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Abstract

Given a set S of n points (called sites) in a d-dimensional
Euclidean space E and an integer k, 1 ≤ k ≤ n − 1, we
consider three known structures that are defined through
subsets of k elements of S: The k-set polytope of S, the
order-k Voronoi diagram of S, and its dual, the order-k
Delaunay diagram of S. We give a new compact charac-
terization of all-dimensional faces of these three structures
through the notions of k-couple and of k-set polytope of
a k-couple. We also show that the incidence relations be-
tween these faces correspond to inclusion relations between
k-couples. These characterizations allow us to give sim-
ple proofs of well known relations between the three struc-
tures, especially that the d-dimensional order-k Delaunay
diagram is the projection of the lower hull of a (d + 1)-
dimensional k-set polytope and is the orthogonal dual of
the order-k Voronoi diagram.

1. Introduction

Different problems that occur in computational geome-
try consist in studying subsets of k elements among n. For
example, if S is a set of n sites in a d-dimensional Euclid-
ean space E, the k-sets of S are the subsets of k sites of S
that can be strictly separated from the remaining by a hyper-
plane (see figure 1). In the same way, the order-k Voronoi
diagram of S is a partition of E whose regions are sets of
points of E with the same k nearest neighbors in S.

A classical method in data analysis to express the dis-
tance from a point to a set of k sites consists in using the
centroid (also called center of gravity) of these k sites. The
centroid can also be used to reformulate geometric prob-
lems. In [10], we proved that the order-k Voronoi diagram
admits a dual, called the order-k Delaunay diagram, whose
vertices are the centroids of the subsets of k sites of S whose
associated Voronoi regions are non-empty. As shown by
Aurenhammer and Schwarzkopf [4], this dual diagram is

Figure 1. The black points form a 3-set of the
whole set of points while the white points
form a 6-set.

the projection of a (d + 1)-dimensional polyhedral convex
surface. Similarly, Andrzejak and Fukuda [2] showed that
finding the k-sets of S comes down to finding the vertices
of the convex hull of the centroids of the k-element subsets
of S. This convex hull is called the k-set polytope of S and
has been introduced by Edelsbrunner, Valtr, and Welzl [6].

Thus, the knowledge of the complete structure of ob-
jects such as k-set polytopes and order-k Delaunay dia-
grams helps to find combinatorial and computational results
for the underlying problems.

In [9], we studied the set of faces of the order-k Delau-
nay diagram and showed that each of its i-dimensional face
(i ∈ {1, ..., d}) can be characterized by a sphere containing
a subset P of S inside, passing through a subsetQ, and such
that |P | < k < |P ∪Q|. The property holds even in degen-
erate cases and allowed us to give an iterative construction
algorithm for this diagram. In [1] and [3], Andrzejak and
Welzl studied the faces of the k-set polytope of S when the
sites are in general position. In this case, these faces are in
fact the boundary faces of the order-k Delaunay diagram.
They derived various linear relations among the number of
these faces. Wagner [12] extended some of these results to
the degenerate case where more than d sites may be copla-
nar. This occurs, for example, in k-set problems related
to computational commutative algebra [7]. Wagner pointed



out that every i-dimensional face (i ∈ {1, ..., d − 1}) of
such a k-set polytope is characterizable by an oriented hy-
perplane that passes through a subset Q of sites of S and
has a subset P on its left such that |P | < k < |P ∪Q|.

It clearly appears that the characterization of order-k De-
launay diagrams and that of k-set polytopes are very close,
the former involving separability by spheres and the latter
by hyperplanes. This naturally calls for an unified charac-
terization of the faces of these two structures, using sepa-
rability by a surface. This is what we intend to do in this
paper through the notion of k-couple, i.e., a couple (P,Q)
of disjoint subsets of S for which either |P | = k andQ = ∅,
or |P | < k < |P ∪Q| (see figure 2).

Figure 2. If S is the whole set of points, P
the set of black points, and Q the set of grey
points, then (P, Q) is a 3-couple of S (it is
also a 4-couple and a 5-couple).

First, we define the new notion of k-set polytope of such
a k-couple as being the convex hull of the centroids of the
k-element subsets of P ∪ Q containing P and give some
basic properties of these k-set polytopes. Then, we study
the particular k-couples (P,Q) whose separating surface is
a hyperplane, that is, the sites ofQ lie in a hyperplane which
separates P from S \ (P ∪ Q). Such k-couples are called
generalized k-sets of S. We show that the k-set polytopes
of these generalized k-sets are precisely the faces of the k-
set polytope of S. We also show that the incidence relations
between faces of the k-set polytope of S correspond to in-
clusion relations between generalized k-sets of S. This gen-
eralizes a result of [3] where the vertices of the k-set poly-
tope faces have been characterized. Thanks to our definition
of generalized k-sets, our relations hold for all-dimensional
faces, including vertices. Moreover, all results are given in
the general case where more than d sites may be coplanar.

Similarly, we consider the k-couples (P,Q) of S where
the sites of Q belong to a sphere that separates the sites of
P , inside the sphere, from the sites of S \ (P ∪Q). Such k-
couples are called k-sections of S. We show that the k-set
polytopes of these k-sections form a partition of the k-set
polytope of S. This partition is in fact the order-k Delau-
nay diagram of S defined in [9] and [10], in a completely
different way, as the dual of the order-k Voronoi diagram.
As for the k-set polytopes, we show that the incidence rela-

tions between all-dimensional order-k Delaunay faces can
be interpreted as relations between k-sections. These later
results also hold when any number of sites are cospherical.
Moreover, we show that any face of the order-k Delaunay
diagram is the projection of a face of a (d+ 1)-dimensional
k-set polytope.

In the last section, we restate some of our results given
in [11] but with shorter proofs based on the results of the
previous sections. In particular, we give a bijection between
the faces of the order-k Voronoi diagram of S and the k-
sections of S which allows to prove easily the orthogonal
duality between order-k Delaunay and Voronoi diagrams.

2. Generalized k-sets and k-set polytopes

Let S be a set of n sites in the Euclidean space E of di-
mension dim(E) = d such that E is the affine hull aff(S)
of S and let k be an integer of {1, ..., n − 1}. For every
subset R of at least k sites of S, let k(R) be the set of k-
element subsets of R and let gk(R) be the relative interior
of the convex hull of the centroids of the elements of k(R),
i.e., the greatest open subset of the affine hull of these cen-
troids included in their convex hull. We call gk(R) the k-set
polytope of R (see figure 3). For every oriented hyperplane
π ofE, we denote by π+ the open half-space on the positive
side of π and by π− the other open half-space bounded by
π. For every subset ω of E, we denote by ω the smallest
closed subset of E containing ω.
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Figure 3. The centroids g(s, t) of all pairs
{s, t} of S = {1, 2, 3, 4, 5} and the 2-set poly-
tope of S (1, 2, and 3 are collinear).

If T is a k-set of S, T is an element of k(S) for which
there exists an oriented hyperplane π such that π+ ∩ S =
T . T is then the only k-set of S that can be separated by
an oriented hyperplane having the same outer normal as π.
Thus, the set of directions of E determines the set of k-sets



of S but the converse is not true. Indeed, if π is an oriented
hyperplane such that π ∩ S = Q and π+ ∩ S = P with
|P | < k < |P ∪Q|, there is no hyperplane parallel to π and
with the same orientation as π that determines a k-set of S
(see figure 4). This leads to generalize the notion of k-set as
follows:

– any couple (P,Q) of disjoint subsets of S such that
|P | = k if Q is empty and |P | < k < |P ∪ Q| other-
wise, is called a k-couple of S

– moreover, if there exists a hyperplane containing Q
and strictly separating P and S \ (P ∪Q), then (P,Q)
is called a generalized k-set of S.

Every oriented hyperplane π such that π ∩ S = Q and
π+ ∩ S = P , is called a separating hyperplane of the gen-
eralized k-set (P,Q) in S; then every direction of E is the
outer normal of separating hyperplanes of one and only one
generalized k-set of S.
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Figure 4. The couple ({1, 2}, {3, 4, 5, 6}) is
a generalized k-set of S = {1, 2, ..., 9} for
every k ∈ {3, 4, 5}. π is here its unique sep-
arating line.

2.1. k-set polytopes and k-couples

Let us first study some basic properties of k-set poly-
topes and k-couples. For every subset T of S, let g(T ) be
the centroid of T .

Lemma 1. For every subsetR of S with strictly more than k
elements, the affine hulls aff(gk(R)) and aff(R) are equal.

Proof. If G is the set of centroids of the elements of k(R),
aff(gk(R)) = aff(G) ⊆ aff(R).

Let us suppose that aff(G) ⊂ aff(R). Then, there exists
an oriented hyperplane π of E that contains G but not R.
Let T be a subset of k sites of R that is not included in π.
Since g(T ) ∈ π, there exist two sites s and t of T such that

s ∈ π+ and t ∈ π−. Since |T | < |R|, there also exists a
site r of R \ T and r belongs to either the closed half-space
π− or π+. Hence the centroid g((T \ {s}) ∪ {r}) belongs
to π− or π+ respectively, which contradicts the hypothesis.
It follows that aff(G) = aff(gk(R)) = aff(R).

The property used in this proof can be generalized to give
the following technical lemma (see figure 5 for an illustra-
tion).

Lemma 2. Let T be a subset of k elements of S, U a non-
empty subset of T , and π an oriented hyperplane of E such
that U ⊂ π+. Let µ be the hyperplane parallel to π, with
the same orientation as π, and that passes through g(T ).

(i) For every subset V of S \ T with same cardinality as
U and included in π−, the centroid of T ′ = (T \ U) ∪ V
belongs to µ−.

(ii) Moreover, if at least one site of U belongs to π+ or
one site of V belongs to π−, then g(T ′) ∈ µ−.

Proof. (i) Let ∆ be a straight line orthogonal to π oriented
from π− to π+ and let us consider the abscissae of the
points of E on ∆. The abscissa of g(T ) on ∆ is the av-
erage of the abscissae of the points of T on ∆. Since the
abscissae of the points of V on ∆ are smaller than or equal
to the abscissae of the points of U on ∆, the average of the
abscissae of the points of T ′ = (T \U)∪ V is smaller than
or equal to the abscissae of g(T ). Thus g(T ′) belongs to
µ−.

(ii) Moreover, if the abscissa of at least one point of V is
strictly smaller than the abscissa of one point of U , the ab-
scissa of g(T ′) is strictly smaller than the abscissa of g(T )
and g(T ′) belongs to µ−.
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Figure 5. If T = {1, 2, 3, 5, 6, 7, 8}, g(T ) and
g(T \ {5} ∪ {4}) are on µ, but g(T \ {3, 5} ∪
{9, 10}) belongs to µ−.



For every k-couple (P,Q) of S, we denote by k(P,Q)
the set of subsets of k elements of P ∪ Q that contain P .
Equivalently, k(P,Q) is the set of all subsets of k(S) whose
intersection is P and whose union is P ∪Q.

It follows that (P,Q) �= (P ′, Q′) implies k(P,Q) �=
k(P ′, Q′).

The relative interior of the convex hull of the centroids
of the elements of k(P,Q) is called the k-set polytope of
(P,Q) and is denoted by gk

P (Q) (see figure 6).
Note that the k-set polytope of (∅, Q) is nothing else but

the k-set polytope of Q.
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Figure 6. The 3-set polytope g3
1(2, 3, 4, 5, 6)

of ({1}, {2, 3, 4, 5, 6}) (solid lines) is the im-
age of the 2-set polytope g2(2, 3, 4, 5, 6) of
{2, 3, 4, 5, 6} (dashed lines) by the homo-
thety of ratio 2/3 centered at site 1.

Lemma 3. For every k-couple (P,Q) of S, dim(gk
P (Q)) =

dim(Q) and, ifQ is not empty, gk
P (Q) is parallel to aff(Q).

Proof. If Q is not empty, dim(Q) �= 0 by the definition of
k-couples. Moreover, if P is empty gk

P (Q) = gk(Q) and
otherwise gk

P (Q) is the image of gk−|P |(Q) by the homo-
thety of ratio (k−|P |)/k centered at g(P ). Since, by lemma
1, aff(Q) = aff(gk−|P |(Q)), gk

P (Q) and Q have the same
dimension and are parallel.

If Q is empty, k(P, ∅) = {P}, gk
P (∅) is reduced to the

centroid of P , and dim(Q) = dim(gk
P (Q)) holds true.

2.2. Generalized k-sets

Now we show that the k-set polytopes of the generalized
k-sets of S are the faces of the k-set polytope of S (see
figure 7).

By ”face of a polytope” ofE we mean any i-dimensional
face of this polytope, i ∈ {0, ..., d − 1}. The faces of di-

mension 0, 1, and d−1 are also respectively called vertices,
edges, and facets of the polytope.
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Figure 7. The 2-set polytopes of the general-
ized 2-sets of S = {1, 2, 3, 4, 5} are the faces
(vertices and edges) of the 2-set polytope of
S.

Lemma 4. (i) For every generalized k-set (P,Q) of S,
gk

P (Q) is a face of gk(S).
(ii) The k-set polytopes of the generalized k-sets of S are

pairwise disjoint.

Proof. (i) If π is a separating hyperplane of a generalized
k-set (P,Q) of S, by lemma 3 there exists a hyperplane
µ parallel to π, with the same orientation as π, and that
contains gk

P (Q).
By definition, for every element T of k(S) \ k(P,Q),

either T does not contain at least one site of P = π+ ∩ S,
or T does contain at least one site of S \ (P ∪Q) = π− ∩
S. Thus, by lemma 2, g(T ) belongs to the open half-space
µ− and µ is a supporting hyperplane of gk(S) such that
gk

P (Q) = µ ∩ gk(S). Therefore gk
P (Q) is a face of gk(S).

(ii) It follows from (i) that the k-set polytopes of the gen-
eralized k-sets of S are either disjoint or identical. Now, if
(P ′, Q′) is a generalized k-set of S distinct from (P,Q),
then k(P ′, Q′) �= k(P,Q). From the proof of (i), if there
exists T ∈ k(P ′, Q′) \ k(P,Q), then g(T ) belongs to µ−

and gk
P ′(Q′) �= gk

P (Q). By symmetry, it follows that the
k-set polytopes of the generalized k-sets of S are pairwise
disjoint.

Theorem 1. The k-set polytopes of the generalized k-sets
of S are pairwise disjoint and are the faces of the k-set poly-
tope of S.

Proof. (i) From lemma 4, the k-set polytopes of the gener-
alized k-sets of S are pairwise disjoint and every such k-set



polytope is a face of the k-set polytope of S. Thus, it re-
mains to prove that each face of gk(S) is the k-set polytope
of a generalized k-set of S.

(ii) For every face f of gk(S), let T = {T1, T2, ..., Tm}
be the set of elements of k(S) whose centroids lie in f . Let
µ be a supporting hyperplane of gk(S) such that gk(S) ∩
µ = f and suppose that µ is oriented in such a way that
gk(S) is included in µ−. Let π be the hyperplane parallel
to µ, oriented as µ, passing through a site t of V = T1 ∪
T2 ∪ ...∪ Tm, and such that all sites of V belong to π+ (see
figure 8).
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Figure 8. The 4-tuples whose centroids be-
long to the closed edge f of this 4-set poly-
tope are of the form {1, 2, p, q} with {p, q} ⊂
{3, 4, 5, 6}.

No site s of S \ V can belong to π+ since other-
wise, for every element Ti of T containing t, the centroid
g((Ti \ {t}) ∪ {s}) would belong to µ+ by lemma 2 and
(Ti \{t})∪{s} would belong to T . This is in contradiction
with the hypothesis that s /∈ T1 ∪ T2 ∪ ... ∪ Tm and that
T = {T1, T2, ..., Tm}. Hence, V = S ∩ π+. Let us now
distinguish the two cases |T | = 1 and |T | > 1.

(ii.1) If T is reduced to the single element T1, then V =
T1 is a k-set of S, k(T1, ∅) = {T1}, and f = gk

T1
(∅) =

g(T1) is a vertex of gk(S).
(ii.2) If T contains at least two elements, |V | > k and

P = S ∩ π+ cannot contain k elements since otherwise its
centroid would belong to µ+. It follows that |P | < k. Thus,
setting Q = V \ P = S ∩ π, (P,Q) is a generalized k-set
of S with π as a separating hyperplane.

Let us now show that T = k(P,Q). If there would exist
an element Ti of T not containing P , then for every site s of
P \Ti and for every site t of Ti∩Q = Ti∩π, g((Ti \{t})∪
{s}) would belong to µ+ by lemma 2, in contradiction with
the fact that gk(S) ⊂ µ−. Hence, for every i ∈ {1, ...,m},
P ⊂ Ti and, since Ti ⊂ V = P ∪ Q, T ⊆ k(P,Q). Thus

gk
P (Q)∩µ contains {g(T1), ..., g(Tm)} and gk

P (Q)∩µ �= ∅.
Since gk

P (Q) is parallel to Q by lemma 3 and since Q is
included in π, gk

P (Q) is also parallel to µ. It follows that
gk

P (Q) ⊂ µ and that k(P,Q) ⊆ T . Therefore, T = k(P,Q)
and gk

P (Q) = f .
(iii) Finally, it follows from (i) and (ii) that the k-set

polytopes of the generalized k-sets of S are the faces of
gk(S) and are disjoint.

Let us now study the adjacency relations between faces
of the k-set polytope of S.

Theorem 2. For every generalized k-set (P,Q) of S such
that dim(Q) > 0, the faces of gk

P (Q) are the k-set poly-
topes of the couples (P ∪ P ′, Q′) that verify the following
equivalent properties:

(1) (P ′, Q′) is a generalized (k − |P |)-set of Q.
(2) (P ∪P ′, Q′) is a generalized k-set of S distinct from

(P,Q) such that P ′ ∪Q′ ⊆ Q.

Proof. (1) If P is empty, gk
P (Q) = gk(Q) is the k-set poly-

tope ofQ and, by theorem 1, its faces are the k-set polytopes
of the generalized k-sets of Q.

If P is not empty, gk
P (Q) is the image of gk−|P |

∅ (Q) =
gk−|P |(Q) by the homothety H of ratio (k − |P |)/k cen-
tered at g(P ). Now, by theorem 1, the faces of gk−|P |(Q)
are the (k − |P |)-set polytopes gk−|P |

P ′ (Q′) of the general-
ized (k − |P |)-sets (P ′, Q′) of Q. Since the homothety H
maps the faces of gk−|P |(Q) into those of gk

P (Q) and also

maps gk−|P |
P ′ (Q′) into the k-set polytope gk

P∪P ′(Q′) of the
k-couple (P ∪ P ′, Q′), it follows that the faces of gk

P (Q)
are the k-set polytopes of the couples (P ∪ P ′, Q′) such
that (P ′, Q′) is a generalized (k − |P |)-set of Q.

(2) From (1), every face of gk
P (Q) is of the form

gk
P∪P ′(Q′) with P ′ ∪Q′ ⊆ Q. Furthermore, if π is a sepa-

rating hyperplane of (P,Q) in S and π′ is a separating hy-
perplane of (P ′, Q′) in Q, we get a separating hyperplane
π′′ of (P ∪ P ′, Q′) in S by rotating π around π ∩ π′ (see
figure 9). Thus, (P ∪ P ′, Q′) is a generalized k-set of S.

Conversely, if (P ∪ P ′, Q′) is a generalized k-set of
S distinct from (P,Q) such that P ′ ∪ Q′ ⊆ Q then, for
every element T ′ of k(P ∪ P ′, Q′), P ⊆ P ∪ P ′ ⊆ T ′ ⊆
P ∪ P ′ ∪ Q′ ⊆ P ∪ Q. Thus T ′ also belongs to k(P,Q)
and gk

P∪P ′(Q′) ⊆ gk
P (Q). Since the k-set polytopes of the

generalized k-sets of S are pairwise disjoint and since their
faces are the k-set polytopes of the generalized k-sets of
S, it follows that gk

P∪P ′(Q′) is a face of gk
P (Q) (see figure

10).

Remark 1. More generally, property (1) of theorem 2 holds
for every k-couple (P,Q) of S since its proof does not use
the fact that (P,Q) is a generalized k-set of S.
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Figure 9. π is a separating straight line of
({1, 2, 3}, {4, 5, 6, 7}) in S = {1, ..., 10} and
π′ is a separating straight line of ({4, 5}, {6})
in {4, 5, 6, 7}. By an appropriatly slight ro-
tation of π around {6} = π ∩ π′, we get
a straight line π′′ which is separating for
({1, 2, 3, 4, 5}, {6}) in S.

3. k-sections and order-k Delaunay diagram

In the previous section, we studied the k-set polytopes
of the k-couples (P,Q) when the sites of Q lay on a sep-
arating hyperplane. Since the notion of k-set polytope is
defined for any k-couple of S, the previous study can be ex-
tended to other kinds of k-set polytopes. In this section, we
will consider the k-set polytopes of the k-couples (P,Q) for
which the sites of Q lie on a separating sphere.

3.1. Order-k Delaunay diagram

For every sphere σ of E, let σ+ and σ− be the open
subsets of E respectively inside and outside σ. A k-couple
(P,Q) of S for which there exists a sphere σ such that σ ∩
S = Q and σ+ ∩ S = P , is called a k-section of S and σ is
called a separating sphere of the k-section (P,Q) in S.

In the special case where k = 1, the 1-set polytopes of
the 1-sections of S are the polytopes, with vertices in S,
that are inscribable in empty spheres (i.e., that contain no
site of S inside). Thus, these 1-set polytopes are the faces
of the Delaunay diagram of S. More generally, the k-set
polytopes of the k-sections of S will be called the order-k
Delaunay faces of S.

In this section we will show that the set of order-k Delau-
nay faces of S forms a partition of gk(S) called the order-k
Delaunay diagram of S (see figure 11).

By ”face of a diagram” of E we mean any i-dimensional
face of this diagram, i ∈ {0, ..., d}. The d-dimensional
faces are also called regions of the diagram.

8

1

4

3

2

6

7

5

g
8
(1,2,3,4,5,6,7)

2

g
8
(1,4)

2

gØ(1,4,8)
2

Figure 10. The 2-set polytope of 8 sites in
dimension 3 with {1, 2, ..., 7} coplanar. The
grey faces g2

8(1, 2, ..., 7) and g2
∅(1, 4, 8) share

g2
8(1, 4) as a common edge. Its endpoints are

the vertices g2
1,8(∅) and g2

4,8(∅).

Theorem 3. The order-k Delaunay faces of S are pairwise
disjoint.

Proof. (i) Let (P,Q) and (P ′, Q′) be two distinct k-
sections with σ and σ′ as respective separating spheres.

Let us first show that none of the spheres σ and σ′ can
be inside the other. In order to prove it by contradiction we
may assume, without loss of generality, that σ′ is included
in σ+.

If no site of S coincides with the touching point σ ∩ σ′

(if it exists), then P ′ ∪Q′ is included in σ+ and therefore in
P . Since (P,Q) and (P ′, Q′) are k-couples, it follows that
|P ′ ∪ Q′| = |P | = k and that P ′ ∪ Q′ = P . This implies
that Q′ = ∅, P ′ = P , and Q = ∅ = Q′, in contradiction
with (P,Q) �= (P ′, Q′).

If σ′ is inwardly tangent to σ and if σ∩σ′ contains a site
q of Q∩Q′, P ′∪ (Q′ \{q}) is included in σ+ and therefore
in P . This is impossible since |P ′ ∪ Q′| > k and |P | < k
in the case where Q and Q′ are non-empty.

(ii) When σ+ and σ′+ are disjoint, gk
P (Q) and gk

P ′(Q′)
are also disjoint since gk

P (Q) ⊂ σ+ and gk
P ′(Q′) ⊂ σ′+.

(iii) When σ and σ′ intersect without being tangent, let
π be their radical hyperplane oriented in such a way that
σ ∩ σ′− ⊂ π− (see figure 12). Thus σ+ ∩ π+ ⊂ σ′+

and σ′+ ∩ π− ⊂ σ+. Therefore (P ∪ Q) ∩ π+ ⊆ P ′ and
(P ′ ∪ Q′) ∩ π− ⊆ P . Let µ be the supporting hyperplane
of gk

P (Q) that is parallel to π, oriented like π, and such that

gk
P (Q) is included in µ−. Then there exists at least one
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Figure 11. The 2-set polytopes of the 2-
sections of S = {1, 2, ..., 7} form the order-2
Delaunay diagram of S. Its vertices are the
centroids of the couples of circularly separa-
ble sites of S.

element T of k(P,Q) such that g(T ) is a point of gk
P (Q) ∩

µ. For every T ′ of k(P ′, Q′), U = T \ T ′ ⊂ π− since
T ∩ π+ ⊂ (P ∪ Q) ∩ π+ ⊆ P ′ ⊆ T ′. Symmetrically,
V = T ′ \T ⊂ π+. By lemma 2, g(T ′) = g((T \U)∪V ) ∈
µ+. Hence gk

P ′(Q′) ⊂ µ+ and gk
P (Q)∩gk

P ′(Q′) ⊂ µ, since

gk
P (Q) ⊂ µ−.

Case 1. Since gk
P (Q) is open, if gk

P (Q) intersects the
open half-space µ−, then µ is a supporting hyperplane of
gk

P (Q) and does not intersect gk
P (Q). Thus, gk

P (Q) is in-
cluded in µ−, and gk

P ′(Q′) and gk
P (Q) are disjoint.

It is the same when gk
P ′(Q′) ∩ µ+ �= ∅ and we are left

with the cases where both gk
P (Q) and gk

P ′(Q′) are included
in µ.

Case 2. If gk
P (Q) ∪ gk

P ′(Q′) ⊂ µ and P �= P ′ then,
within a permutation of P and P ′, there exists p ∈ P ′ \ P .
Since P ′ \ P is included in both π+ and T ′ \ T = V , p
belongs to both V and π+. By lemma 2, it follows that
g(T ′) = g((T \ U) ∪ V ) ∈ µ+, a contradiction.

Case 3. Let us now deal with the case gk
P (Q) ∪

gk
P ′(Q′) ⊂ µ and P = P ′. Since aff(Q) and aff(Q′)

are respectively parallel to gk
P (Q) and gk

P ′(Q′) by lemma 3,
there exist two hyperplanes ξ and ξ′ parallel to µ that con-
tain Q and Q′ respectively. Now, since Q ∩ π+ ⊆ P ′ and
P ∩Q = ∅, P = P ′ implies Q∩ π+ = ∅ and consequently
Q ⊂ π−. Similarly, Q′ ⊂ π+ and, since Q ∩ π = Q′ ∩ π
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Figure 12. The 4-set polytopes gk
P ′(Q′) =

g4
6,7,9(1, 2, 10) and gk

P (Q) = g4
7,8(1, 3, 4, 5, 6)

are on both sides of the supporting straight
line µ of gk

P (Q).

and Q �= Q′, Q and Q′ cannot all together be included in π.
Hence ξ �= ξ′. If P and P ′ are empty, gk

P (Q) and gk
P ′(Q′)

are included in ξ and ξ′, and otherwise they are included in
two parallel hyperplanes which are images of ξ and ξ′ by the
same homothety of center g(P ) = g(P ′). Therefore, in all
cases, the hyperplanes parallel to µ that contain gk

P (Q) and
gk

P ′(Q′) are distinct, in contradiction with the hypothesis.
It follows that gk

P (Q) and gk
P ′(Q′) cannot all together be

included in µ. Hence they are disjoint.

As for generalized k-sets, the following theorem gives
the adjacency relations between order-k Delaunay faces of
S.

Theorem 4. For every k-section (P,Q) of S such that
dim(Q) > 0, the faces of gk

P (Q) are the k-set polytopes
of the couples (P ∪ P ′, Q′) that verify the following equiv-
alent properties:

(1) (P ′, Q′) is a generalized (k − |P |)-set of Q.
(2) (P ′, Q′) is a (k − |P |)-section of Q.
(3) (P ∪ P ′, Q′) is a k-section of S distinct from (P,Q)

such that P ′ ∪Q′ ⊆ Q.

Proof. (i) From remark 1, every face of gk
P (Q) is the k-set

polytope of a k-couple (P ∪ P ′, Q′) such that (P ′, Q′) is a
generalized (k − |P |)-set of Q. This shows (1).

(ii) Let us show that (1) implies (2).
If π is a separating hyperplane of the generalized (k −

|P |)-set (P ′, Q′) in Q, there exists a sphere σ′ such that
σ′ ∩Q = π ∩Q = Q′ and σ′+ ∩Q = π+ ∩Q = P ′. σ′ is
then a separating sphere of (P ′, Q′) in Q and (P ′, Q′) is a
(k − |P |)-section of Q.

(iii) Let us now show that (2) implies (3).



For every (k−|P |)-section (P ′, Q′) of Q, P ′∪Q′ ⊆ Q.
Moreover, if σ is a separating sphere of (P,Q) in S with
center x and σ′ a separating sphere of (P ′, Q′) in Q with
center x′, there exists a sphere σ′′ passing through σ ∩ σ′,
whose center x′′ is close to x on ]x, x′[, and that is separat-
ing for (P ∪P ′, Q′) in S (see figure 13). Thus, (P ∪P ′, Q′)
is a k-section of S.

x'x"x
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σ'

σ"

σ

2

3

1
7
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Figure 13. Since the couple (P, Q) =
({3, 4, 5}, {1, 2, 6, 7, 8, 9}) is a 6-section of
S = {1, ..., 10} and the couple (P ′, Q′) =
({8, 9}, {6, 7}) is a 3-section of Q, the cou-
ple (P ∪ P ′, Q′) = ({3, 4, 5, 8, 9}, {6, 7}) is a
6-section of S.

(iv) Let us finally show that the k-set polytope of a cou-
ple that verifies property (3) is a face of gk

P (Q).
If (P ∪ P ′, Q′) is a k-section of S distinct from (P,Q)

such that P ′ ∪Q′ ⊆ Q, then for every T ′ of k(P ∪ P ′, Q′),
P ⊆ P ∪P ′ ⊆ T ′ ⊆ P ∪P ′ ∪Q′ ⊆ P ∪Q. It follows that
T ′ belongs to k(P,Q) and that gk

P∪P ′(Q′) ⊆ gk
P (Q). Since

the order-k Delaunay faces of S are pairwise disjoint by
theorem 3 and since their faces are order-k Delaunay faces,
gk

P∪P ′(Q′) is a face of gk
P (Q) (see figure 14).

A k-section (P,Q) of S is said to be unbounded, if its
separating spheres can have arbitrarily large radii. Note that
the notions of unbounded k-section and generalized k-set
are not equivalent in degenerate cases, i.e. if j + 2 sites lie
on a common j-dimensional plane.

Lemma 5. (i) For every unbounded k-section (P,Q) of S
such that dim(Q) = d − 1, there is a unique k-section
(P ′, Q′) such that gk

P (Q) is a facet of gk
P ′(Q′). Moreover,

gk
P (Q) is included in the boundary of gk(S).

(ii) For every bounded k-section (P,Q) of S such that
dim(Q) = d− 1, there are exactly two k-sections (P ′, Q′)
and (P ′′, Q′′) such that gk

P (Q) is a facet of gk
P ′(Q′) and

of gk
P ′′(Q′′). Moreover, gk

P ′(Q′) and gk
P ′′(Q′′) are on both

sides of gk
P (Q).

Proof. (i) Let σ be a separating sphere of the k-section
(P,Q) and let π be the hyperplane aff(Q) with an arbitrary

1

2 3

4

5

g
2
(1,3,5)

2

g
2
(1,3)

2

g2,5(Ø)
2

g2,3(Ø)
2

g1,2(Ø)
2

Figure 14. 1-set polytope (thin lines) and
2-set polytope (thick lines) of 2-section
(∅, {1, 2, 3, 4, 5}) in dimension 3. g2

2,5(∅),
g2
1,2(∅), and g2

2,3(∅) are the vertices of face
g2
2(1, 3, 5) and g2

2(1, 3) is one of its edges.

orientation. Then there exist two separating spheres σ′ and
σ′′ of (P,Q) such that σ′ ∩ σ− ⊂ π+ and σ′′ ∩ σ− ⊂ π−.

(i.1) If (P,Q) is unbounded we can suppose, without loss
of generality, that the radius of σ′ can be arbitrarily large
(see figure 15). Therefore, P ⊂ π+ and S \ (P ∪Q) ⊂ π−.
Setting Q′ = S ∩ π and P ′ = S ∩ π+ = P \ π, we get
|P ′| ≤ |P | < k and |P ′ ∪ Q′| ≥ |P ∪ Q| > k. (P ′, Q′)
is thus a generalized k-set of S of separating hyperplane
π and, by theorem 1, gk

P ′(Q′) is a facet of gk(S). Fur-
thermore, since P ′ ⊆ P and P ∪ Q ⊆ P ′ ∪ Q′, we have
k(P,Q) ⊆ k(P ′, Q′). Hence gk

P (Q) is included in gk
P ′(Q′),

and therefore in the boundary of gk(S).
(i.2) If the radius of σ′′ could also be arbitrarily large,

we would have P ⊂ π− and S \ (P ∪ Q) ⊂ π+, that is
S ⊂ π, from (i.1). This is impossible since aff(S) = E
by hypothesis. Thus there exists a limit sphere σ′′

l which
passes through the sites of Q and at least one site of S \Q,

and such that P ⊂ σ′′+
l and S \ (P ∪Q) ⊂ σ′′−

l .
Setting P ′′ = σ′′+

l ∩ S and Q′′ = σ′′
l ∩ S, we have

(P ′′, Q′′) �= (P,Q), P ′′ ⊆ P , and P ∪Q ⊆ P ′′∪Q′′. Thus
(P ′′, Q′′) is a k-section of S of separating sphere σ′′

l and, by
theorem 4, gk

P (Q) is a facet of the order-k Delaunay region
gk

P ′′(Q′′). Since the order-k Delaunay regions are pairwise
disjoint and since they are included in gk(S), gk

P ′′(Q′′) is
the only order-k Delaunay region from which gk

P (Q) is a
facet.

(ii) If (P,Q) is a bounded k-section, there exist two limit
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Figure 15. The separating circle σ′ of the
unbounded 4-section ({1, 2, 5}, {4, 6}) can
tend toward the separating line π of the
generalized 4-set ({1, 2}, {3, 4, 5, 6}). Thus,
g4
1,2,5(4, 6) (thick) is included in the edge

g4
1,2(3, 4, 5, 6) of the 4-set polytope g4(S) of

S = {1, 2, ..., 9}. g4
1,2,5(4, 6) is also an edge

of the order-4 Delaunay region g4
1,2,5(4, 6, 8).

spheres σ′
l and σ′′

l (see figure 16). Setting P ′ = σ′+
l ∩ S,

Q′ = σ′
l∩S, P ′′ = σ′′+

l ∩S, andQ′′ = σ′′
l ∩S, (P ′, Q′) and

(P ′′, Q′′) are k-sections of S, and the two order-k Delaunay
regions gk

P ′(Q′) and gk
P ′′(Q′′) share gk

P (Q) as a common
facet. Since the order-k Delaunay regions of S are disjoint,
gk

P ′(Q′) and gk
P ′′(Q′′) are on both sides of gk

P (Q) and are
unique.

Theorem 5. (i) The order-k Delaunay faces of S form a
partition of gk(S).

(ii) The k-set polytopes of the unbounded k-sections of
S form a partition of the boundary of gk(S).

Proof. (i) Since |S| > k, there exists at least one k-section
(P,Q) with dim(Q) = dim(S) = d. gk

P (Q) is then an
order-k Delaunay region of S. By theorem 4, every facet
of gk

P (Q) is an order-k Delaunay facet of S and, by lemma
5, this facet is included either in the boundary of gk(S) or
in the boundary of another order-k Delaunay region. Thus,
the set of closed order-k Delaunay regions covers gk(S).
Moreover, the faces of the order-k Delaunay regions are the
order-k Delaunay faces by theorem 4 and are pairwise dis-
joint by theorem 3. Hence, the order-k Delaunay faces form
a partition of gk(S) (see figure 17).

8

3

1

9

2

5

4

7

6

g
4,5,8

(3,6,7)
4

g
5,8

(4,6,7)
4

σ"
l

σ'
l

σ

ππ+ π-

Figure 16. The 4-set polytope g4
4,5,8(6, 7)

(thick segment) of the bounded 4-section
({4, 5, 8}, {6, 7}) is the common edge of the
two order-4 Delaunay regions g4

4,5,8(3, 6, 7)
and g4

5,8(4, 6, 7).

(ii) From (i), the boundary of gk(S) is split up into dis-
joint order-k Delaunay faces of S. Moreover, by lemma 5,
their defining k-sections are the unbounded k-sections of
S.

In case the sites of S are in general position, the un-
bounded k-sections of S are the generalized k-sets of S.
Thus, by theorems 1 and 5, in this special case the faces of
the boundary of the order-k Delaunay diagram of S are the
faces of the k-set polytope of S.

3.2. Order-k Delaunay diagram and k-set
polytope

There exists another relation between order-k Delaunay
diagram and k-set polytope: The classical Delaunay dia-
gram (i.e., the order-1 Delaunay diagram) in dimension d
is the projection of a (d + 1)-dimensional convex polyhe-
dral surface [5, 8]. Let us show that the order-k Delau-
nay diagram is the projection of some faces of a (d + 1)-
dimensional k-set polytope.

Let F be the (d + 1)-dimensional space spanned by E
and by an oriented straight line ∆ orthogonal to E. Let P
be the surface of E of equation xd+1 −

∑d
i=1 x

2
i = 0. P

is a paraboloid of revolution with axis ∆ and is included
in the positive half-space of F bounded by E. The map-
ping ϕ that associates to every point x of E with coordi-
nates (x1, x2, ..., xd) the point ϕ(x) of F with coordinates
(x1, x2, ..., xd, xd+1 =

∑d
i=1 x

2
i ) is an orthogonal lift up

transformation from E to P . For any non-vertical hyper-
plane π of F , a point of F is said to be below (resp. above)
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Figure 17. The order-3 Delaunay diagram of
the same set of 7 sites as in figure 11. For
each region g3

P (Q), either |P | = 2 (white re-
gions), or |P | ≤ 1 (grey regions). In this lat-
ter case, g2

P (Q) is also an order-2 Delaunay
region (see figure 11).

π if it belongs to the open half-space of F bounded by π
and that contains the points of ∆ at −∞ (resp. +∞).

Given a set S of sites of E, the lower hull (resp. upper
hull) of the k-set polytope gk(ϕ(S)) of ϕ(S) is the set of
faces of gk(ϕ(S)) that admit a supporting hyperplane hav-
ing gk(ϕ(S)) above (resp. below) it.

Theorem 6. (i) The order-k Delaunay diagram of S is the
orthogonal projection on E of the lower hull of the k-set
polytope of ϕ(S).

(ii) The projection of the upper hull of the k-set polytope
of ϕ(S) is the image of the order-(n−k) Delaunay diagram
of S by the homothety of ratio −(n−k)/k centered at g(S).

Proof. (i) The centroids of the elements of k(S) are orthog-
onal projections on E of the centroids of the elements of
k(ϕ(S)). Thus, the orthogonal projection on E of the lower
hull of gk(ϕ(S)) is a partition of the convex hull of the cen-
troids of the elements of k(S), that is, a partition of gk(S).
Now, by theorem 5, the order-k Delaunay diagram of S is
also a partition of gk(S) and, in order to prove the result,
we only need to show that each face of this diagram is the
projection of a face of the lower hull of gk(ϕ(S)).

Let (P,Q) be a k-section of S, σ a separating sphere of
(P,Q) in S, (c1, c2, ..., cd) the coordinates of the center c of
σ, and r its radius. For every point x of σ with coordinates

(x1, x2, ..., xd), the point ϕ(x) satisfies

d∑

i=1

(xi − ci)2 − r2 = 0

xd+1 −
d∑

i=1

x2
i = 0.

Consequently, ϕ(x) belongs to the non-vertical hyperplane
π of equation

xd+1 −
d∑

i=1

2cixi +
d∑

i=1

c2i − r2 = 0.

Moreover, xd+1 −
∑d

i=1 2cixi +
∑d

i=1 c
2
i − r2 and∑d

i=1(xi − ci)2 − r2 have the same sign. Thus, for any
point x of σ+ (resp σ−), ϕ(x) is below (resp. above) π. It
follows that (ϕ(P ), ϕ(Q)) is a generalized k-set of ϕ(S) of
separating hyperplane π.

Hence, by lemma 3, gk
ϕ(P )(ϕ(Q)) is included in a hyper-

plane µ parallel to π and, since ϕ(P ) is below π, gk(ϕ(S))
is above µ, by the proof of lemma 4. Hence, gk

ϕ(P )(ϕ(Q))
is a face of the lower hull of gk(ϕ(S)).

Furthermore, T ∈ k(P,Q) if and only if ϕ(T ) ∈
k(ϕ(P ), ϕ(Q)), and g(T ) is the orthogonal projection of
g(ϕ(T )) on E. Thus gk

P (Q) is the orthogonal projection of
gk

ϕ(P )(ϕ(Q)) on E (see figure 18).
(ii) In the same way, the projection onE of the upper hull

of gk(ϕ(S)) is a partition of gk(S). Since T is an element
of k(S) if and only if S \ T is an element of (n−k)(S) and
since g(T ) is the image of g(S \ T ) by the homothety H of
ratio −(n − k)/k centered at g(S), the image of the order-
(n−k) Delaunay diagram by H is also a partition of gk(S).
Thus we are left to prove that every face of this partition is
the projection of a face of the upper hull of gk(ϕ(S)).

As in (i), for every (n − k)-section (P,Q) of S,
(ϕ(P ), ϕ(Q)) is a generalized (n − k)-set of ϕ(S) and if
π is one of its separating hyperplanes, ϕ(P ) and ϕ(S \
(P ∪ Q)) are respectively below and above π. Moreover,
if Q is empty, |ϕ(S \ (P ∪ Q))| = |S \ (P ∪ Q)| = k
and otherwise, |ϕ(S \ (P ∪ Q))| < k < |ϕ(S \ P )|.
Thus, (ϕ(S \ (P ∪ Q)), ϕ(Q)) is a generalized k-set of
ϕ(S). By the proof of lemma 4, gk(ϕ(S)) is below the
hyperplane parallel to π that contains gk

ϕ(S\(P∪Q))(ϕ(Q))
and gk

ϕ(S\(P∪Q))(ϕ(Q)) is a face of the upper hull of

gk(ϕ(S)). Moreover, T ∈ (n−k)(P,Q) if and only if
ϕ(S \ T ) ∈ k(ϕ(S \ (P ∪Q)), ϕ(Q)) and the projection
on E of g(ϕ(S \ T )) is the image g(S \ T ) of g(T ) by H.
Thus, the projection of gk

ϕ(S\(P∪Q))(ϕ(Q)) is the image of

gn−k
P (Q) by H.
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Figure 18. The order-1 Delaunay diagram of
a set S = {1, 2, 3, 4, 5} of planar sites and
the lower hull of the 1-set polytope of ϕ(S),
in thin lines. The order-2 Delaunay diagram
of S and the lower hull of g2(ϕ(S)), in thick
lines.

4. Order-k Delaunay diagram and order-k
Voronoi diagram

The order-1 Delaunay diagram of S admits a well known
dual, the Voronoi diagram of S. The Voronoi diagram is a
partition of space E whose every region is the set of points
of E strictly closer to a given site of S than to any other.
The Voronoi diagram is an orthogonal dual of the Delaunay
diagram in the sense that, to every j-dimensional face (0 <
j < d) of one diagram corresponds an orthogonal (d − j)-
dimensional face of the other one.

The order-k Voronoi diagram is a generalization of the
Voronoi diagram in which every region is the set of points
of E having the same k closest neighbors in S. Thus, to
construct the order-k Voronoi diagram, one needs to find
for every point x in E the subset T of k nearest sites of
x. In order that such a set T exists, x has to be the center
of a sphere σ that strictly separates T from S \ T , i.e. σ
is a separating sphere of the k-section (T, ∅). In the other
cases, the kth and (k+1)th nearest sites of x are at the same
distance from x and x is the center of a sphere σ that passes
through a set Q of at least two sites and has a set P of at
most k− 1 sites inside. More precisely, |P | < k < |P ∪Q|

and (P,Q) is a k-section of S of separating sphere σ. This
leads to the following definition:

For every k-section (P,Q) of S, the set fk
P (Q) of cen-

ters of all separating spheres of (P,Q) is called an order-
k Voronoi face of S. Thus, by denoting d(x, T ) (resp.
dmax(x, T )) the minimal (resp. maximal) distance from
a point x of E to the sites of a subset T of S, fk

P (Q) is the
set of points of E such that

fk
P (Q) = { x ∈ E;

dmax(x, P ) < d(x,Q) = dmax(x,Q)
< d(x, S \ (P ∪Q))}

when P , Q and S \ (P ∪Q) are non-empty.
IfQ is empty, we get the classical definition of the order-

k Voronoi region of P :

fk
P (∅) = {x ∈ E; dmax(x, P ) < d(x, S \ P )}.

Since every point inE is the center of a separating sphere
of one and only one k-section of S, the set of order-k
Voronoi faces forms a partition of E. All that remains to
be proven is that the faces fk

P (Q) with Q �= ∅ are really the
faces of the order-k Voronoi regions (see figure 19).

For every subset Q of cospherical sites of S, let
bis(Q) = {x ∈ E; d(x,Q) = dmax(x,Q)} be the bisector
of Q.

Lemma 6. (i) fk
P (∅) is an open, connected, and convex re-

gion of E,
(ii) if 0 < dim(Q) < d, fk

P (Q) is an open, con-
nected, and convex subset of bis(Q) and dim(fk

P (Q)) =
d− dim(Q),

(iii) if dim(Q) = d, fk
P (Q) is a point of E.

Proof. (i) fk
P (∅) = {x ∈ E; dmax(x, P ) < d(x, S \P )} is

the intersection of the open half-spaces {x ∈ E; d(x, p) <
d(x, s)} with p ∈ P and s ∈ S \P . Thus, fk

P (∅) is an open,
connected, and convex d-dimensional subset of E.

(ii) If 0 < dim(Q) < d and if neither P nor S \ (P ∪Q)
are empty,

fk
P (Q) = { x ∈ E;

dmax(x, P ) < d(x,Q) = dmax(x,Q)
< d(x, S \ (P ∪Q))}

= fk
P (∅) ∩ bis(Q) ∩ fk

P∪Q(∅).

Setting fk
∅ (Q) = fk

S(∅) = E, the relation holds even if
P = ∅ and/or S \ (P ∪Q) = ∅.

Hence, in every case, fk
P (Q) is an open, connected,

and convex subset of the bisector of Q of dimension
dim(bis(Q)) = d− dim(Q).

(iii) If dim(Q) = d, fk
P (Q) is the center of the unique

separating sphere of (P,Q) and is therefore a point of E.
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Figure 19. The order-3 Voronoi regions,
edges, and vertices of the set of sites of fig-
ure 11.

Lemma 7. The face fk
P (Q) is unbounded if and only if the

k-section (P,Q) is unbounded.

Proof. Every unbounded k-section (P,Q) admits a separat-
ing sphere with unbounded radius. Since its center belongs
to fk

P (Q), fk
P (Q) is unbounded.

Conversely, if fk
P (Q) is unbounded, there exists a sepa-

rating sphere of (P,Q) whose center can tend toward infin-
ity. The radius of such a sphere is then unbounded and so is
(P,Q).

Theorem 7. For every k-section (P,Q) of S such that
dim(Q) < d, the faces of fk

P (Q) are the order-k Voronoi
faces fk

P ′(Q′) such that (P ′, Q′) �= (P,Q), P ′ ⊆ P , and
P ∪Q ⊆ P ′ ∪Q′.

Proof. (i) If (P ′, Q′) is a k-section of S such that
(P ′, Q′) �= (P,Q), P ′ ⊆ P , and P ∪ Q ⊆ P ′ ∪ Q′,
every separating sphere σ′ of (P ′, Q′) passes through all
sites ofQ and through at least one other site of S and is such
that P ⊂ σ′+ and S \ (P ∪ Q) ⊂ σ′−. Every point x of
fk

P ′(Q′) being the center of such a sphere, dmax(x, P ) ≤

d(x,Q) = dmax(x,Q) ≤ d(x, S \ (P ∪ Q)) when P ,
Q, and S \ (P ∪ Q) are not empty. Then x belongs to
fk

P (Q). The result holds even if P = ∅, Q = ∅, and/or
S \ (P ∪Q) = ∅. Since fk

P (Q) ∩ fk
P ′(Q′) = ∅, fk

P ′(Q′) is
included in the boundary of fk

P (Q).
(ii) Conversely, every point x of the boundary of fk

P (Q)
is the center of a sphere σ that passes through the sites of
Q and through at least one other site of S. The sites of
P belong to σ+ and the sites of S \ (P ∪ Q) belong to
σ−. Setting Q′ = σ ∩ S and P ′ = σ+ ∩ S, it follows
that (P ′, Q′) �= (P,Q), P ′ ⊆ P , P ∪ Q ⊆ P ′ ∪ Q′, and
|P ′| < k < |P ′ ∪Q′|. Thus (P ′, Q′) is a k-section of S of
separating sphere σ whose center is the point x. Hence, x
belongs to fk

P ′(Q′).
(iii) If h is a face of fk

P (Q), it follows from (i) and (ii)
that, when dim(h) = 0, h is an order-k Voronoi vertex.
When dim(h) > 0, h is composed of a set of order-k
Voronoi faces. Let us prove by contradiction that this set
is reduced to a unique element. If h contains more than one
order-k Voronoi face then, since the number of these faces
is finite, h contains at least two dim(h)-dimensional faces
fk

P1
(Q1) and fk

P2
(Q2) that are incident in h to a same face

fk
P3

(Q3) of dimension strictly less than dim(h). From (i)
and (ii), (P,Q), (P1, Q1), (P2, Q2), and (P3, Q3) are thus
pairwise distinct k-sections such that:

– P1 ⊆ P and P ∪Q ⊆ P1 ∪Q1,

– P2 ⊆ P and P ∪Q ⊆ P2 ∪Q2,

– P3 ⊆ P1 and P1 ∪Q1 ⊆ P3 ∪Q3,

– P3 ⊆ P2 and P2 ∪Q2 ⊆ P3 ∪Q3.

By theorem 4, the k-set polytopes gk
P1

(Q1) and gk
P2

(Q2)
are then two faces of gk

P3
(Q3) incident to gk

P (Q). Now,
since fk

P1
(Q1) and fk

P2
(Q2) are included in a common face

h and have same dimension as h, their affine hulls are equal.
By lemma 6, it follows that bis(Q1) = bis(Q2) and there-
fore aff(Q1) is parallel to aff(Q2). By lemma 3, gk

P1
(Q1)

and gk
P2

(Q2) are parallel too and, since they are incident to
the same k-set polytope gk

P (Q), their affine hulls are equal.
It follows that gk

P1
(Q1) and gk

P2
(Q2) are included in a same

face of the k-set polytope gk
P3

(Q3), which is impossible
since every face of gk

P3
(Q3) is a unique k-set polytope, by

theorem 4. It follows that h is a unique order-k Voronoi
face.

From (ii) this face is of the form fk
P ′(Q′) with

(P ′, Q′) �= (P,Q), P ′ ⊆ P , and P ∪ Q ⊆ P ′ ∪ Q′.
Moreover, from (i), every face of this form is a face of
fk

P (Q).

Theorem 8. The order-k Delaunay diagram is the orthog-
onal dual of the order-k Voronoi diagram.



Proof. For every k-section (P,Q) of S, the mapping ψ that
associates fk

P (Q) to gk
P (Q) is bijective. By theorems 4 and

7, if (P,Q) and (P ′, Q′) are two k-sections of S such that
fk

P ′(Q′) is a face of fk
P (Q) then ψ(fk

P (Q)) is a face of
ψ(fk

P ′(Q′)). Hence, the two partitions are dual one from
the other.

Moreover, by lemma 6, if 0 < dim(Q) < d, fk
P (Q) is

orthogonal to aff(Q) and consequently to gk
P (Q) by lemma

3. Thus, the duality between the two partitions is orthogonal
(see figure 20).
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Figure 20. Orthogonal duality between order-
2 Delaunay and Voronoi diagrams.

5. Conclusion

In this paper, we have introduced the notions of k-couple
of a set of sites and of k-set polytope of such a k-couple.
To begin with, we have studied a subset of k-couples, the
generalized k-sets, which are defined by separating hyper-
planes. We have shown that the k-set polytopes of these
k-couples are the faces of the k-set polytope of S. After-
wards, we have considered an other subset of k-couples, the
k-sections, which are defined by separating spheres. More
particularly, we have shown that the k-set polytopes of these

k-sections form the order-k Delaunay diagram, an orthogo-
nal dual of the order-k Voronoi diagram.

The simultaneous studying of these notions allowed us
to clarify the close relationship between k-set polytopes and
order-k Delaunay diagrams. It also allows to envisage ex-
tensions using other kinds of separating surfaces than planes
or spheres.

The enumerations of the faces of the k-set polytopes
given by Andrzejak and Welzl [3] and our results on order-
k Delaunay diagrams, should allow to find new relations
between the numbers of faces of order-k Voronoi diagrams
and, possibly, help to solve the open problem of the size of
these diagrams in higher dimensions.
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