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Abstract

The paper presents a simple method for extracting global
medial axes in a stable manner. A new index, called the nor-
malized boundary distance, is introduced in order to mea-
sure the degree of importance of a point on the conventional
medial axis. This index has a remarkable property that the
set of points whose index values are greater than an arbi-
trarily chosen threshold is topologically equivalent to the
original figure. In the proposed method, first the boundary
of a given figure is replaced with a dense set of points, next
the Voronoi diagram for these points is constructed, then
the approximation of the medial axis is extracted from the
Voronoi diagram, and finally the global medial axis is con-
structed by pruning the branches according to the new in-
dex. The performance of the proposed method is also shown
by examples.

1. Introduction

The medial axis is one of the most basic structures for
representing features of two-dimensional figures [6], but it
is not easy to extract the medial axis in a stable manner. The
main reason for the difficulty comes from a gap between
what we want to mean by the “medial axis” and what is
actually defined in a mathematical way.

Conceptually, we want to mean by the “medial axis” a
skeletal structure that represents a global feature of a fig-
ure just like the skeletons of a human body and the stroke
information of hand-written character images. Therefore,
the medial axis must not be disturbed by small noises of the
figure.

Mathematically, on the other hand, the medial axis is de-
fined as the set of points that are inside the figure and that
are the centers of circles touching the boundary of the figure
at two or more points. Therefore, the medial axis according
to this definition is sensitive to small change of the bound-
ary of the figure. Hence we are interested in extracting only
a global structure of the medial axis that are independent
from small noises of the boundary of the figure.

There have been many attempts to extract a global struc-
ture of the medial axes stably. The basic methods are classi-
fied into three groups: the use of thinning operations for dig-
ital pictures [10, 11, 14], the use of finite difference equa-
tions for simulation of fire expansion [12, 17], and the use
of Voronoi diagram [1, 4, 15]. These methods are com-
bined with techniques for improving the stability. They in-
clude the smoothing techniques [5] and more complicated
processing [3, 9, 16, 18], which we will review in the next
section.

However, there is no perfect method. The previous meth-
ods require either high computational cost for smoothing or
complicated structures of processing.

This paper presents a new method for extracting a global
structure of the medial axes quickly and stably. We intro-
duce an index of strength for each point on the mathemati-
cally defined medial axis. The proposed index has the fol-
lowing good properties. First, a larger value of this index
implies that the point represents a more global nature of
the figure. Secondly, for any threshold value, if we collect
all the points whose indices are greater than the threshold,
we get a skeleton which is topologically equivalent to the
original figure. Therefore, our method does not require any
preprocessing for smoothing, but still can extract the global
structure of the medial axis in a stable way.

The organization of the paper is as follows. In section



2 we will see how unstable the mathematically defined me-
dial axis is, and then will briefly review existing methods
for medial axis extraction. In section 3 we will define an
index of strength, which we call a “normalized boundary
distance”, and in section 4 we will prove basic properties
of the normalized boundary distance. In section 5, we will
propose a new method for extracting the medial axis for a
simply connected figure, and in section 6 we will extend the
measure as well as the algorithm for general figures. Finally
in section 7, we will give a concluding remark together with
future work.

2. Instability of the Medial Axis and a Global
Medial Axis

Let A be a bounded closed set of points in the plane.
For a while we assume that A is simply connected (we will
remove this assumption later). We will call A a figure. The
medial axis of the figure A is defined as the set of centers of
circles that are inside A and that touch the boundary of A
at two or more points. More formally, we can express this
definition in the following way.

Let us denote the boundary of A by 0A. Let ¢(x,y;r)
denote the circle centered at (z, y) with radius r. For set X,
we denote the number of elements of X by |X|. We define
M(A) as

M(A) ={(z,y) | c(z,y;7) C A, |c(z,y;r) NIA| > 2},
ey
and call M (A) the medial axis of A. For each point (z,y) €
M (A), the circle satisfying c¢(z,y;r) C A and |e(x,y;7) N
OA| > 2 is called the touching circle centered at (x, y).

Fig. 1(a) shows an example of the medial axis; the thick
lines represent the boundary of a figure wheares the thin
lines represent the medial axis. In this example, the medial
axis represents the global structure of the figure in a simple
manner.

Fig. 1(b), on the other hand, shows how unstable the me-
dial axis is. The figure in Fig. 1(b) has small disturbances
on its boundary, and the associated medial axis has many
branches due to these disturbances. As shown in this ex-
ample, the medial axis is sensitive to small deviation of the
boundary of the figure.

What we want to extract is a basic part of the medial axis
that represents a global structure of the figure. It is actually
an important open problem to find that kind of a basic part
of the medial axis in a stable way.

In this paper, let us call this basic part of the medial axis
the “global medial axis”. Note that the term “global medial
axis” is not defined clearly; instead it just represents what
we want to extract from the figure.

However, we can say that the global medial axis should
satisfy at least the following properties.

(a)

\J

Figure 1. Medial axis: (a) simple figure; (b)
figure with noises on the boundary.

Property 1. It should not be affected by small distur-
bance of the boundary of the figure.

Property 2. It should be invariant under scale transfor-
mation, i.e., expansion and shrinkage.

Property 3. It should be invariant under translations and
rotations of the figures.

Property 4.
nected.

It should be connected if the figure is con-

Property 5. It should have a hierarchical structure in the
sense that as we neglect small deviation of the boundary
more and more, the associated global medial axis becomes
more and more simple.

Many methods have already been proposed in order to
attain these properties. The following are typical methods.

(A) Smoothing of the boundary [5]
In this method, the original figure A is changed to an-



other figure A’ by removing high frequency components of
the boundary of A using low-pass filters, and then the me-
dial axis M (A") of A’ is constructed. This method satisfies
Properties 1, 2, 3 and 4, but does not satisfy Property 5. Ac-
tually this method can generate new branches that do not
exist in the original medial axis [18]. Moreover, in order to
obtain the hierarchical structure, we have to apply low-pass
filters with different sizes repeatedly, and hence have to pay
high computational cost.

(B) Pruning by shock-wave velocity [6, 14]

In this method, they suppose that wave propagates from
the boundary towards inside of the figure in a constant
speed. Then, two different wave fronts meet at the medial
axis, and generate shock wave. The speed of the shock wave
can be regarded as the degree of importance of the medial
axis. Hence, they collect shock waves with high speed and
regard it as a global medial axis. However, in this method,
the extracted structure does not satisfy Property 4. In order
to guarantee the connectedness, they require complicated
pre- and post-processing.

(C) Pruning by touching-circle radii [4, 9]

For each branch of the medial axis, the maximum radius
of the touching circles centered on this branch is considered
as the degree of importance of the branch. We can prune the
branches according to this degree of importance. Branches
caused by small disturbance of the boundary curve can ac-
tually been removed by this pruning. However, the structure
extracted by this method does not satisfy Property 4; if a fig-
ure includes a bottle-neck shape, the pruned axis becomes
disconnected. Hence, this method also requires complicated
post-processing to guarantee the connectedness.

(D) Pruning by the boundary-radius ratio [3, 15]

In this method, the ratio of the radius of the touching
circle to the length of the boundary curve between the two
contact points is considered as the degree of importance of
the point on the medial axis, and the medial axis is pruned
by this ratio. The resulting structure does not satisfy Prop-
erty 4, either, and hence requires heuristic post-processing.

(E) Pruning by the distance from the smallest touching
circle [18]

For each point on the medial axis, the distance from the
smallest touching circle on the same branch is considered
as the degree of importance of that point, and the medial
axis is pruned. The resulting structure of this method does
not satisfy Property 4, and hence heuristic post-processing
is required, too.

As we have seen above, many methods have been pro-
posed for trying to find the global medial axis. However,
they require high computational cost in pre-processing for
smoothing in various scales, or requires complicated heuris-
tic post-processing for guaranteeing the connectedness of

the resulting structure.

In the next section we will define another index to mea-
sure the degree of importance of a point on the medial axis.
This index is remarkable in the sense that pruning the me-
dial axis by this index results in the structure that satisfies all
the five properties; in particular it guarantees the connect-
edness of the structure. Therefore, pruning by this index,
we can extract desired global medial axis without expensive
pre-processing or heuristic post-processing.

3. Normalized Boundary Distance

Let A be a figure. Since A is assumed to be simply con-
nected, the boundary 0 A of A forms a single closed curve.
Let us denote the length of this boundary by L.

Let P be an arbitrary point on the medial axis M (A),
and let ¢(P) be the touching circle centered at P. From the
definition of the medial axis, we have |c(P) N 04| > 2,
and hence the boundary 9 A is partitioned into two or more
pieces by the contact points, i.e., the points in ¢(P) N 0 A.
Among them, the second longest piece is called the support
of P.

In most cases the touching circle ¢(P) has exactly two
contact points. In those cases the support means the shorter
boundary path between the two contact points.

At some point P € M (A), on the other hand, three or
more branches of the medial axis meet together. Then, the
touching circle ¢(P) has three or more contact points, and
the boundary of A is partitioned into the same number of
pieces as the number of branches incident to P. The sup-
port of P corresponds to the second largest boundary piece
instead of the shortest piece.

Let [(P) be the length of the support of P. We define 3(P)
by

and call 5(P) the normalized boundary distance. Note that
[(P) < L/2, and hence we have

0<p(P) <1 3)

We consider that §(P) represents the degree of impor-

tance of the point P, and prune the medial axis according to

B(P). In other words, for any T" such that 0 < T' < 1, we
define

Mr(A) ={P | P e M(A),5(P) > T}, ©)

and call My (A) the global medial axis with respect to the
threshold 7'



4. Monotone Property of the Normalized
Boundary Distance

Since the figure A is simply connected, the associated
medial axis M (A) is a tree in a graph-theoretic sense. What
we want to guarantee is that for any 7" such that 0 < T' <
1, the associated global medial axis My (A) is also a tree.
Actually we can prove the next theorem.

Theorem 1.  If A is simply connected, M7 (A) is a tree
in a graph-theoretic sense for any 7" such that 0 < 7' < 1.

To prove this theorem, we need some preparation. Sup-
pose that P € M (A), and that () is one of the contact points
of the touching circle ¢(P). The line segment PQ is called a
leg of P, and Q is called a foot of P. | 1 We denote by d(P, Q)
the Euclidean distance between two points P and Q.

Lemma 1. Suppose that P,P’ € M(A) are two distinct
points. Let Q be a foot of P, and Q' be a foot of P’. If
Q # Q', the two legs PQ and P’Q)’ do not intersect.

Proof. Assume that PQ and P’()’ intersect. Since the four
points P, P’, Q, Q' are mutually distinct, they form a convex
quadrilateral, and PQ and P'Q’ are its diagonals. Hence we
have

d(P,Q) +d(P",Q") > d(P,Q") +d(P',Q). (5

On the other hand, the touching circle ¢(P) is contained in
A and Q' is on the boundary of A. Hence

d(P,Q) <d(P,Q’). (6)

Similarly ¢(P’) is contained in A and Q is on the boundary
of A, and consequently

d(P', Q) < d(P', Q). (7

The inequalities (6) and (7) contradict (5). Thus we have
Lemma 1.

Let P* € M(A) be the point that attains the maximum
of the normalized boundary distance, i.e.,

pP*) = pénA?E(A)B(P)' ®)
We call P* the center of the medial axis M (A).

The medial axis M (A) forms a tree consisting of a finite
number of edges. In general P* is an interior point of an
edge, and in that case we have 3(P*) = 1. On the other
hand, if P* is a vertex incident to three or more edges, we
have (P*) < 1.

In what follows, we consider the medial axis M (A) as
the rooted tree with the root P*. This means that if P* is
an interior point of an edge, we divide the edge at P* into
two edges and consider that these two edges are incident to

the root P*. The vertices other than the root have either one
edge or more than two edges. A vertex with exactly one
edge is called a leaf vertex, and a vertex with more than two
edges is called a branching vertex.

Lemma 2. Let P* be the center of the medial axis M (A)
and Q be a leaf vertex. Let Py = P* Py, P3,... . P, = Q
be the list of all the vertices that we encounter in this order
when we travel along the path from the root P* to the leaf
vertex Q.

Let R, R* be interior points on an edge connecting P;
and P;;1 (1 <7 < k — 1) which we encounter in this order
when we move from P* to Q. Then we have 3(R) > S(R').

Proof. Since R and R/ are interior points of the same edge,
they have exactly two legs and they do not intersect. Since
R’ is farther than R from the center along the path, the sup-
port of R/ is contained in the support of R. Hence we have

B(R) = B(R'). |

The property essentially equivalent to Lemma 2 have al-
ready been observed in some previous work [3, 15]. How-
ever, as we reviewed in section 2 (D), they modified the
index in other directions and did not reach Theorem 1.

Lemma 3. Let P;,P5,..., Py be the same as in Lemma
2. When point P € M(A) passes through P; on its way
from P* (= P;) to Q (= Py), the normalized boundary
distance B(P) decreases.

Proof. Let s; be the support of P just before P passes
through P;, and s, be the support of P immediately after
P passes through P;. Case 1. Suppose that s» is contained
in the support of P;. Then, s, is also contained in s; and
consequently, 3(P) decreases continuously when P passes
through P;. Case 2. Suppose that s» is not contained in the
support of P;. Then, the length of s, is smaller than the
length [(P;) of the support of P;, and consequently 3(P)
decreases when P passes through P; although the change of
B(P) may be discontinuous. Therefore, in both cases 3(P)
decreases when it passes through P;.

From Lemmae 2 and 3, we can see that when we move
from the center P* towards a leaf vertex along the medial
axis M (A), the normalized boundary distance decreases
monotonically. Hence we get Theorem 1.

5. Global Medial Axis Based on the Normal-
ized Boundary Distances

In this section, we construct a method for extracting the
global medial axis using the normalized boundary distance.
For that purpose, we first construct the Voronoi diagram,
next extract an approximation of the medial axis, and fi-
nally obtain the global medial axis by pruning the branches
according to the normalized boundary distances.



5.1. Voronoi Diagram as an Approximation
of the Medial Axis

Let S = {Py,Ps,...,P,} be a set of n points in the
plane R%. By R(S;P;) we denote the set of points that are
nearer to P; than the any other point in S. In other words,
we define

R(S;P;) = {P € R? | d(P,P,) < d(P,P;), j #i}. (9

R(S;P;) is called the Voronoi region of P;. The plane
is partitioned into R(S;P1), R(S;P2),..., R(S;P,) and
their boundaries. This partition is called the Voronoi dia-
gram for S [20]. The points in S are called generators of the
Voronoi diagram. Fig. 2 shows an example of the Voronoi
diagram. Line segments or half lines shared by the bound-
aries of two Voronoi regions are called Voronoi edges, and
the points at which the boundaries of three or more Voronoi
regions meet are called Voronoi vertices.

Figure 2. Voronoi diagram.

The Voronoi edge is in equal distance from the associ-
ated two generators. Using this property, we can extract an
approximation of the medial axis of a given figure A in the
following manner. As shown in Fig. 3(a), we first replace
the boundary of A with a sequence of points densely placed
on the boundary, and then construct the Voronoi diagram.
From this Voronoi diagram we remove those Voronoi edges
which are not contained in A. Then we get a subgraph of the
Voronoi diagram, as shown in Fig. 3(b). This subgraph can
be considered as an approximation of the medial axis, be-
cause for any point Q on the remaining Voronoi edges, the
circle centered at Q with the radius d(Q, P;) for the genera-
tor P; in either side of the Voronoi edge does not contain any
generator in its interior (meaning that the circle is contained

in the figure A), and hence the circle can be considered as
the touching circle and the two associated generators can be
considered as the feet of Q; hence Q is considered to be on
the medial axis.

(a) (b)

Figure 3. Example 1: (a) Voronoi diagram; (b)
Voronoi edges inside the boundary (primary
medial axis).

5.2. Extraction of a Global Medial Axis

On the basis of our observations, we can construct the
following algorithm for extracting a global medial axis.

Algorithm 1 (global medial axis).

Input: Simply connected figure A in the plane and threshold
T.

Output: Global medial axis M7 (A).

Procedure:

1. Place generators densely on the boundary of A.

2. Construct the Voronoi diagram for the generators.

3. Remove from the Voronoi diagram those edges that are
not contained in A. [Comment: the resulting subgraph
is considered as the medial axis M (A).]

4. Prune branches by removing the Voronoi edges whose
normalized boundary distances are smaller than 7', and
report the remaining structure. 1

Note that the normalized boundary distance 3(P) is orig-
inally defined for point P on the medial axis, whereas in
Step 4 of the algorithm, the normalized boundary distance
is computed for each edge. This is not inconsistent because
of the following reason. Let e be an edge in the subgraph
obtained in Step 3 of the algorithm, and let P; and P; be the
associated two generators. Then, P; and P; can be consid-
ered as feet of any point P on e, and the shorter boundary



path connecting P; and P; can be considered as the support
of P. Therefore, the normalized boundary distance 3(P) is
constant on the edge.

Fig. 4 shows the global medial axes for the figure in
Fig. 3 obtained by our algorithm. In this figure, (a), (b), (c)
and (d) correspond to M7 (A) for T = 0.03,0.06,0.12 and
0.24 respectively. As guaranteed by Theorem 1, My (A)’s
are trees for any 7'.

(a) (b)

(©) (d)

Figure 4. Example 1 (continued): (a) Edges
with the index greater than 0.03; (b) Edges
with the index greater than 0.06; (c) Edges
with the index greater than 0.12; (d) Edges
with the index greater than 0.24.

6. Extension to General Figures

Until now, we considered only simply connected figures.
From now on we remove this restriction and consider fig-
ures in general, i.e., figures consisting of one or more con-
nected components with possible holes.

Let A be a figure, and M (A) be the medial axis of
A. Since A may have two or more connected components
and/or may have holes, the boundary 0 A is a collection of
one or more closed curves. For point P € M (A), we rede-
fine S(P) in the following way.

First, suppose that P has feet Q and Q' that are on differ-
ent boundary curves. In this case at least one of Q and Q'
is on the boundary of a hole. Then, we define 3(P) = oo.
This is because P is a midpoint of two different boundary
curves and hence is necessary to keep the topology of the
original figure. So we regard such P the most important,
and will never prune off for any value of the threshold.

Next, suppose that both the feet of P belong to the same
boundary curve. Then, we define the support of P and its
length [(P) in the same way as before. However, the nor-
malized boundary distance defined for a simply connected
figure is not suitable in this case, because boundary curves
may have different lengths and consequently the normal-
ization may give unnecessarily large value to P if the feet
belong to a short boundary curve. In order to avoid this
problem, we change the definition. Let 4;,i = 1,2,...,k,
be a connected component of A, and L; be the total length
of the boundary 0A;. We define the normalized boundary
distance as
I(P)

max L;’
1<i<k

B(P) = (10)

This is a heuristic definition, and might be replaced with
other definitions according to applications.

Fig. 5 shows an example of the behavior of the global
medial axis for a general figure. This figure consists of two
Chinese characters; the first one consists of a single con-
nected component, and the second one consists of two con-
nected components. All the three components have holes.
In this figure, (a) shows the Voronoi diagram constructed in
Step 2 of Algorithm 1, (b) shows the medial axis extracted
in Step 3, and (c), (d), (e) and (f) represent the global me-
dial axes for the threshold value T' = 0.03,0.06, 0.12,0.24,
respectively.

We can see that for any value of the threshold, the re-
sulting structure is topologically equivalent to the original
figure, and the larger T is, the more global part of the me-
dial axis is extracted.

7. Concluding Remarks

We have proposed a new method for extracting the global
medial axis in a stable manner. This algorithm is based on
a new index for measuring importance, called the normal-
ized boundary distance, which guarantees that the resulting
global medial axis represents the same topological structure
as the original figure.
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Figure 5. Example 2 (figure with more than
one connected segments and holes): (a)
Voronoi diagram; (b) Voronoi edges inside
the boundary (primary medial axis); (c) edges
with the index greater than 0.03; (d) edges
with the index greater than 0.06; (e) edges
with the index greater than 0.12; (f) edges
with the index greater than 0.24.

Previous methods either require high cost in computation
for smoothing the original figure in many different scales
in order to get a hierarchical structure, or require heuristic
post-processing in order to keep the same topology as the
original figure. The proposed method overcomes both of
the difficulties.

Actually, our new index, the normalized boundary dis-
tance, has a monotonicity property and hence the hierar-
chical structure can be obtained just by pruning with vari-
ous threshold values, and moreover, the resultant structures
guarantee the same topological structure as the original fig-
ure.

Problems for future contain investigation of other heuris-
tic definitions of the degree of importance for a general fig-
ure, automatic selection of the threshold value, and applica-
tions of our method to practical problems.
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