — in time O(ni log ni), provided we

kIIOWa triangle of Gi-l thti is destroyed by pi.

5 The Site Location Problem

We give now amethodto find the required starting triangle for
our graph search. The usual technique to attack this problem
is by maintaining a conflict graph [CS] or by using a related
method that is on-line and obtains the same time bounds, see

e.g. [BDTJ. However, we can show [AS] that the conflict
graph of our problem has an expected size of 0(nk3 log :),

which would dominate the time for the construction steps.
We circumvent this difficulty by using a two-staged point-
Iocation structure, which we nearly get for free and which

achieves a total running time of O(nk log3 n) for all site
location steps. We profit from one more nice property of our
duality transform.

Lemma 8 LetA be a triangle of Ci-l, let v denote its dual
Voronoi vertex, and let O be the circumcircle corresponding

to v. Then O encloses the projection of A on the icy-plane.

Pro& Let p, q, and r be the three sites defining O. De-
pending on whether v is a close-type vertex or a far-type
vertex, O encloses a (k – I)-subset or a (k – 2)-subset

Tc{pl,... ,Pi-1}. BY definition of Q~({pl,... ,pi-l}),

the projections of the comers of A are the centroids of
T U {p}, T U {q}, and T U {r} in the former case, and
the centroids of TU {p, q}, T U {p, r}, and TU {q, r} in the
latter. Clearly, these centroids lie within the convex hull of

146

T u {p, q,T}, which lies within O. This implies the lemma.

•I

Recall that A is destroyed by changing the set of sites

enclosed by O. It is thus sufficient for our psnposes to locate

a new site pi in the triangulation of the plane given by the
projection of C~-1.

We use a technique similar to that used in [GKS, AESWI.
We do not remove the triangles of Ci.1 that get destroyed
by the insertion of pi from our data structure, but mark them
as old. In the moment of becoming old, each triangle gets

a pointer to the newly added cap, the lower convex hull of

P U B that has been added to Ci.1 in order to obtain Ci.
The stmcturemaintained at stage i during the course of the

algorithm is thus the family of all lower convex hulls Cj, for
k + 1 s j < i, which can be imagined as a sequence of caps
that have been added to the initial cap Ck+l; seeFigure 2. For
each cap, we need a point location structure for the triangula-
tion it projeets to. But recall that we have used the algorithm
by Guibas, Knuth and Sharir [GKS] to compute the caps,
which can be implemented in such a fashion that it automati-

cally gives a point location structure for these triangulations,

with an expected query time of U(log2 nj) = 0(log2 n).
So, in order to obtain the two-staged point-location structure

just described, nothing has to be added to our algorithm but

the establishment of some pointers from triangles to caps.

Figure 2: Locating p; in a sequence of caps.

Locating a new site pi is now obvious. First locate pi in

a triangle A of C~+l, in time O(log2 k). Either A is still
present in Ci–l, or it has become old by the insertion of some

site Pj, for j < i. In the latter case, A points to a point

location structure for the cap defined by Cj. We locate pi in

that cap and proceed in this fashion until we reach a triangle
ofci_l.

In how many caps do we have to locate a fixed site q? Let
Aj be the triangle of Cj containing q in its projection. We

are interested in the expected number of indices j such that

Aj # Aj -1. This number can be expressed m

n

~ ‘rOb{Aj # ‘j-l}
j=k+2

Note that q is fixed and the probability is taken over all
permutations of {Pi, . . . , P. }. Again, we use a backwards
analysis to see that this probability is the same as the proba-
bility that Aj disappears when a random site in {PI, Pj }

is removed. That probability, however, is @(~) by the ar-
dgument of Section 2. This shows that, for a xed site, the

expected number of point locations in caps is ~(k log ~).
According to Lemma 7 and Lemma 2, the expected run-

time of our algorithm without the point location steps is in

n

O(k 10g k) + ~ O(ni 10g ni) = 0(k2(?Z – k) 10g n)
i=k+-2

We conclude the following result for the computation of
order-k Voronoi diagrams.

Theorem 9 The order-k Voronoi diagram of n sites in the

plane can be computedin expected time O(k2(n – k) log n +

nk log3 n) by a very simple, randomized, incremental, on-

line algorithm.

6 Reducing the Space Complexity

The simple on-line implementation of our algorithm seems
to have a price of U(k2(n – k)) expected space, which might
be prohibitive for large vrdues of k. We suggest the following
addition to the algorithm that can be incorporated easily and

which does not change the asymptotic running time.
Fix some suitable constant c and reserve ck(n – k) stor-

age for the computation of the order-k Voronoi diagram of

{Pi,... , pn}. Run the algorithm until this amount of stor-

age is exhausted. Now, discard everything in the memory

besides the O(k(i – k)) comers of the actual lower con-

vex hull C~. Rebuild C~ by inserting its comers randomly
with the algorithm by Guibas, Knuth, and Sharir [GKS], in
order to get a point location structure for the projection of
Ci. If c has been chosen large enough, this rearrangement
of memory happens only O(k) times in the expected case.

(The expected number of new Voronoi vertices per insertion
is U(k2); see Section 2.) Since every rearrangement can be

done in time O(k(n – k) log n), the total time required for

these steps is O(k2(n – k) log n). After verifying that the
point location time can only get better by this modification,

we obtain

Theorem 10 The algorithm of Theorem 9 can be modified to

run with optimal O(k(n — k)) space in the same asymptotic

rum”ng time. The modification does not require any new

tools.

Note that this space bound is only true in the expected case,
since the space requirement of the convex hull algorithm
in [GKS] has an expected bound only. However, it is easy

to convert an expected space bound into a worst case bound
by stopping the algorithm if it exceeds its space limit, and
restarting it with a new choice of the random permutation.
In this fashion every randomized algorithm using expected

space S in expected time T can be converted into one using

at most (1 + c)S space in the worst case in expected time
~T, for any c >0.

cWe further mention that the space requirement of our al-
gorithm also drops to optimat O(k(n – k)) if we implement
it as off-line, by maintaining an edge of the conflict graph for
every not- yet inserted site by the same technique as before.
In this case, we only need to maintain the current lower hull,

which has a complexity of O(k(n – k)) in the worst case.

7 Speeding Up the Algorithm

Let us here present a more elaborate (and slightly more com-
plicated) way of inserting a site pi in time O(n~) — instead

of O(ni log n,) — which will finally lead to an optimal ran-
domized incremental on-line algorithm.

As has been observed in the proof of Lemma 5,
k- Vor({pl, pi_l }) coincides with the order-(k + 1)
Voronoi diagram of {PI, . . . , pi } in the star-shaped domain
influenced by pi. It is well known that k- Vor({pl, . . ., pi})

can be obtained from the latter diagram by constructing the
furthest-site Voronoi diagram of near(R) within each of its
regions R. We thus could use the algorithm of Aggarwal et

al. [AGSS] to construct in time O(ni) these furthest-site dia-
grams in the domain of influence of pi, and then could “glue”

them together, in order to obtain k- Vor({pl, pi }).

We find it more simple and elegant to perform a similar
task in the dual environment. In particular, we need not glue
together newly constructed objects, but fill in some missing
convex hull edges instead. To this end, we reconsider the
distinction between far-type and close-type vertices.

Any far-type vertex v which gets destroyed by the
insertion of pi reappears as a close-type vertex v’ in
k- Vor({pl, pi}). Consider the edges el, e2, e3 adja-
cent to v. Since v is a far-type vertex, these edges have
different (k – 1)-subsets near(el), near(e2) and near(e3)

which, by Lemma 6, give rise to the three regions adjacent to
v’. We can thus for every destroyed triangle A that is dual to

a far-type vertex create three new comers and connect them
as a triangle A’. The labels for the edges of A’ clearly are
the same as those for A.

All close-type triangles within the set P of new comers
are created this way. The triangles having one comer in
‘P and two in the set B of comers on the boundary of the
hole are also of the close-type. They can be constructed and
labeled from local information during the graph search. The
triangles between two comers in P and one in B are of the

fa-type. We further have

Fact 11 ~] Every region of an order-k Voronoi diagram has

at least one close-type vertex.

That is, each comer in P belongs to at least one close-type

triangle. We thus have not only constructed (and labeled) all
close-type triangles of the lower convex hull of P u t? but
the whole set P as well. The lemma below implies that we
have nearly constructed the lower convex hull Ci.

Lemma 12 The edges of the close-type triangles of the

lower convex hull of P U B form a single connected compo-

nent.

Froofi Assume that there exists a comer c E P which is
not connected to some comer in 1?. This implies a closed
sequence of adjacent far-type triangles in Ci surrounding c.
Hence in the dual setting there is a cycle E of edges in

k- Vor({pl, . . . , Pi}) spanned by fro-type vertices. Recall
that such a far-type vertex v is defined by a subset T(v) c

{Pl ,. ... pi} of k + 1 sites, three of which defining the cir-
cumcircle and k – 2 lying within it. Now consider an edge
(v, v’) of E. Letthis edge bepartof the bisector of sitespand
q, so p, q E T(v) n T(v’). Since we deal with far-type ver-
tices, we have near(v, v’) = T(v)\ {p, q} = T(v’) \ {p, q},

which implies T(v) = T(v’). So all vertices within E are

defined by the same (k + I)-subset T. Consequently, the
cycle E will rdso appear in k- Vor(T). But ITI = k + 1 so
that k- Vor(T) is just the furthest-site Voronoi diagram of T

which is a tree. This is a contradiction. L!l

There is still a little problem with the computation of set P.

According to Lemma 6, the same comer maybe generated by
more than one destroyed edge. This was no problem in the
simple algorithm, since multiple comers were automatically
deleted by the convex-hull algorithm. Now, however, we
have to make sure that when considering two edges generat-
ing the same comer we get pointers to the same new object.
Fortunately, this can be taken care of easily during the graph

search, due to the following.

Lemma 13 The edges e of k-Vor({pl, pi-l}) ftil into

severat classes with different near(e). l’he destroyed edges

of each such class forma connected graph.

Prod Observe that classes change if and only if the edges
lie in different regions of k- Vor({pl,..., pi}). Within such
a region R, the edges of its corresponding class are part of
the closest-site Voronoi diagram of {pl, pi} \ near(R).

This part is well known to be connected. •I

We are left with the problem of filling and labeling some
not-yet triangulated holes of C~the boundaries of which are

single polygonal cycles. (In fact, it can be shown that the
projection of a hole on the zg-plane is convex.) It is thus
easy to form the convex hull of the comers in such a cycle in

148

linear time, using the algorithm by Clarkson and Shor [CS]
(but without the conflict graph) or by Guibas, Knuth, and
Sharir [GKS] (but without the point location part). Finally,
labeling the new edges is straightforward, by starting at the
boundary of each hole and exploiting the fact that two edge
labels of a triangle already imply the third.

Lemma 14 Ci can be constructed from Ci_l in time O(ni)

if a triangle of Ci -1 that is destroyed by pi is known.

It is rdso possible to speed up by a log-factor the rest of the

algorithm (i.e., the site location steps and the memory rear-
rangement) without affecting its optimal space complexity.
Since the linear-time construction of the lower convex hull
of P U B does not yield for free a point location structure
for its projection, we postprocess this triangulation using the

algorithm by Seidel [S2]. This takes expected time O(ni)

and allows us to locate the triangle containing a new site in
expected time O(log n). Similarly, we postprocess the cur-
rent lower convex hull Cj during the rearranging of memory
in expected time O(k(j – k)). This gives us

Theorem 15 The order-k Voronoi diagram of n sites in the

plane can be computed in expected time 0(k2(n – k) +

kn log2 n) and worst-case space O(k(n– k)) byareasonably

simple, randomized, incremental, on-line algorithm.

This complexity is optimal for a randomized incremental
algorithm if k ~ log2 n.

There is an additional feature that may us let prefer this

algorithm to the previous one. When computing the convex
hull for one of the holes using the afgorithm of [GKS], the
primitive operation is to check for two adjacent triangles
whether they form a convex or a concave angle in space. In
our case, the two triangles will be formed by four comers
lying on the boundary of a hole.

But the (yet to be filled in) triangles to appear in the hole

are all of the far-type. By the proof of Lemma 12 all their
corresponding vertices are thus defined by a fixed set T

of k + 1 sites, implying that the comers on the boundary
of the hole correspond to k-subsets of the form T \ {p}.

Without having to know T itself, we can easily determine
the ‘missing’ site p for every such comer on the boundary
from the labels of the edges along the boundary. If we do
this before starting to compute the convex hull for such a
hole, every primitive triangle test can be considered as a test
involving four sites. Furthermore, it is not difficult to verify
that this is just the standard primitive for computing Voronoi
diagrams in general: Given four sites, does the fourth site lie
within the circle spanned by the other three?

This implies that we do not need the coordinates of the
comers during the inse~ion step — all we need is the com-

binatorial structure of the lower convex hull plus the edges
labels. This makes this rdgorithm much more reliable with

respect to numerical issues. Of course, we still need the co-
ordinates for the point location step-but the z-coordinates
of comers are never used.

8 Deleting a Site

We promised in the Introduction that not only insertions but
also deletions of sites can be handled by our methods in a

simple and efficient way. Indeed, the surface U of triangles

on Ci getting destroyed by the deletion of a site Pj, for j < i.
can be identified analogously. It just consists of all triangles
whose corresponding circumcircles enclose Pj. A starting

triangle with this property can be obtained by finding some
edge that uses pj as a label. (By realizing labels as pointers
between edges and sites, this is easy to do.) Note that there
must exist such an edge. One can further collect during the
graph search in U all comers that will reappear.

Lemma 16 For each edge e in k-Vor({pl, pi}) that gets

totally or partially destroyed by the deletion of pj, a region

R of k-Vor({pl ,. ... Pi} \ {Pj }) will reappear. AH such
regions are created in this way. In particular, near(R) =

(near(e) \ {pj}) U {p, q}, where {p, q} is the label of e.

Proufi The argument is similar to that for Lemma 6. ❑

We are left with the problem of constructing and labeling the
lower convex hull of these comers. Clearly this can be done

analogously to the insertion step described in Section 4. By
the lemma below, also the linear-time method of Section 7

carries over.

Lemma 17 When deletingpj from k-Vor({pl, pi}), the

edges within the reconstructed star just are the edges within

the star constructed by inserting pj into the order-(k + 1)
Voronoi diagram of {pl, pi} \ {pj }.

ProM Arguments similar to those used in the proof of the
second part of Lemma 5 yield the assertion. ❑

We conclude:

Lemma 18 Letnjdenote the number of structural changes

in k-Vor({pl, pi}) causti @ tie delefioxt of Pj. Thm

Pj can be deleted from Ci in time O(nj log nj) by a very

simple algorithm, and in time U(nj) by a reasonably simple
algorithm.

9 Dynamic k-Nearest Neighbor Search

In the light of Lemma 4, we can also run our algorithms for
inserting and deleting sites in the primal space, by maintain-
ing the projection polyhedron poly({pl, ., ., pi }) rather than
its tiual object Ci. Of course, this can be done by exactly
the same atgorithm, just by interpreting some values in a
different way.

149

However, when we consider the current data structure not
as the lower convex hull Ci but as the order-k Voronoi dia-

gram, it would be more useful to implement the site location
step in a different fashion. In fact, we would like to be able

to iocate an arbitrary point in the diagram, thus giving us a
query structure for k-nearest neighbors queries. We do this
by modifying our algorithm, so that it not only maintains
the order-k Voronoi diagram of {PI, pi }, but the bottom-

vertex-triangulation of the diagram. For every region of the
diagram (which is a convex polygon) we choose the (lexico-
graphically) smallest vertex v and triangulate the region by
inserting edges between v and all vertices not adjacent to v.

The analysis of Section 2 then remains essentially true.
Now, the basic object to be considered in the analysis is

a bottom-vertex-triangle (bv-triangle for short) and not a
vertex of the diagram, but the probability that some fixed

bv-triangle is destroyed when removing a random site from
the diagram is still Q(k/i) when there are i sites in the
diagram. It follows that the expected number of bv-triangles
considered during the course of a randomized incremented
algorithm is 0(k2(n – k)) as well.

The site location step is now implemented by locat-
ing the new site pi in the bv-triangulation of the current
k-Vor({pr, . . . , Pi-I}). If pi lies in triangle A of this-trian-
gulation, then at least one of the vertices of A is destroyed
by the insertion of pi.

The location of an (arbitrary) point q in the bottom-vertex-
triangrrlation of k- Vor({pl, pi}) is done in essentirdly
the same fashion as before. Any destroyed bv-triangle is
marked as old and gets a pointer to a point location struc-
ture for the bv-triangulation of the new part of the dia-
gram. Again, the previous analysis holds, giving us an

O(nk2 +nk log2 n) algorithm for the computation of order-k
Voronoi diagrams which at the same time produces a point lo-
cation structure for the diagram with query time O(k log2 n).

(Note that this is not as bad as it seems, since such a query
would be used to retrieve the k nearest neighbors, so its out-

put size is k.) This is a generalization to order k of the point
location structure for closest-site Voronoi diagrams proposed
by Guibas, Knuth, and Sharir [GKS]. Again, we can use our
memory rearrangement scheme to reduce the complexity of

our data structure to O(k(n – k)). However, to really solve
nearest k neighbors-queries, we have to store the subset cor-
responding to each region of the diagram. If we do this
naively, the space requirement is O(k2(n – k)). This can
again be reduced to optimat O(k(n – k)) by an idea that we
are going to discuss below when having dealt with deletions.

In fact, we wish to give a dynamic algorithm for the main-
tenance of order-k Voronoi diagrams under (randomized)
sequences of insertions and deletions. We employ the model
of [Se]: We are given a base set U of sites in the plane, and

an (infinite) string 6 over the atphabet {+, –]. This string is

going to denote the sequence of insertions and deletions: +

denoting insertion and – denoting deletion. In this model,

the user is free to choose U and 6. Then, the algorithm will
do the following: It starts with a set SO= Oand goes through
stages 1,2,3, In stage i, the dh element of 6 is consid-
ered. If this is a +-sign, then Si is obtained from Si _ 1 by

adding a random site in U \ S’i-l. If the ith element is a
then Si is obtained by removing a random site in Sf-1.

~e gord is to maintain k-V~~(Si) during the course of this
algorithm.

By the techniques of [Se] it is easily shown that in our
case, the expected structural change in stage i is 0(k2).

Furthermore, that paper gives two techniques that can be

used to ensure that the point location step in our case takes
expected time O (k log2 n) even in the presence of deletions.
Since we can do updates in time linear in the size of the

structural change as soon aswe can locate a conflict for newly
inserted sites, the expected running time of our algorithm
is Cl(k* + k log2 n) per update. Our method of reducing
the memory requirement can still be used, giving optimrd
O(k(n – k) space where n is the maximum number of sites
ever present in Si at the same time, while the (amortized)
time per stage remains the same.

Finally, if we wish to use our structure to do k-nearest
neighbor queries, we have to identify the subset associated

with a region found by the point location step. If the k-

subsets of the regions defined by the nf sites in the current

set were stored explicitly, this would take space O(kzni).

For small values of k we may even contend ourselves with
that bound. The space drops to O(k(ni – k)) when the
following simple idea is used.

During an insertion or deIetion step, we augment the newly
constructed regions with some ‘critical’ sites in their k-

subsets. When inserting a site p, each such region R is

augmented with p. Hence, when proceeding from some re-
gion R’ to the region R during later point locations, p is the

unique site in near(R) \ near(R’). When deleting a site,
each new region R is augmented with all sites which appear
in the labels of the edges generating R (see Lemma 16). In

addition, each site p appearing in the label of such an edge is
associated with the index of the old region R’ lying not on p’s

side of that edge. Hence, when the point location proceeds
from R’ to R, we can identify p, which again is the unique

site in nearfR) \ near(R’).

We thus can collect a set of candidates for the k nearest
neighbors of a query point q during the process of locating
g, starting at the oldest diagram, k-VW-*, for whose regions

R we store near(R) in order to initialize the candidate set.
me final size of this set is k + t – 1 if t point locations have
been performed. It remains to single out the k sites closest
to q (which clearly are in this set) by sorting. Note that the
total time for reporting the k nearest neighbors is dominated
by the time for locating q.

Again, the space needed for storing all sets near(R) for
k- Vor” may be prohibitive as n, the current number of sites

in k- Vor”, typically is much larger than k after each rear-

150

rangement step. We would like to use only O(k(n – k))

space and to have access to each near(R) quickly. This can

be achieved by using persistent data structures [DSSTj or, in

order to retain simplicity, by doing the following after having
computed k- Vor”:

We partition k- VOT* into O(rr – k) connected domains of
O(k) regions each. For every domain, we choose one region
R and store near(R) with R. If the query point q falls into
some domain, we simply use graph search in this domain
and exploit the edge labels to determine from near(R), in
O(k log k) time, the k-subset of the region containing q. (A
partitioning into connected domains can easily be obtained

by taking any path visiting all O(k(n – k)) cells and cutting
it into pieces of length at most O(k). Then, the domains

would not necessarily be disjoint, but this is no problem for

this technique.)

What is obtained is a dynamic data structure capable
of handling insertions, deletions, and k-nearest neighbor
queries in a set of sites in the plane. This structure is emi-
nently practical to implement and will exhibit a satisfactory
expected performance when combined with the technique of
memory rearrangement.

10 Conclusions

It is an obvious question whether the methods presented in

this paper can be generalized, to higher dimensions or to

distance functions that are more general that the Euclidean.
In fact, Lemma 3 and Lemma 4 can be shown to hold in

arbitrary dimensions, and even for the more general class of
power diagrams. One reason why this class is important is
that the family of all k-sets of a finite point set (i.e., those

which can be separated from the set by some hyperplane)
can be represented by a power diagram in one dimension
lower [A2].

References

[AEswq

[AGSS]

[Al]

[A2]

P.K. Aganval, H. Edelsbrnnner, O. Schwamkopf,

E. Welzl. Euclidean minimum spanning trees and

bichmrnatic closest pairs. Proc. 6’h Ann. ACM Symp.

Computational Geometry (1990), 203-210.

A. Aggarwal, L.J. Guibaa, J. Saxe, P.W. Shor. A linear

time algorithm for computing the Voronoi diagram of a

convex polygon. Discrete Comput. Geome&y 4 (1989),

591-604.

F. Aurenhammer. A new duality result concerning

Voronoi diagrams. Discrete Comput. Geomehy 5

(1990), 243-254.

F. Aurenhammer. Power diagrams: properties, algo-

rithms, and applications. SIAM J. Computing 16

(1987), 78-96.

[AS] F. Aurenhammer, O. Schwarzkopf. A Simple On-

[BDSTY]

[BDT]

[CEGSS]

[c]

[Cs]

~SST]

El

[GKS]

l?-]

[MMo]

[M

[Se]

[s1]

[s2]

WI

line Randomized Incremental Alg%hm for Comput-

ing Higher Order Voronoi Diagrams. To appear as a

Technical Repo~ Freie UniversitSt Berlin, 1991.

J.-D. Boissonna~ O. Devillers, R. Schom M. Teillaud,

M. Yvinec. Applications of random sampling to on-

line algorithms in computational geometry. Technical

repo~ INRIA, 1990.

J.-D. BoissonnaL O. Devillers, M. Teillaud. A ran-

domized incremental algorithm for constructing higher

order Voronoi diagrams. Algorithmic, to be published.

B. Chazelle, H. Edelsbrnnner, L.J. Guibas, M. Sharir, J.

Snoeyink. Computing a face in an arrangement of line

segments. 2nd Ann. ACM-SIAM Symp. SODA, 1991,

to be presented.

K.L. ClarkSon. New applications of random sampling in

computational geometry. Discrete Comput. Geometry

2 (1987), 195-222.

K.L. ClarkSon, P.W. Shor. Applications of random sam-

pling in computational geometry, II. Discrete Comput.

Geometry 4 (1989), 387-421.

J.R. Driscoll, N. Samak, D.D. Sleator, R.E. Tarjan.

Making data structures persistent. J. Comput. System

Sci. 38 (1989), 86-124.

H. Edelsbrrrnner. Algorithms in Combinatorial Geom-

ehy. Springer, Berlin - Heidelberg, 1987.

L.J. Guibaa, D.E. Knuth, M. Sharir. Randomized irrcre-

mental construction of Delaunay and Voronoi diagrams.

Springer LNCS 443 (1990), 414-431.

D.T. Lee. On k-nearest neighbor Voronoi diagrams in

the plane. IEEE Trans. Computers C-3 1 (1982), 478-

487.

K. Mehlhom, S. Meiser, C. d’Dtinlaing. On the con-

struction of abs&act Voronoi diagrams. Discrete Com-

put Geometry, to be published.

K. Mrrhnuley. On levels in arrangement@ and Voronoi

diagrams. Discrete Comput. Geome@y, to be published.

O. Schwarzkopf. Randomized Incremental Algorithms

in a Dynamic Setting. To appear as a Technical Report,

Freie Universitiit Berlin, 1991.

R. Seidel. Linear programming and convex hulls made

easy. Pmt. 6fh Ann. ACM Symp. Computational Ge-

ometry (1990), 211-215.

R. Seidel. A simple and fast incremental randomized al-

gorithm for compnting trapezoidal decompositions and

for triangulating polygons. Technical Report B 90+7,

Freie Universitit Berlin, October 1990.

E. Weizl. Constructing smallest enclosing disks (balls

and ellipsoids). To appear as a Technical Report, Freie

Universitiit Berlin, 1991.

151

