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Abstract

Given a set P of n points in the plane and a set S of
non-crossing line segments whose endpoints are in P , let
CDT (P, S) be the constrained Delaunay triangulation of
P with respect to S. Given any two visible points p, q ∈ P ,
we show that there exists a path from p to q in CDT (P, S),
denoted SPCDT (p, q), such that every edge in the path has
length at most |pq| and the ratio |SPCDT (p, q)|/|pq| is at

most 4π
√

3
9 (≈ 2.42), thereby improving on the previously

known bound of π(1+
√

5)
2 (≈ 5.08).

Key words: stretch factor, spanning ratio, spanner, con-
strained Delaunay triangulation, computational geometry.

1 Introduction

The spanning properties of various geometric graphs
has been studied extensively in the literature (see Eppstein
[4], Knauer and Gudmundsson [8], Narasimhan and Smid
[10], Smid [11] for several surveys on the topic). In this ar-
ticle, we concentrate on the spanning ratio of the Delaunay
triangulation in the constrained setting.

Before we can state our results precisely, we outline what
we mean by the constrained setting and how the spanning
ratio of a geometric graph is measured in this setting. We
define a geometric graph to be a graph whose vertex set is
a set of points in the plane, and whose edge set is a set of
line segments joining pairs of vertices. Let P denote a set
of n points in the plane. For simplicity, we assume that
all point sets are in general position, i.e. no three points
are collinear and no four are cocircular. Let S be a set of
non-crossing line segments whose endpoints are in P . Two

∗Research supported in part by NSERC.

points p and q of P are visible with respect to S provided
the segment pq does not properly intersect any segment of
S. Two line segments intersect properly if they share a com-
mon interior point. The visibility graph of P constrained to
S, denoted Vis(P, S), is a geometric graph whose vertex
set is P and whose edge set contains S as well as one edge
for each visible pair of vertices. A spanning subgraph of
Vis(P, S) whose edge set contains S is a geometric graph
constrained to S. In such a graph, the set S is referred to as
the constrained edges and all other edges are referred to as
unconstrained edges or visibility edges.

The graphs that we consider are weighted. The weight
assigned to each edge [pq] is the Euclidean distance between
p and q. This weighting scheme allows us to define the
notion of a constrained t-spanner.

Figure 1. The visibility graph Vis(P, S) where
segments of S are shown in bold.

Definition 1.1 Let t ≥ 1 be a real number. A constrained
geometric graph G(P, S) is a constrained t-spanner pro-
vided that for every visibility edge [pq] in Vis(P, S), the
length of the shortest path between p and q in G(P, S) is
at most t times the Euclidean distance between p and q.
We refer to t as the spanning ratio or the stretch factor of
G(P, S).

Note that if G(P, S) is a constrained t-spanner, then for
every pair of points p, q in P (not just visible edges), the



shortest path from p to q in G(P, S) is at most t times the
shortest path from p to q in Vis(P, S).

The Delaunay triangulation of P constrained to S, de-
noted CDT (P, S) is a triangulation of P where the edges
have the following properties: (i) every segment in S is
an edge of CDT (P, S), and (ii) all visible pairs of points
p, q ∈ P form an edge of CDT (P, S) provided that there
exists a circle with p and q on its boundary that contains
no other point of P visible from both p and q in its inte-
rior. The constrained Delaunay triangulation was first stud-
ied by Lee [9] who called it a generalized Delaunay trian-
gulation. The term constrained Delaunay triangulation was
coined by Chew [2]. Chew [2] and Wang and Schubert [12]
independently showed that CDT (P, S) can be computed in
O(n log n) time.

Recently, several researchers noted that the technique
of Dobkin et al. [3] used to prove a spanning ratio of
π(1+

√
5)

2 (≈ 5.08) for the Delaunay triangulation can be
trivially extended to the constrained setting (see for ex-
ample Klein et al. [7] or Karavelas [5]). Currently, the
best known spanning ratio for the Delaunay triangulation
is 2π

3 cos(π/6) = 4π
√

3
9 (≈ 2.42) by Keil and Gutwin [6]. The

proof in Keil and Gutwin [6] cannot be trivially extended to
the constrained setting. Our main result is the following:

Theorem 1.1 Let P be a set of points in the plane and let S
be a set of non-crossing line segments with endpoints in P .
Let [pq] be a visibility edge in Vis(P, S). There is a path

from p to q in CDT (P, S) whose length is at most 4π
√

3
9 |pq|

and each edge in the path has length at most |pq|.

In the unconstrained setting, the property of edge lengths
in Theorem 1.1 was shown by Bose et al. [1]. This prop-
erty has implications in the area of wireless networks. The
standard graph used to model adhoc wireless networks is
the unit disk graph (UDG). In the UDG, the vertex set is
a set of points in the plane and two vertices are connected
by an edge if the distance between two vertices is at most
a given unit. The given unit usually represents the distance
that wireless devices can transmit. The implication in the
area of wireless networks is summarized in the following
corollary. Given a constant d > 0 and a weighted graph
G, let Gd denote the spanning subgraph with all edges of G
whose weight is at most d.

Corollary 1.1 Let P be a set of points in the plane and let
S be a set of non-crossing line segments with endpoints
in P . Let d > 0 be a given constant. Provided that
Visd(P, S) is connected, CDT d(P, S) is a 4π

√
3

9 -spanner
of Visd(P, S). That is, for every edge [pq] in Visd(P, S),

there is a path from p to q in CDT d(P, S) whose length is

at most 4π
√

3
9 |pq|.

2 Spanning Ratio of the Constrained Delau-
nay Triangulation

In this section, we prove our main result. Our proof is
by induction and we start by proving a lemma that is crucial
for our inductive step. Before stating the lemma, we outline
some of the terminology used. For the lemma below, all
edges [pq] will be directed edges from p to q.

Definition 2.1 A circle with center m is a right-empty cir-
cle with respect to [pq] provided that it has p and q on its
boundary and no other point of P visible from both p and
q in its interior to the right of [pq]. The spanning-angle of
this right-empty circle, denoted θ(p, q), is the angle ∠qmp
(all angles are taken in counter-clockwise direction). The
minimum spanning-angle of p and q with respect to P , de-
noted θM (p, q), is the smallest spanning-angle taken over
all right-empty circles with respect to [pq]. The circle with
minimum spanning-angle is denoted RE (p, q). See Figure
2.

p

q

m

θ(p, q)

Figure 2. Illustration of Definition 2.1.

Lemma 2.1 Let P be a set of n points in the plane, S be a
set of non-crossing line segments with endpoints in P and
[pq] be a visibility edge in Vis(P, S). If there is a right-
empty circle of segment [pq] with radius r, then there exists
a path in CDT (P, S) from p to q whose length is at most
rθ(p, q) and every edge in that path has length at most |pq|.

Proof: If [pq] is an edge of the convex hull of P , then it
is also an edge of CDT (P, S), thus the lemma holds in this



case. So for the remainder of the proof, we assume that [pq]
is not a convex hull edge.

Since there are O(n2) pairs of visible points, there are
O(n2) minimum spanning-angles. We proceed by induc-
tion on the rank of the minimum spanning-angles (ties are
broken arbitrarily).

Base Case: θM (p, q) has lowest rank. Let RE (p, q) be
the right-empty circle whose minimum spanning-angle is
smallest over all minimum spanning-angles. We show that
[pq] is an edge of CDT (P, S). Suppose that [pq] is not
an edge of CDT (P, S). This implies that there must be
at least one point of P in RE (p, q) to the left of segment
[pq] that is visible to both p and q. Let t ∈ P be such
a point in RE (p, q) such that the circle through p, t, q is
RE(q, p). Since there is at least one point to the left of [pq]
in RE (p, q) visible to both p and q, the portion of RE (q, p)
to the right of [qp] must be strictly contained in the portion
of RE (p, q) to the left of [pq] (see Figure 3). This implies
that no point of P visible to both p and q is contained strictly
inside RE (p, q) ∩ RE (q, p).

p

qt

m
m1

C1
θM (p, q)

θ(p, t)

RE(p, q)

RE(q, p)

Figure 3. Illustrating the base case (RE (p, q) ∩
RE (q, p) is highlighted).

Consider the circle C1 through p and t whose center lies
on the segment pm. Since RE (p, q) ∩ RE (q, p) does not
contain any points visible to both p and q, no point of P
visible to both p and t lies in C1 to the right of [pt]. Thus,
C1 is a right-empty circle with spanning angle θ(p, t). Now,
since t is strictly to the left of [pq] (otherwise we violate the
fact that [pq] is a visibility edge as well as the general posi-
tion assumption), we have that θ(p, t) < θM (p, q), which is
a contradiction.

Inductive Hypothesis: For any visibility edge [pq] whose
minimum spanning-angle has rank at most k ≥ 1, there

is a path SPCDT (p, q) in CDT (P, S) with length at most
rθM (p, q) where every edge on that path has length at most
|pq| and r is the radius of a right-empty circle with respect
to [pq].

p q
t

m1

m
m2

m3

a1
a2

C1

C2

C3

RE(p, q)

Figure 4. Illustrating Case 1.

Inductive Step: Consider a visibility edge [pq] whose min-
imum spanning-angle has rank k + 1. If [pq] is an edge of
CDT (P, S), then we are done, therefore, assume that [pq] is
not an edge of CDT (P, S). Let r be the radius of RE (p, q).
There must be at least one point of P in RE (p, q) to the left
of [pq] that is visible to both p and q. As in the base case,
let t ∈ P be such a point in RE(p, q) such that the circle
through p, t, q is RE (q, p).

Let C1 be the circle through p and t whose center lies
on the segment pm. We denote the center and radius of C1

by m1 and r1, respectively. Similarly, let C2 be the circle
through t and q whose center lies on the segment qm. We
denote the center and radius of C2 by m2 and r2, respec-
tively. By our choice of t, C1 is a right-empty circle for [pt]
and we denote its spanning angle by θ1(p, t). Similarly, C2

is a right-empty circle for [tq] with spanning angle θ2(t, q).

Consider the two intersection points between C1 and
[pq]. One of these intersection points is p. Denote the other
one by a1. Similarly, let a2 be the intersection point be-
tween C2 and [pq] that is not equal to q. If |pa1| > |pa2|
then the line through m1 and a1 and the line through m2

and a2 intersect at a point denoted m3. Let C3 be the circle
through a1 and a2 centered at m3. Denote the radius of C3

by r3.

Observe that the following four triangles are all similar
isosceles triangles with two equal base angles, which we
denote by φ: �(p, m, q), �(p, m1, a1), �(a2, m2, q), and



�(a2, m3, a1).

We consider the cases based on the spanning angle
θM (p, q) of RE (p, q).

Case 1: 0 < θM (p, q) ≤ π. (see Figure 4.)

In this case, notice that when the spanning angle is at
most π, we have that |pa1| > |pa2|. As in the base case,
note that both θ1(p, t) and θ2(t, q) are strictly less than
θM (p, q) by construction. Similarly, the both [pt] and [tq]
have length at most [pq] since t lies in the circle with p
and q as diameter. Therefore, by applying the inductive
hypothesis on [pt] and [tq], we have that SPCDT (p, t) ≤
r1θ1(p, t) and SPCDT (t, q) ≤ r2θ2(t, q), respectively. Let
SPCDT (p, q) be the concatenation of SPCDT (p, t) and
SPCDT (t, q). Each edge on SPCDT (p, q) has length at
most |pq| by induction. We now bound its total length:

|SPCDT (p, q)| ≤ |SPCDT (p, t)| + |SPCDT (t, q)|
≤ r1θ1(p, t) + r2θ2(t, q)
= r1θM (p, q) + r2θM (p, q) −

(r1(θM (p, q) − θ1(p, t)) +
r2(θM (p, q) − θ2(t, q))).

Observe that

1. The length of the arc of C3 from a2 to a1 in clockwise
direction is equal to r3θM (p, q) by construction.

2. The length of the arc of C1 from t to a1 in clockwise
direction is equal to r1(θM (p, q) − θ1(p, t)).

3. The length of the arc of C2 from a2 to t in clockwise
direction is equal to r2(θM (p, q) − θ2(t, q)).

Since C3 is contained in C1 ∩ C2, by convexity we have

r1(θM (p, q) − θ1(p, t)) + r2(θM (p, q) − θ2(t, q))
≥ r3θM (p, q)

Hence,

|SPCDT (p, q)| ≤ (r1 + r2 − r3)θM (p, q)

=
( |pa1|

2 cosφ
+

|a2q|
2 cosφ

− |a2a1|
2 cosφ

)
θM (p, q)

=
|pq|

2 cosφ
θM (p, q)

= rθM (p, q).

Case 2: π < θM (p, q) < 2π and there is a point in
RE (p, q) to the left of [pq] visible to both p and q that is
also contained in the circle with p and q as diameter (see
Figure 5. Circle with p and q as diameter is drawn with
dashed boundary.)

p

q

t

m

m1

C1

a1 a2

m2

C2
θM (p, q)

θ1(p, t) θ2(t, q)

RE(p, q)

Figure 5. Illustrating Case 2 with |pa1| < |pa2|.

Suppose that |pa1| < |pa2|. We construct SPCDT (p, q)
by concatenating SPCDT (p, t) with SPCDT (t, q). Since
both θ1(p, t) and θ2(t, q) are strictly less than θM (p, q) by
construction, we can apply the inductive hypothesis on [pt]
and [tq].

Thus, we have

|SPCDT (p, q)| ≤ |SPCDT (p, t)| + |SPCDT (t, q)|
≤ r1θM (p, t) + r2θM (t, q)
≤ (r1 + r2)θM (p, q)

Since |pa1| < |pa2|, we have that [pa1]∩[a2q] = ∅. This
means that |pa1| + |a2q| < |pq|. Thus, we have:

|SPCDT (p, q)| ≤ (r1 + r2)θM (p, q)

=
( |pa1|

2 cosφ
+

|a2q|
2 cosφ

)
θM (p, q)

≤ |pq|
2 cosφ

θM (p, q)

= rθM (p, q).

If |pa1| > |pa2| then the argument given in Case 1 ap-
plies.



Finally, since t is inside the circle with p and q as diam-
eter, we have that all edges in SPCDT (p, q) have length at
most |pq|.
Case 3: π < θM (p, q) < 2π and there is no point in
RE(p, q) to the left of [pq] visible to both p and q that is
contained in the circle with p and q as diameter.

Since the circle with p and q as diameter does not contain
any points to the left of [pq], this means that θM (q, p) < π.
This implies that the rank of θM (q, p) is less than the rank
of θM (p, q). Since the radius of RE (q, p) is smaller than
r (the radius of RE (p, q)), by the inductive hypothesis, we
have the following:

|SPCDT (p, q)| = |SPCDT (q, p)| ≤ rθM (q, p)
≤ rθM (p, q)

We now use Lemma 2.1 to prove our main result.

Proof of Theorem 1.1:

Without loss of generality assume that p and q lie on
a horizontal line L with p left of q. Let s be a point on
L to the right of p. Let Cs

1(Cs
2) be the circle that passes

through p and s with center os
1(o

s
2) above (below) L such

that the angles ∠spos
1(∠os

2ps) and ∠os
1sp(∠psos

2) equal π
6 .

Let Lune(p, s) be the intersection of the interiors of Cs
1

and Cs
2 . See Figure 6. If no points of P visible from p

lie inside Lune(p, q), then Cq
1 is empty below L. There-

fore, Cq
1 is a right-empty circle and Lemma 2.1 implies that

SPCDT (p, q) ≤ rq
1θ

q
1 where rq

1 is the radius of Cq
1 and θq

1 is
the spanning-angle. We have θq

1 = 2π − (π − 2(π
6 )) = 4π

3

and rq
1 = |pq|

2cos( π
6 ) , thus SPCDT (p, q) ≤ 4π

√
3

9 |pq|. Also,

Lemma 2.1 guarantees that all edges in SPCDT (p, q) have
length at most |pq|.

It remains to consider the case where there exists a point
of P inside Lune(p, q) that is visible from p. Fix s to
be the rightmost point such that Lune(p, s) contains no
point of P visible from p. Thus there exists a point t of
P on the boundary of Lune(p, s) that is visible from p and
Lune(p, s) is contained in Lune(p, q). Without loss of gen-
erality we may assume that t lies above L. See Figure 7. Let
θ be angle ∠spt. Let Ct be the circle through p and t whose
center ot lies on the line through p and os

1. By construction,
Ct is a right-empty circle for [pt]. Let r = |pot| be the
radius of Ct and let α be its spanning-angle.

If t lies below the line through p and ot, then as angle
∠spot is π

6 we know that angle ∠tpot is π
6 − θ, thus the

p s q
π/6

Lune(p, s)

θs
1 = 4π/3

Cs
1

os
1

os
2

Cs
2

Figure 6. Definition of Lune(p, s)

lower angle ∠pott inside the triangle ∆pott is π − 2(π
6 −

θ) = 2π
3 + 2θ and α = 2π − (2π

3 + 2θ) = 4π
3 − 2θ. Similar

calculations show that α remains equal to 4π
3 − 2θ if t lies

on or above the line through p and ot.

To determine a value for r we again first assume that t
lies below the line through p and ot. We begin by using the
sine law to determine |pt|. Since t is on Lune(p, s) we have
that angle ∠pts is 2π

3 . Thus |pt|
sin( π

3 −θ) = |ps|
sin( 2π

3 )
. Thus

|pt| = |ps| sin( π
3 −θ)

sin( 2π
3 )

. Again using the sine law

|pt|
sin(2π

3 + 2θ)
=

r

sin(π
6 − θ)

and

r = |pt| sin(π
6 − θ)

sin(2π
3 + 2θ)

= |ps| sin(π
3 − θ)sin(π

6 − θ)
sin(2π

3 )2sin(π
3 + θ)cos(π

3 + θ)

= |ps| sin(π
3 − θ)

2sin(2π
3 )sin(π

3 + θ)

Again the value of r does not change if t lies on or above
the line through p and ot.



p

t

s q
π/6

2π/3
α

r

ot

θ

Figure 7. t is visible from p

p

t

s q

Figure 8. The path from t to q in Vis(P, S) is
no longer than |ts| + |sq|

We now proceed to prove the theorem by induction on
the rank of |pq| amongst visibility edges in P . If p and q
are the two closest points in P , the Lune(p, q) is empty
and by Lemma 2.1 SPCDT (p, q) ≤ 4π

√
3

9 and each edge on
SPCDT (p, q) has length at most |pq|.

As an inductive step consider the ith closest visible pair p
and q and assume that for all closer pairs the theorem holds.
We know

SPCDT (p, q) ≤ SPCDT (p, t) + SPCDT (t, q)

We know that circle Ct through p and t is empty of points
visible from p below the line through p and t. Thus by
Lemma 2.1

SPCDT (p, t) ≤ αr = |ps| (
2π
3 − θ)sin(π

3 − θ)
sin(2π

3 )sin(π
3 + θ)

It remains to bound SPCDT (t, q). Since Lune(p, s) is
empty of points visible from p and since q is visible from p,
no edge of S intersects segment ts. Also since p is visible
from q, no edge of S intersects segment sq. Thus either t is

visible to q or there exists a path from t to q along the bound-
ary of the convex hull of the points of P in triangle ∆tsq
whose length is less than |ts| + |sq| by convexity. We have
|sq| = |pq| − |ps| and by the sine law |ts| = |ps| sin(θ)

sin( 2π
3 )

.

To prove the theorem we must show that

SPCDT (p, q) ≤ SPCDT (p, t)+SPCDT (t, q) ≤ 4π
√

3
9

|pq|

In particular, using the inductive assumption on the path
from t to q we must show that

SPCDT (p, q) ≤ αr +
4π

√
3

9
[|ts| + |sq|] ≤ 4π

√
3

9
|pq|

Thus it suffices to show that

αr ≤ 4π
√

3
9

(|pq| − |ts| − |sq|)

or
αr

|pq| − |ts| − |sq| ≤
4π

√
3

9

The left hand side of this inequality is equal to

αr

|pq| − |ts| − |sq|

=
|ps|(2π

3 − θ)sin(π
3 − θ)

sin(2π
3 )sin(π

3 + θ)(|ps| + |ps|sin(θ)

sin( 2π
3 )

)

=
(2π

3 − θ)sin(π
3 − θ)

sin(2π
3 )sin(π

3 + θ)(1 − sin(θ)

sin( 2π
3 )

)

=
(2π

3 − θ)sin(π
3 − θ)

sin(π
3 + θ)(sin(2π

3 ) − sin(θ))
def= f(θ)

It remains to show that f(θ) ≤ 4π
√

3
9 when 0 ≤ θ < π

3 .
Inside the range 0 ≤ θ < π

3 , f(θ) has one local minimum
and no local maxima, thus f(θ) achieves its largest value
when θ = 0 or when θ approaches π

3 . If θ = 0,

f(θ) =
2π
3 sin(π

3 )
sin(π

3 )sin(2π
3 )

=
2π

3sin(2π
3 )

=
4π

√
3

9

To evaluate limθ→π
3

f(θ) we use l’Hopital’s rule.

f(θ) =
(2π

3 − θ) sin(π
3 − θ)

sin(π
3 + θ)(sin(2π

3 ) − sin θ)
def=

g(θ)
h(θ)



With this definition, we can evaluate the limit as θ ap-
proaches π

3 .

lim
θ→π

3

f(θ) = lim
θ→π

3

g(θ)
h(θ)

= lim
θ→π

3

g′(θ)
h′(θ)

=
−(π

3 ) cos(0) − sin(0)
− sin(2π

3 ) cos π
3 + (sin(2π

3 ) − sin π
3 ) cos(2π

3 )

=
−π

3

− 1
2 sin(2π

3 )
=

2π

3 sin π
3

=
4π

√
3

9

Since neither [pt] nor [tq] is longer than [pq], each edge
in SPCDT (p, t) and SPCDT (t, q) has size at most |pq| by
induction. We conclude that every edge on SPCDT (p, q)
has length at most |pq|.

3 Conclusions

Given a set P of points in the plane and a set S of non-
crossing line segments with endpoints in P , we have shown
that there is a path from p to q in CDT (P, S) (where [pq]
is an edge in Vis(P, S)) whose length is at most 4π

√
3

9 |pq|
and each edge in the path has length at most |pq|.

By putting points close to the boundary of a circle, one
can show that the lower bound on the spanning ratio can
approach π

2 . Closing the gap between our upper bound

of 4π
√

3
9 and the lower bound of π

2 remains the main open
problem in this area.
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