
CRYSTAL - A new density-based fast and efficient clustering algorithm

Priyadarshi Bhattacharya and Marina L. Gavrilova
Department of Computer Science, University of Calgary

2500 University Drive NW, Calgary, AB, Canada T2N1N4
{pbhattac, marina}@cpsc.ucalgary.ca

Abstract

In this paper, we present a fast O(n lo g n ) clustering al-
gorithm based on Delaunay Triangulation for identifying
clusters of different shapes, not necessarily convex. The
clustering result is similar to human perception of clus-
ters. The novelty of our method is the growth model we
follow in the cluster formation that resembles the natural
growth of a crystal. Our algorithm is able to identify dense
as well as sparse clusters and also clusters connected by
bridges. We demonstrate clustering results on several syn-
thetic datasets and provide a comparison with popular K-
Means based clustering methods. The clustering is based
purely on proximity analysis in the Delaunay Triangulation
and avoids usage of global parameters. It is robust in the
presence of noise. Finally, we demonstrate the capability of
our clustering algorithm in handling very large datasets.

1. Introduction

Today, most Geographic Information Systems (GIS)
handle huge volumes of spatial data. This facilitates the
development of fast and efficient clustering algorithms that
can determine patterns in real-time, so that further process-
ing of data can be limited to specific regions only. Identi-
fying all natural clusters in the data is a crucial prerequisite
for a successful analysis of the data. It is used in fields such
as navigation, planning, pattern recognition, AI, computer
graphics to name a few.

Many types of clustering algorithms have been proposed
in literature. A comparative study of the performance of
recent clustering approaches can be found in [3]. In this
paper, we consider statistical and graph-based approaches
to clustering since these are two widely used approaches.
The most well-known statistical clustering algorithm is K-
Means. It is a centroid-based clustering algorithm that min-
imizes the summation of the Euclidean distances of each
data point from its cluster-center, which is the centroid of
the data points in that cluster. A drawback of K-Means is

the sensitivity of clustering result towards initial positioning
of the cluster centroids which very often results in conver-
gence to a local minimum. However, a more serious prob-
lem is the requirement of specifying the number of cluster
centroids. Not only is it impractical but this implies that the
clustering method fails to find natural clusters in the data.
To remedy the convergence to local minima and in order to
find more globally optimal solutions, several variations of
K-Means have been proposed [5][6]. But the fundamental
problem of requiring an a-priori knowledge of dataset re-
mains.

Recently, several graph-based clustering approaches
have been introduced which do not require the number
of clusters to be prespecified and attempt to find natural
clusters. Some of these algorithms [1][2][8] are triangula-
tion based. However, as reported in [2], identifying sparse
clusters in presence of dense ones or clusters connected
by multiple bridges remains elusive. Usage of a global
threshold to determine cluster density is tricky. If most
clusters have a high density, the global density tends to be
high and this precludes the possibility of identifying sparse
clusters. Noise in data further aggravates the problem. In
this paper, we present a novel clustering algorithm which
we name CRYSTAL because the formation of a cluster
closely resembles the natural growth of a crystal. The
cluster starts growing from a data point, first encompassing
first-order neighbors, then second-order neighbors and
so on until the boundary of the cluster is reached. The
approach is based on a local density analysis and avoids
the use of global parameters. We utilize the Delaunay
Triangulation as an ideal data structure for preserving
proximity information. We present results that demonstrate
that our algorithm can indeed identify sparse clusters
in presence of dense ones, closely located high-density
clusters and even clusters linked with multiple bridges. The
clustering closely resembles human visual perception of
clusters as demonstrated by our experimental results. We
also observe that the algorithm is fast and practical for very
large datasets.



2. Literature Review

Several variations of the K-Means have been proposed
in literature to reach more globally optimal solutions and
reduce the vulnerability of the method to initial positioning
of cluster-centroids. The global K-Means algorithm pro-
posed in [6] starts with only one cluster-center. It then finds
an appropriate position to place a new cluster-center based
on minimization of an objective function and the process
continues. After addition of a new cluster-center, the K-
Means algorithm is run to repartition the data. Although the
method reaches a more optimal solution by solving the clus-
tering problem on a larger scale, it invokes the K-Means re-
peatedly which makes it impractical for large datasets. The
Greedy Elimination Method proposed in [5] starts with ap-
proximately twice the required number of cluster-centers
and then adopts a greedy approach to determine which
cluster-center to remove at each step. Although we found
this algorithm to be faster than [6], it still is not fast enough
and suffers from the same fundamental problems identified
above that K-Means suffers from. The clusters reported are
roughly spherical in shape and they fail to identify many in-
teresting patterns in data. Also, arriving at a suitable value
for the number of clusters requires invoking the basic K-
Means many times and this makes these algorithms inca-
pable of handling very large datasets efficiently.

Graph-based clustering algorithms are able to detect
clusters of much more varied shapes and densities. Two
recently introduced algorithms attracted our attention. In
[1], the clustering is performed on a Reduced Delaunay
Graph. The method is able to identify many interesting
cluster shapes. But it is not mentioned how well the
algorithm performs in case of co-existence of sparse and
dense datasets or in the presence of noise. The clustering
algorithm proposed in [2] attempts to fully automate the
clustering process so that no a-priori knowledge of the
dataset is required. It is also able to detect clusters of
widely varying densities. However, for cluster formation,
it adopts a strategy of first deleting short edges from the
graph and then recuperating them, which in our opinion
is a costly operation. We propose a new idea based on
Delaunay Triangulation. In our approach, we use the
proximity information in the Delaunay Triangulation to
grow clusters from data points and a data point once
assigned to a cluster is not moved again. Also, in contrast
to [2] which uses local standard deviation, we perform
our analysis based on the mean of the edge lengths in the
Delaunay Triangulation and this significantly reduces the
computation cost. This approach, coupled with our natural
crystal-like cluster growing mechanism ensures fast and
efficient cluster detection.

3. CRYSTAL - Algorithm Description

3.1. Clustering based on Delaunay Triangu-
lation

First, we explored the possibility of using the Minimal
Spanning Tree in cluster analysis. Clustering based on Min-
imal Spanning Tree can be found in [7]. However, we dis-
covered that the minimum spanning tree retains consider-
ably less proximity information than the Delaunay Triangu-
lation, which is prohibitive in correctly identifying clusters
in subtle cases such as clusters joined by multiple bridges.
Hence, we based our clustering algorithm on the Delaunay
Triangulation.

We construct the triangulation in O(nlogn) using the in-
cremental algorithm [10]. We use an auxiliary grid struc-
ture to speed up the point location problem in the Delaunay
Triangulation. This reduces length of walk in the graph to
locate the triangle containing the data point considerably.
We implement the walk similar to the process mentioned in
[9]. Except in case of highly skewed data distributions, we
observe that this generates the triangulation in near linear
time. We ensure that we are not exceeding O(n) storage by
not allowing the number of buckets in the grid to exceed

√
n

in both horizontal and vertical directions. We observe that
the average length of adjacent edges for boundary vertices is
greater than those that are inside a cluster. In order to grow
the cluster uniformly, it is important that we start from an
inner data point rather than one on the boundary. So we first
sort the vertices in order of decreasing average edge length
of adjacent edges. This also ensures that we identify the
more dense clusters before the sparse ones. Apart from the
generation of the Delaunay Triangulation, this is the only
other O(nlogn) step. All other operations are O(n) where
n is the number of data points.

3.2 . G row c luster - algorith m descrip tion

For every vertex in the Delaunay Triangulation, which
represents a data point, we maintain the following informa-
tion:

1. Vertex index

2. Coordinates (X and Y )

3. Indices of vertices that are adjacent to it in the Delau-
nay Triangulation

4. Average length of all adjacent edges (avgedglen)

5. A flag (incluster) which indicates whether the vertex is
assigned to a cluster



We scan the sorted vertex list and for each vertex (vi), if
it is not already assigned to a cluster, call Growcluster to
grow a cluster from that data point. The vertex vi gets
added to the cluster and also to the queue which we require
to maintain the list of vertices from which we attempt to
grow the cluster. We set the average edge length in clus-
ter (a vgclu s te r e d glen) to the average length of edges ad-
jacent to vi. Thereafter, everytime we add a new vertex
to the cluster, we update the average cluster edge length
(a vgclu s te r e d glen). To decide whether a data point is on
the boundary, we check the average adjacent edge length
of the vertex with the average cluster edge length. If it is
greater than 1.6 times, we consider it a boundary vertex. If
it is a boundary vertex, we add it to the cluster, but not to
the queue so that our cluster cannot grow from that vertex.
The value of 1.6 is derived empirically.

At the growing phase of the cluster, the value of
a vgclu s te r e d glen does not accurately reflect the local den-
sity and hence some vertices which rightfully belong to the
cluster may be left out. This in particular happens when
the edge length between the first two added vertices to the
cluster is extremely small. To resolve this, after the initial
cluster formation is over, we re-check whether there is any
vertex adjacent to any of the vertices already present in the
cluster for which edge length is ≤ 1.6 ∗ a vgclu s te r e d glen
If so, we add it to the cluster and set incluster for the vertex
to true. After the cluster formation is over, we delete any
trivial clusters based on cluster size. This can also be done
based on cluster density indicated by a vgclu s te r e d glen.

Since a data point once assigned to a cluster is not con-
sidered again, the entire clustering is done in O(n) time,
where n is the number of data points.

CRYSTAL - Clustering Algorithm(D, S)
Input: The Delaunay Triangulation (D) of the data points
Output: Collection of all clusters (S)

Sort the vertices of D in order of decreasing average edge
length of adjacent edges
for each vertex viεD do

if vi[inclu s te r ] = false then
Call Growcluster(vi, D, C)
if C is non-trivial

S ← S ∪ C
end-if

end-if
end for

Growcluster(v, D, C)
Input: v - The vertex for which cluster is to be deter-
mined; D - Delaunay Triangulation
Output: Newly formed cluster C with v as one of the
cluster members

Q← φ {Q is a queue}
C ← φ
s u m d is t ← 0
C ← v
Q← v
v[inclu s te r ]← true;
a vgclu s te r e d glen← v[a vge d glen]

while Q 6= φ do
v ← Head[Q]
for each vertex vj adjacent to v (in order of increasing

edge length) do
if vj [inclu s te r ] = false then

dist← Edge length between v and vj

if (vj [a vge d glen] ≤ 1.6 ∗ a vgclu s te r e d glen)
OR

(dist ≤ 1.6 ∗ a vgclu s te r e d glen) then
vj [inclu s te r ]← true
if (vj [a vge d glen] ≤ 1.6∗a vgclu s te r e d glen)

then
Q← vj {not a boundary vertex}

end-if
C ← vj

s u m d is t ← s u m d is t + d is t
a vgclu s te r e d glen← s u m d is t/

(Siz e (C)− 1)
end-if

end-if
end for
Dequeue(Q)

end while

for each vertex vi ε C do
for each vertex vj adjacent to vi with vj [inclu s te r ]

= f a ls e do
dist← Edge length between vi and vj

if dist ≤ 1.6 ∗ a vgclu s te r e d glen then
C ← vj

vj [inclu s te r ]← true
end if

end for
end for



3.3. Treatment of noise in data

Noise in the data may be in the form of isolated data
points or scattered throughout the data. In the former case,
clusters based at these data points will not be able to grow
and will be eventually eliminated as their size will be very
small. However, if the noise is scattered uniformly through-
out the data, our algorithm identifies it as sparse clusters.
As average edge length can be stored for each cluster with-
out any additional computation cost using our method, we
can simply get rid of noise by eliminating the clusters with
large value for average edge length. This is again an O(n)
operation.

4 Experimental Results

We recorded the performance of our algorithm on a num-
ber of datasets. We discuss the results next. We imple-
mented the Global K-Means [6] and Greedy Elimination
Method [5] locally. In the figures, we attempt to visually
differentiate between the clusters using different symbols
for data points and by changing the grey scale.

We compared the clustering result of our algorithm with
the K-Means based approaches. Subfigures 1(a) to 1(f) il-
lustrate the results. The K-Means based algorithms attempt
to minimize the Euclidean distance of all data points to their
respective cluster-centers and as a result, the clusters are
roughly circular in nature. We set the number of clusters to
5 for the K-Means based approaches. Only CRYSTAL was
able to detect all the clusters correctly.

Our algorithm identifies clusters of different shapes. In
subfigures 2(a)-2(b), CRYSTAL is able to identify all 5
clusters. We next add noise to the data. CRYSTAL correctly
identifies the noise as separate clusters (subfigures 2(c)-
2(d)) . The noise can be easily removed subsequently by
deleting the cluster having the largest average edge length
(least density). The number of data points in a cluster
can also be used in deciding whether a cluster is trivial or
not. As there are no global parameters involved, our algo-
rithm can automatically identify sparse clusters in presence
of dense ones (subfigures 3(a)-3(b)). Subfigures 4(a)-4(b)
show the clustering result on two closely placed dense clus-
ters. The growth mechanism correctly stops at the boundary
between the two clusters without merging them into one.

In the next series of experiments, we evaluated the ca-
pability of our algorithm to identify clusters connected by
multiple bridges. In subfigures 5(a)-5(b), CRYSTAL is
able to correctly identify clusters connected by multiple
bridges. Subfigures 6(a)-6(d) shows the clustering results
on a dataset that visually represents co-centric circles. For
the centroid-based clusters, we also display the centroid of
the cluster for better understanding. As evident from the

figures, the output of CRYSTAL closely resembles human
perception of the clusters present in the data.

Figure 8 is the clustering result of our algorithm on
t7.10k dataset, originally used in [4]. It was kindly pro-
vided to us by Dr. Osmar R. Zäiane, University of Al-
berta. For noisy datasets such as this one, we observed
that reducing the threshold value of 1.6 in dist ≤ 1.6 ∗
avgclusteredglen (see pseudo code) yields good results.
For Figure 8, we used a threshold of 0.7. This ensures that
we do not add noise to our clusters. In fact, as evident from
the figure, all of the noise is successfully removed by simply
eliminating clusters that have very few elements (less than
a threshold). For this dataset, our algorithm is able to iden-
tify all clusters except one which gets merged (8 clusters
reported). In general, we observe that a value of this thresh-
old between 0.5 and 1.0 is good for noisy datasets. Perfor-
mance of other recently proposed clustering algorithms on
this dataset can be found in [3].

We experimented with our algorithm on large datasets.
Figure 7 illustrates the result. The X-axis is the number of
clusters in 1000 and Y-axis is the time consumed in milli-
seconds. The time includes the construction of the Delau-
nay Triangulation. The program is implemented in Java and
run on a Pentium-4 3 GHz processor with 512 MB RAM.
As evident from Figure 7, our algorithm is able to find clus-
ters in a dataset of size 70, 000 in less than a minute. This
compares favorably with the run-times in [2].

5 Conclusion

In this paper, we propose an O(nlogn) fast and efficient
clustering algorithm for two-dimensional spatial databases
based on the Delaunay Triangulation. The algorithm is ro-
bust in the presence of noise and is able to successfully de-
tect clusters of widely varying shapes and densities. In the
future we would like to extend our algorithm to 3D and han-
dle clustering in the presence of physical constraints.

6 Acknowledgements

Authors would like to acknowledge GEOIDE for contin-
uous support of this project.

References

[1] G. Papari, N. Petkov, “Algorithm That Mimics Human
Perceptual Grouping of Dot Patterns”, Lecture Notes
in Computer Science, 3704, 2005, pp. 497-506.

[2] Vladimir Estivill-Castro, Ickjai Lee, “AUTOCLUST:
Automatic Clustering via Boundary Extraction for
Mining Massive Point-Data Sets”, Fifth International
Conference on Geocomputation, 2000.



[3] Osmar R. Zäiane, Andrew Foss, Chi-Hoon Lee,
Weinan Wang, “ On Data Clustering Analysis: Scal-
ability, Constraints and Validation” , Advances in
Knowledge Discovery and Data Mining, Springer-
Verlag, 2002.

[4] George Karypis, Eui-Hong Han, Vipin Kumar,
“ CHAMELEON: A Hierarchical Clustering Algo-
rithm using dynamic modeling” , IEEE Computer,
32(8), pp. 68-75.

[5] Z.S.H. Chan, N. Kasabov, “ Efficient global clustering
using the Greedy Elimination Method” , Electronics
Letters, 40(25), 2004.

[6] Aristidis Likas, Nikos Vlassis, Jakob J. Verbeek, “ The
global k-means clustering algorithm” , Pattern Recog-
nition, 36(2), 2003, pp. 451-461.

[7] Ying Xu, Victor Olman, Dong Xu, “ Minimum Span-
ning Trees for Gene Expression Data Clustering” ,
Genome Informatics, 12, 2001, pp. 24-33.

[8] C. Eldershaw, M. Hegland, “ Cluster Analysis using
Triangulation” , Computational Techniques and Appli-
cations CTAC97, World Scientific, Singapore, 1997,
pp. 201-208.

[9] Mir Abolfazl Mostafavi, Christopher Gold, Ma-
ciej Dakowicz, “ Delete and insert operations in
Voronoi/Delaunay methods and applications” , Com-
puters & Geosciences, 29(4), 2003, pp. 523-530.

[10] Atsuyuki Okabe, Barry Boots, Kokichi Sugihara,
“ Spatial Tessellations: Concepts and Applications of
Voronoi Diagrams” , John Wiley, 1992.



(a) Original data set (b) Standard K-Means (K = 5) (c) K-Means initialized with Kd-tree (K = 5)

(d) Global K-Means (K = 5) (e) Greedy Elimination Method (K = 5) (f) CRYSTAL

Figure 1. Comparison with K-Means based approaches.



(a) Original data set (b) CRYSTAL

(c) Noise added (d) CRYSTAL

Figure 2. Clusters of different shapes.

(a) Original data set (b) CRYSTAL

Figure 3. Sparse clusters in presence of dense ones.



(a) Original data set (b) CRYSTAL

Figure 4. Dense clusters close to each other.

(a) Original data set

(b) CRYSTAL

Figure 5. Clusters connected by bridges.



(a) Original data set (b) K-Means (K = 5) (c) Greedy Elimination Method (K = 5)

(d) CRYSTAL

Figure 6. Co-centric clusters.

Figure 7. CRYSTAL: Cluster size (1000) Vs Time consumed (ms)



(a) t7.10k.dat data set

(b) CRYSTAL

Figure 8. Clustering result on t7.10k.dat.


