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Abstract

The minimum-supported bivariate C2-cubic spline on a 6-directional mesh constructed in our previous work [Chui, C.K., Jiang,
Q.T., 2003. Surface subdivision schemes generated by refinable bivariate spline function vectors. Appl. Comput. Harmonic Anal.
15, 147–162] can be used to extend Loop’s approximation subdivision scheme to introduce some parameter for controlling sur-
face geometric shapes. This extension is achieved by considering matrix-valued subdivisions, resulting in subdivision templates
of the same 1-ring template size as Loop’s scheme, but with 2-dimensional matrix-valued weights. Another feature accomplished
by considering such an extension is that the two components of the refinable vector-valued spline function can be reformulated,
by taking certain linear combinations, to convert the approximation scheme to an interpolatory scheme, but at the expense of an
increase in template size for the edge vertices. To maintain the 1-ring template size with guarantee of C2 smoothness for interpola-
tory surface subdivisions, a non-spline solution is needed, by applying some constructive scheme such as the procedure discussed
in our recent work [Chui, C.K., Jiang, Q.T., 2005b. Matrix-valued symmetric templates for interpolatory surface subdivisions I.
Regular vertices. Appl. Comput. Harmonic Anal. 19, 303–339]. The main objective of this paper is to develop the corresponding
matrix-valued 1-ring templates for the extraordinary vertices of arbitrary valences, for all of the three schemes mentioned above: the
extended Loop approximation scheme, its conversion to an interpolatory scheme, and the non-spline 1-ring interpolatory scheme.
The discrete Fourier transform (DFT) is applied to analyze the spectral properties of the corresponding subdivision matrices, as-
suring that the eigenvalues of the subdivision matrices satisfy certain conditions for C1 smoothness at the extraordinary vertices
for all of the three considerations in this paper.
© 2007 Elsevier B.V. All rights reserved.

1. Introduction

Subdivision algorithms provide efficient mathematical tools for curve and surface modelling, rendering, and editing
in Computer Graphics (see, for example, Warren and Weimer (2002), Zorin et al. (2000)). To construct a smooth
surface, the subdivision process is carried out iteratively, starting from an initial (triangular or quadrilateral) mesh,
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called control net, to generate some nested sequence of finer and finer meshes that eventually converge to the desirable
limiting surface, called subdivision surface. If all the vertices of each coarser mesh (i.e., the mesh before the next
iteration step is carried out) are among the vertices of the finer mesh (i.e., the mesh obtained after the next iteration
step has been completed), then the subdivision scheme is called an interpolatory subdivision scheme. Otherwise, it is
called an approximation subdivision scheme.

For surface subdivisions, this iterative process is governed by two sets of rules, namely: the topological rule that
dictates the insertion of new vertices and the connection of them to create a finer mesh, and the local averaging rule
for computing the positions in the 3-dimensional space R

3 of the new vertices (and for an approximation subdivision
scheme, new positions of the old ones as well) in terms of certain weighted averages of the (old) vertices nearby. The
most popular topological rule for surface subdivisions is the “1-to-4 split” (or dyadic) rule, which dictates the split of
each triangle or quadrilateral into four triangles or quadrilaterals, respectively. For example, the schemes by Catmull
and Clark (1978), Doo and Sabin (1978), Loop (1987), butterfly (Dyn et al., 1990), and mid-edge (Peters and Reif,
1997) schemes are the most well-known schemes that engage the 1-to-4 split topological rule.

For regular vertices (i.e., those with valence 6 for triangular subdivisions, and valence 4 for quadrilateral subdivi-
sions), the local averaging rule of the iterative process for the 1-to-4 split topological rule is related to some refinement
equation

φ(x) =
∑
k∈Z2

pkφ(2x − k), x ∈ R
2. (1.1)

Here, φ(x) is called a refinable function with dilation matrix 2I2, and the (finite) sequence {pk} is called its corre-
sponding refinement sequence or subdivision mask. For a control net with vertices v0

k, called “control points”, the
subdivision mask {pk} provides the local averaging rule

vm+1
j =

∑
k

vm
k pj−2k, m = 0,1, . . . , (1.2)

where, for each m = 1,2, . . ., the set vm
k denotes the set of vertices obtained after taking m iterations. The local

averaging rule (1.2) is, in general, described and represented in the plane, called the “parametric domain”, by a set of
regular triangles or quadrilaterals along with a set of subdivision templates. For example, for Loop’s scheme, where the
refinable function φ is the quartic box spline B222 on a 3-directional mesh, the templates of its local averaging rule for
the 1-to-4 split triangular mesh are shown on the left and in middle among the three templates in Fig. 1. On the other
hand, to take care of extraordinary vertices (i.e., those with valences different from 6 for triangular subdivisions, and
valences different from 4 for quadrilateral subdivisions), a certain custom-designed local averaging rule is required in
general. For example, the template for Loop’s scheme for extraordinary vertices of valence n is shown on the right
among the three templates in Fig. 1, where

a = 5

8
−

(
3

8
+ 1

4
cos

2π

n

)2

(1.3)

is a function of the valence n. Consequently, smoothness of subdivision surfaces at extraordinary vertices is not
determined by that of φ. The interested reader is referred to Reif et al. (2005) and the references therein for detailed
discussions on smoothness analysis at extraordinary vertices, and to Jia and Jiang (2003) and the references therein
for estimates of order of smoothness for non-spline refinable functions φ.

Fig. 1. Templates of Loop’s scheme for regular vertices, edge vertices, and extraordinary vertices with valence n, where a = 5
8 − ( 3

8 + 1
4 cos 2π

n )2.
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In another development, namely, that of multi-wavelets in Wavelet Analysis, the refinement Eq. (1.1) is extended
to a matrix-valued refinement (also called two-scale) relation

Φ(x) =
∑
k∈Z2

PkΦ(Ax − k), x ∈ R
2, (1.4)

with dilation matrix A (which could be the matrix 2I2 in (1.1)), an r-dimensional vector-valued refinable function
Φ = [φ0, . . . , φr−1]T (also called refinable function vector), and refinement (or two-scale) sequence of r-dimensional
square matrices {Pk}, which will be called a subdivision mask in this paper.

For the 1-to-4 split topological rule, we just select 2I2 as the dilation matrix A. But for other topological rules,
such as

√
2,

√
3,

√
5 and

√
7 splits, different appropriate dilation matrices must be chosen. For example, in the study

of
√

3-subdivisions, the dilation matrix

A1 =
[

2 −1
1 −2

]
(1.5)

is used in our earlier paper (Chui and Jiang, 2003) to construct a 2-dimensional refinable function vector with bivariate
C2 cubic spline components on a 6-directional mesh. It was also observed in Chui and Jiang (2003) that this particular
spline function vector is also refinable with respect to the dilation matrix 2I2; and hence, the corresponding subdivision
mask provides another set of templates for generating subdivision surfaces for the 1-to-4 split topological rule, but
with (2-dimensional) matrix-valued weights, instead of scalar-valued weights. For convenience, we will refer to this
matrix-valued subdivision scheme as “S2

3 -subdivision”. The matrix-valued weights of the S2
3 -subdivision provide a

free parameter (called control parameter in Chui and Jiang (2003)), for adjusting shapes of surface geometry. In
particular, when the control parameters are set to be zero at each iterative step, then the subdivision surface generated
by S2

3 -subdivision is identical to the subdivision surface generated by Loop’s scheme. For this reason, S2
3 -subdivision

can be considered as an extension of Loop’s scheme. In this paper, subdivision templates with sizes not exceeding
those of Loop’s scheme will be called “1-ring” templates.

Most surface subdivision schemes in the existing literature, including Loop’s scheme and its extension to S2
3 -

subdivision, are not interpolatory, meaning that the control points (or vertices of the initial mesh) do not lie on the
(limiting) subdivision surface. In certain applications, such as reversed engineering of scattered data and study of
point clouds, where control points are data points, surface interpolation is an important requirement. For matrix-
valued subdivisions, various versions of interpolatory subdivisions were introduced, particularly for the purpose of
Hermite interpolation (see, for example, Han et al. (2004), Chui and Jiang (2003, 2005a, 2006b)). These considera-
tions, however, are too restrictive to be useful for the construction of interpolatory matrix-valued templates in general,
particularly when symmetry is an essential feature. The most general extension of interpolatory surface subdivisions,
from scalar to matrix considerations and without any restriction, for constructing symmetric interpolatory matrix-
valued templates is formulated in our earlier paper (Chui and Jiang, 2005b).

The characterization of interpolatory subdivision matrices derived in Chui and Jiang (2005b) can be easily ap-
plied to convert the S2

3 -subdivision to interpolatory surface subdivisions, which will be called “S2
3 -interpolatory-

subdivision” in this paper. Hence, extending Loop’s scheme, by allowing matrix-valued weights to replace scalar-
valued weights, has the flexibility to achieve spline-based surface interpolation of the control points, which are vertices
of the initial control net.

Unfortunately, this spline approach necessarily increases the template size for edge vertices (if the weights are
required to remain 2-dimensional matrices). In order to maintain 1-ring templates as well as not to increase the
matrix dimension, while achieving C2 interpolatory subdivision, a non-spline solution was obtained in Chui and Jiang
(2005b). It will be called “1-ring-interpolatory-subdivision” in this paper. However, the above discussions of S2

3 -
subdivision, S2

3 -interpolatory-subdivision, and 1-ring-interpolatory-subdivision so far are only concerned with regular
vertices.

The main objective of this paper is to derive 1-ring templates for extraordinary vertices, with arbitrary valences, for
all of these three surface subdivision schemes. After giving a brief introduction to the prior work on the matrix-valued
subdivision in Section 2, we present the results on templates for extraordinary vertices in Sections 3, 4, and 5 for S2

3 -
subdivision, S2

3 -interpolatory-subdivision, and 1-ring-interpolatory-subdivision, respectively. Spectral analysis of the
subdivisions matrices by using the discrete Fourier transform (DFT), as well as discussions on the choice of control
parameters for the 1-ring-interpolatory-subdivision scheme, will be presented in the appendix.
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To facilitate our discussions, let us first introduce the following notations. We will use 0 to denote the zero matrix of
any dimension, but specifically use 0j and 0j×k to denote the j × j and j × k zero matrices, respectively. Eigenvalues
λj , j = 0,1, . . ., of a subdivision matrix are always listed according to multiplicities and indexed in the order of
non-increasing magnitudes, namely:

|λ0| � |λ1| � |λ2| � · · · ,
with the second and third eigenvalues λ1, λ2 to be called subdominant eigenvalues.

2. Prior results

When the matrix-valued refinement Eq. (1.4) is applied to surface subdivisions, the local averaging rule (1.2) is
extended to the matrix setting:

vm+1
k =

∑
j

vm
j Pk−Aj, m = 0,1, . . . , (2.1)

where

vm
k =: [vm

k , sm
k,1, . . . , s

m
k,r−1

]
, (2.2)

are “row-vectors” with r components of points vm
k , sm

k,i
, i = 1, . . . , r − 1, in R

3. Here, we use the first components

vm
k to denote the vertices of the subdivision meshes generated after the mth iteration, with initial vertices v0

k being
the control points of the surface subdivision. The other components s0

k,1, . . . , s
0
k,n−1 of v0

k, can be used to control
the surface geometric shape. Then, as shown in our earlier work (Chui and Jiang, 2006a), under the condition of
“generalized partition of unity”, the vertices vm

k provide an accurate discrete approximation of the target subdivision
surface, formulated by the series representation:

F(x) =
∑

k

v0
kφ0(x − k) +

∑
k

(
s0

k,1φ1(x − k) + · · · + s0
k,n−1φn−1(x − k)

)
.

The bivariate C2 cubic spline function φb
0 with minimum support introduced in our earlier work (Chui and Jiang,

2003) is shown in Fig. 2, where only the nonzero Bézier coefficients are displayed. (Actually, φb
0 (−x, y) is introduced

Fig. 2. Support and Bézier-nets of φb
0 .
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in Chui and Jiang (2003). The reason for the choice of this φb
0 here and in Chui and Jiang (2006a), as opposed to

φb
0 (−x, y) in Chui and Jiang (2003), is to use the same domain of the characteristic map as that considered in Umlauf

(2000).) By introducing another cubic spline

φb
1 (x) := φb

0

((
A−1

1

)T x
)
, (2.3)

with A1 given in (1.5), it is shown in Chui and Jiang (2003) that the function vector Φb = [φb
0 , φb

1 ]T is refinable with
respect to both dilation matrices 2I2 and AT

1 , with corresponding refinement masks that give rise to 1-to-4 split scheme
(referred as S2

3 -subdivision) and
√

3 subdivision scheme, respectively. The interested reader is referred to Chui and
Jiang (2003) for details. On the other hand, for the 2-dimensional matrix-valued weights of the S2

3 -subdivision (which
has a free control parameter), it was demonstrated in Chui and Jiang (2006a) that the control parameter could be
applied to change the geometric shapes of subdivision surfaces quite dramatically.

Other matrix-valued templates with minimal size have also been constructed in our previous work (Chui and Jiang,
2003, 2005a, 2006b) for different purposes. More precisely, Chui and Jiang (2003) also present C1 Hermite interpola-
tory schemes both for 1-to-4 split and

√
3 split based on C1 quadratic Hermite splines; Chui and Jiang (2005a) obtain

a second-order Hermite basis of the space of C2-quartic splines on a six-dimensional mesh to yield matrix-valued
templates for Hermite interpolatory surface subdivision scheme for the 1-to-4 split triangular topological rule; Chui
and Jiang (2006b) construct refinable quartic and quintic spline function vectors on the four-directional mesh to gen-
erate matrix-valued templates for approximation and Hermite interpolatory surface subdivision schemes, respectively,
for both the

√
2 and 1-to-4 split quadrilateral topological rules.

However, Hermite interpolatory schemes lack the desirable symmetry, and they are too restrictive to be useful
when the templates for extraordinary vertices are considered. A natural extension of interpolatory surface subdivisions
from scalar to matrix considerations is introduced in Chui and Jiang (2005b). More precisely, a subdivision scheme
with matrix-valued templates, generated by some subdivision mask {Pk} corresponding to 2I2 dilation, is called
interpolatory in Chui and Jiang (2005b), if vm+1

2k = vm
k , for all m = 0,1, . . . ,k ∈ Z

2, where vm+1
2k and vm

k are the first
components of vm+1

2k and vm
k , respectively, and vm

k are defined as in (2.1). When we use the first components vm
k to

denote the vertices of the subdivision meshes generated after the mth iteration, this definition precisely assures that
the control points lie on the (limiting) subdivision surface, as in the scalar-valued setting. It is also shown in Chui and
Jiang (2005b) that the algebraic structure of the interpolatory mask {Pk} is given by

P0,0 =

⎡⎢⎢⎣
1 ∗ · · · ∗
0 ∗ · · · ∗
...

... · · · ...

0 ∗ · · · ∗

⎤⎥⎥⎦ , P2j =
⎡⎣0 ∗ · · · ∗

...
... · · · ...

0 ∗ · · · ∗

⎤⎦ , j ∈ Z
2\{(0,0)

}
. (2.4)

We remark that when the matrix dimension r is 1, this property is reduced to the simple algebraic property

p2j = δ(j), j ∈ Z
2, (2.5)

of an interpolatory mask {pk} for the scalar-valued setting, where as usual, we use δ(j) for the Kronecker delta symbol.
It was also shown in Chui and Jiang (2005b) that under certain mild conditions that include the generalized partition
of unity, the algebraic structure in (2.4) is equivalent to the following Lagrange-type interpolation property of the
refinable function vector Φ = [φ0, φ1, . . . , φr−1]T , namely:

φ0(k) = δ(k), φj (k) = 0, k ∈ Z
2, 1 � j � r − 1. (2.6)

Let φb
0 be the minimum support bivariate C2 cubic spline shown in Fig. 2, and φb

1 be the spline defined by (2.3).
Since φb

1 (0,0) = 1 �= 0, and

φb
1

(· − (1,0)
) = φb

1

(· − (−1,1)
) = φb

1

(· − (0,1)
)

= φb
1

(· + (1,0)
) = φb

1

(· + (−1,1)
) = φb

1

(· + (0,1)
) = 1

9
�= 0,

it follows that the masks corresponding to the refinable function vectors [c0φ
b
0 + c1φ

b
1 , c2φ

b
0 + c3φ

b
1 ] are not interpo-

latory for all choices of cj , with c0c3 − c1c2 �= 0. However, as in Chui and Jiang (2005b), by introducing
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φ̃b
1 := φb

1 − φb
0 − 1

9

{
φb

0

(· − (1,0)
) + φb

0

(· − (−1,1)
) + φb

0

(· − (0,1)
)

+ φb
0

(· + (1,0)
) + φb

0

(· + (−1,1)
) + φb

0

(· + (0,1)
)}

,

so that φb
0 , φ̃b

1 satisfy (2.6) (with φ0, φ1 replaced by φb
0 , φ̃b

1 , respectively). It is easy to verify that [φb
0 , φ̃b

1 ]T is also
refinable with respect to the dilation matrices 2I2, so that its refinement mask gives rise to an interpolatory scheme.

In Chui and Jiang (2005b), except this spline-based C2 interpolatory scheme, various matrix-valued spline-based
and non-spline-based interpolatory schemes for

√
3,

√
2 subdivisions and 1-to-4 split triangular and quadrilateral

subdivisions are constructed.

3. C2 cubic spline-based approximation schemes

This section is devoted to the construction of 1-ring templates for extraordinary vertices for the S2
3 -subdivision.

In this paper, we only consider the 1-to-4 split topological rule, and will use {P b
k } to denote the refinement mask of

Φb = [φb
0 , φb

1 ]T corresponding to the dilation matrix 2I2. Observe that for any non-singular 2 × 2 constant matrix U ,
the function vector UΦb is also refinable with respect to the dilation matrix 2I2, with corresponding refinement mask
given by {UP b

k U−1}. We are particularly interested in the choice of

U =
[ 1

3 1

− 1
3 1

]
,

since the subdivision scheme for this choice provides a matrix extension of Loop’s scheme, with some free control (or
shape-control) parameter. More precisely, let Φ = U [φb

0 , φb
1 ]T , namely:

Φ :=
[

1

3
φb

0 + φb
1 ,−1

3
φb

0 + φb
1

]T

. (3.1)

Then the nonzero matrices of its subdivision mask {Pk} are given by

P0,0 =
[ 5

8
3
8

3
8 − 1

8

]
, (3.2)

P1,0 = P−1,0 = P0,1 = P0,−1 = P1,1 = P−1,−1 = X,

P2,1 = P−2,−1 = P1,2 = P−1,−2 = P1,−1 = P−1,1 = Y,

P2,0 = P−2,0 = P0,2 = P0,−2 = P2,2 = P−2,−2 = Z,

where

X =
[ 3

8 0
1
4

1
8

]
, Y =

[ 1
8 0
1
8 0

]
, Z =

[ 1
16 − 1

16
1
16 − 1

16

]
. (3.3)

The templates for the local averaging rule derived from this subdivision mask are shown on the left and in middle
among the three templates in Fig. 3. In this case, the constant vector y0 for which Φ reproduces all non-zero constants
is given by y0 = [1,0]. This means that y0 = [1,0] is the desirable constant vector for which

y0

∑
k∈Z2

Φ(x − k) = const, x ∈ R
2.

The interested reader is referred to Jia and Jiang (2002) and the references therein for some detailed discussion of
polynomial reproduction by Φ . This matrix-valued subdivision scheme with templates on the left and in middle of
Fig. 3 is still refereed as “S2

3 -subdivision”.
In the following, we will introduce the corresponding templates for treating extraordinary vertices such that the S2

3 -
subdivision scheme will assure the eigenvalues λj of the subdivision matrix satisfying λ0 = 1, λ1 = λ2, |λ3| < |λ1|.

For extraordinary vertices with valence n, we will determine the 2 × 2 matrices Wn and W (both depending on n)
for the 1-ring template as shown on the right in Fig. 3. To construct these matrices, we need to analyze the spectral
property of the subdivision matrix. Here, an appropriate labeling of the indices of the vertices is important, and we
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Fig. 3. Templates for S2
3 -subdivision for regular vertices (left and middle), and for extraordinary vertices with valence n (right).

will follow Zorin (1998). Although we need to start with a 3-ring template, it is sufficient to illustrate the order of
the indices by only considering a 2-ring neighborhood of an extraordinary vertex with valence n, as shown in Fig. 4.
To analyze the surface smoothness for 1-ring templates, we first consider a subdivision matrix, denoted by SP , on a
3-ring neighborhood of the extraordinary vertex of valence n. By applying some appropriate permutations to the DFT
of SP , we arrive at a block diagonal matrix (see the first appendix for the derivation), with n diagonal blocks

M0 =
[

m0 ∗
06×8 06

]
, Mj =

[
m1(z

j ) ∗
06 06

]
, 1 � j � n − 1, (3.4)

where

z := ei 2π
n , (3.5)

and

m0 =

⎡⎢⎢⎣
Wn X Z Y

W X + 2Y P0,0 + 2Z 2X

0 0 Z 0
0 0 2Z Y

⎤⎥⎥⎦ ,

m1(z) =
⎡⎣X + Y(z + 1

z
) P0,0 + Z(z + 1

z
) X(1 + z)

0 Z 0

0 Z(1 + 1
z
) Y

⎤⎦ .

Here, Z only has zero eigenvalues, Y has one non-zero eigenvalue 1
8 , and

X + Y

(
zj + 1

zj

)
=

[ 3
8 + 1

4 cos 2πj
n

0
1
4 (1 + cos 2πj

n
) 1

8

]
.

Fig. 4. Labeling of the indices.
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Thus, the non-zero eigenvalues of SP consist of those of the matrix[
Wn X

W X + 2Y

]
as well as the values

1

8
(with multiplicity 2n − 1),

3

8
+ 1

4
cos

2πj

n
, 1 � j � n − 1.

Set

W = 16aZ =
[

a −a

a −a

]
, Wn =

[
1 − a a

x3 x4

]
, (3.6)

where a is the weight used in Loop’s scheme as shown in (1.3), and x3, x4 ∈ R. For such W and Wn, the eigenvalues
of

[
Wn X

W X+2Y

]
consist of the values 1, 1

8 , and

λ± = 5

16
+ x4 − a

2
± 1

16

√
64a2 − 176a + 128ax4 + 25 − 80x4 + 64x2

4 + 256ax3.

Analogous to Loop’s scheme, we set

λ+ =
(

3

8
+ 1

4
cos

2π

n

)2

.

Then we have

x3 = 3

8
, x4 = λ−.

So, by choosing a sufficiently small value of λ−, we can select appropriate values of x4(= λ−). For example, we may
set x4 to be 0, 1

32 , 1
16 , 1

8 or − 1
8 , respectively. Here we would like to remark that for the particular choice of x4 = − 1

8 ,
Wn and W with n = 6 are exactly the same as the weights P0,0 and 6Z for regular vertices, as given in (3.2) and (3.3),
respectively.

For valence n = 4, with the vertices of the octahedron shown on the top-left of Fig. 5 as the control net (or initial
mesh), we apply S2

3 -subdivision. Since the second component of y0 = [1,0] for constant reproduction is 0, according
to a preliminary study of the choice of control parameter in Chui and Jiang (2006a), we simply choose 0 as the control
parameter. The resulting subdivision surfaces are shown on the top-right and bottom-left of Fig. 5 with x4 = − 1

8 and
x4 = 1

16 , respectively. In comparison with the limiting surface obtained by applying Loop’s scheme (shown on the
bottom-right of Fig. 5), it is clear that the S2

3 -subdivision is the desirable choice, particularly for such applications as
point-clouds visualization and reverse engineering, where the data points are used as control vertices.

As discussed above, the leading eigenvalues of the corresponding subdivision matrix SP satisfy the conditions

λ0 = 1, λ1 = λ2, |λ3| < |λ1|. (3.7)

If the characteristic map for the matrix-valued subdivision is regular and injective, then the subdivision surface is C1

near extraordinary vertices (see Reif (1995), Chui and Jiang (2006a)). One may study the regularity and injectivity
of the characteristic map as in Chui and Jiang (2006a) by representing the partial derivatives of the characteristic
map in terms of the Bézier-nets. In this regard, we remark that the regularity and injectivity of the characteristic
maps, corresponding to the matrix-valued subdivision scheme based on φb

0 , φb
1 , have been verified for extraordinary

vertices with valence 3 and 4 in Chui and Jiang (2006a). See also Peters and Reif (1998), Umlauf (2000) for detailed
discussions in the scalar setting. Here and in what follows, let us only retreat to visual judgement as discussed below.

Let U1,U2 be two real-valued (linearly independent) eigenvectors that correspond to the subdominant eigenvalues
λ1, λ2. Note that U1,U2 are 2(6n + 1)-vectors, namely,

U1 = [
u1

1, u
1
2, . . . , u

1
2(6n+1)

]
, U2 = [

u2
1, u

2
2, . . . , u

2
2(6n+1)

]
.

Write

U1 =: [u1, . . . ,u1 ]
, U2 =: [u2, . . . ,u2 ]

,
0 6n 0 6n
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Fig. 5. Initial mesh (top-left), limiting surfaces by S2
3 -subdivision scheme with x4 = − 1

8 (top-right) and x4 = 1
16 (bottom-left), and limiting surface

by Loop’s scheme (bottom-right).

where

u1
� := [

u1
2�+1, u

1
2�+2

]
, u2

� := [
u2

2�+1, u
2
2�+2

]
, � = 0,1, . . . ,6n.

Then the initial control vectors are given by

v0
i :=

[
u1

i

u2
i

]
∈ R

2×2, i = 0,1, . . . .

Let vm
i be the vectors obtained after applying m iterations of the subdivision scheme (for the regular vertices) to v0

i .
Then the first components vm

i of vm
i would converge to the characteristic map (see Zorin (2000) for the scalar setting).

In Fig. 6, with x4 = 1
16 , we show the meshes with vertices v3

i (namely, after 3 subdivision iterations), for extraordinary
vertices with valences n = 3, n = 5, n = 4, n = 7. Observe that self-intersection does not occur. Therefore, these
illustrations suggest the regularity and injectivity of the characteristic maps.

Observe that the (1, 1)-entries of P0,0,X,Y,Z,W,Wn are exactly the same as the weights of the templates for
Loop’s scheme. Therefore, S2

3 -subdivision could be considered as an extension of Loop’s scheme. To confirm the

Fig. 6. Control meshes after 3 iterations for “Characteristic maps” of S2
3 -subdivision scheme with valence n = 3,4,5,7.
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validity of the extension, let vm denote the set of vectors after m subdivision iteration steps. If S denotes the subdivision
operator (in the sense that vm+1 = Svm), then by considering the projection operator

Q :
{
vk = [vk, s1,k]} → {[vk, 0]},

it is easy to see that Q(SQ)m{v0
k} generates the same 3-D surface as Loop’s scheme. By applying the S2

3 -subdivision,
since v0

k = [v0
k, s0

1,k], where {v0
k} denotes the set of control points (or vertices of the control net), we gain a set of

control parameters {s0
1,k} for adaptive application of Loop’s subdivision scheme. In this regard, we remark that it

was illustrated in Chui and Jiang (2006a) that the geometry of the subdivision surfaces could change dramatically,
by considering various choices of these parameters. For this reason, a guide to selecting initial choices of control
parameters is provided in Chui and Jiang (2006a). Finally, since S2

3 -subdivision engages piecewise polynomials of
degree 3 as compared with polynomials of degree 4 of the box-spline B222 for Loop’s scheme, it is perhaps less costly
to evaluate exact values of the limiting S2

3 -subdivision surfaces than the subdivision surfaces obtained by applying
Loop’s scheme.

4. From Loop’s scheme to interpolatory subdivisions

The extension of Loop’s scheme to S2
3 -subdivision does not achieve the interpolatory feature. In Section 2, by

applying the criterion of interpolatory subdivision matrices introduced in Chui and Jiang (2005b), we manipulate the
S2

3 refinement function vector to achieve surface interpolation for regular vertices. In this section, we will take care of
extraordinary vertices with arbitrary valences, again with the interpolation property.

Let φb
0 , φ̃b

1 be the splines defined in Section 2. Then as discussed in Section 2, [φb
0 , φ̃b

1 ]T is also refinable with
respect to the dilation matrices 2I2 and its refinement mask gives rise to an interpolatory scheme. The constant vector
y0 for [φb

0 , φ̃b
1 ]T to preserve all non-zero constants is [1, 1

2 ]. In the following, in order to change y0 to [1,0], we further
normalize [φb

0 , φ̃b
1 ]T to Φc := [φb

0 + 1
2 φ̃b

1 , φ̃b
1 ]T , which is again 2I2-refinable with some corresponding interpolatory

refinement mask. The interpolatory templates generated by this mask are shown in Fig. 7, where

G0,0 =
[

1 3
8

0 − 1
2

]
, J =

[ 31
72 − 1

36
13
36

7
36

]
, K =

[ 7
72

1
72

7
36

1
36

]
,

L =
[

0 − 1
16

0 − 1
8

]
, M =

[− 1
144

1
288

− 1
72

1
144

]
, N =

[− 1
72

1
144

− 1
36

1
72

]
.

This interpolatory subdivision scheme is still spline-based (since each component of Φc is a C2 cubic spline), and
will be called “S2

3 -interpolatory-subdivision” in our discussions.
For extraordinary vertices with arbitrary valences n, we will construct the matrix-valued weights for the templates

shown in Fig. 8, where

J3 =
[ 31

72 s 0
1
4

7
36

]
, K3 =

[ 1
2 − 31

72 s 0
1
4

1
36

]
,

Fig. 7. Templates of C2 cubic spline-based interpolatory scheme for regular vertices (left) and edge vertices (right).
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Fig. 8. Templates of C2 spline interpolatory scheme for extraordinary vertices of valence n (left) and for edge vertices adjacent to an extraordinary
vertex (right).

for some 0 < s � 36
31 , and

Hn =
[

1 α
16

0 x2

]
, H =

[
0 − α

16

0 − 27
8(54−31s)

α

]
,

for some α,x2 ∈ R. To determine s, x2, and α, we analyze the spectral property of the subdivision matrix, to be
denoted by SG, on a 3-ring neighborhood of an extraordinary vertex of valence n. With careful labeling as in Zorin
(1998), certain appropriate permutations are applied to the DFT of SG. Then from the derivation given in the appendix,
we may conclude that SG is similar to a block diagonal matrix with diagonal blocks, Nj , 0 � j � n − 1, given by

N0 =

⎡⎢⎢⎢⎢⎢⎢⎢⎣

Hn J3 L K N M M

H J3 + 2K3 G0,0 + 2L 2J + 2M J + 2M J + N + K K + N + J

0 0 L 2M J K + M M + K

0 0 2L K + 2N 2K J + M J + M

0 0 0 0 N 0 0
0 0 0 0 M M N

0 0 0 0 M N M

⎤⎥⎥⎥⎥⎥⎥⎥⎦
, (4.1)

and

Nj =

⎡⎢⎢⎢⎢⎣
J3 + K3(zj + 1

zj
) G0,0 + L(zj + 1

zj
) J (1 + zj ) + M( 1

zj
+ z2j ) J + M( 1

zj
+ zj ) J + N

zj
+ Kzj K + Nz2j + Jzj

0 L M(1 + zj ) J K + Mzj M + Kzj

0 L(1 + 1
zj

) K + N(zj + 1
zj

) K(1 + 1
zj

) J + M

zj
J + Mzj

0 0 0 N 0 0
0 0 0 M M N

0 0 0 M

zj
N M

⎤⎥⎥⎥⎥⎦ , (4.2)

where 1 � j � n − 1.
Here, by direction calculations, it can be shown that the constant matrices K,L,M,N satisfy the property that, for

each 0 � j � n − 1,[
N 0 0
M M N
M
zj N M

]
has only zero eigenvalues, and[

L M(1 + zj )

L(1 + 1
zj ) K + N(zj + 1

zj )

]
has only two non-zero eigenvalues: 1

8 and − 1
8 . Since for 1 � j � n − 1, J3 + K3(z

j + 1
zj ) has eigenvalues 31

72 s +
(1 − 31

36 s) cos 2πj
n

and 7
36 + 1

18 cos 2πj
n

, it follows that the non-zero eigenvalues of SG are precisely those of the matrix[ Hn J3
H J3+2K3

]
as well as the values

1
(with multiplicity n), −1

(with multiplicity n) and

8 8
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Table 1
Possible choices of x2, α, with k2 := ( 31

72 s + (1 − 31
36 s) cos 2π

n )2

λ− x2 α

0 31
72 s − 1 + k2 4

81
29791s3−190278s2+69192s2k2+401760s−281232k2s+279936(k2−1)

124s−405

1
32

31
72 s − 31

32 + k2 31
81

3844s3−24273s2+8928s2k2+50706s−35640sk2+34992(k2−1)
124s−405

1
16

31
72 s − 15

16 + k2 2
81

59582s3−371907s2+138384s2k2+768366s−542376sk2+524880(k2−1)
124s−405

1
8

31
72 s − 7

8 + k2 4
81

29791s3−181629s2+69192s2k2+366606s−261144sk2+244944∗(k2−1)
124s−405

31

72
s +

(
1 − 31

36
s

)
cos

2πj

n
,

7

36
+ 1

18
cos

2πj

n
, 1 � j � n − 1.

Here, the eigenvalues of[
Hn J3

H J3 + 2K3

]
are 1, 1

4 and two more eigenvalues denoted as λ+, λ−. Hence, analogous to Loop’s scheme and the S2
3 -subdivision

scheme, we may choose

λ+ =
(

31

72
s +

(
1 − 31

36
s

)
cos

2π

n

)2

.

As to λ−, we may allow it to be sufficiently small to facilitate the selection of x2 and α. In Table 1, we list four
possible choices of λ− and the corresponding values of x2, α.

In this table, we note that s is a free parameter with 0 < s � 36
31 . We may just choose s = 36

31 . For example with this
s and setting λ− = 0, we have

x2 = −1

4
, α = 64

29
.

We may also choose other s smaller than 36
31 . For example, if we set s = 34

31 and λ− = 0, then

x2 =
(

17

36
+ 1

18
cos

2π

n

)2

− 19

36
, α = 115520

21789
− 24320

2421

(
17

36
+ 1

18
cos

2π

n

)2

. (4.3)

For these choices of x2, α, the eigenvalues of SG satisfy the property

λ0 = 1, λ1 = λ2, |λ3| < |λ1|,
from which we can conclude that the subdivision surfaces are at least C1, provided that their characteristic maps are
regular and injective (Reif, 1995; Chui and Jiang, 2006a). In Fig. 9, for the scheme with x2, α given in (4.3), we
show the 2-dimensional meshes of v3

i near the extraordinary vertices with valences n = 3, n = 4, n = 5, n = 7, after
this subdivision scheme is applied to the control vectors v0

i constructed from the eigenvectors of the subdominant
eigenvalues of the subdivision matrix SG as described in Section 3. Observe that these meshes suggest the desired
regularity and injectivity properties of the characteristic maps.

Fig. 9. Control meshes after 3 iterations for “Characteristic maps” of cubic spline-based interpolatory scheme with valence n = 3, n = 4, n = 5,
n = 7.
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5. 1-ring C2 interpolatory schemes

The edge template of the S2
3 -interpolatory-subdivision, based on bivariate C2 cubic splines, introduced in Section 4

is no longer 1-ring. On the other hand, non-spline 1-ring C2 interpolatory surface subdivision schemes have been
introduced in our recent work Chui and Jiang (2005b). The subdivision templates for regular vertices from one of
these schemes are shown in the first and second of the three templates in Fig. 10, where the matrix-valued weights are
given by

P0 =
[

1 − 435
256

0 − 91
256

]
, D =

[
0 145

512

0 − 45
512

]
, B =

[ 3
8 0

− 47
512

69
512

]
, C =

[ 1
8 0

− 17
512 − 5

512

]
. (5.1)

The objective of this section is to derive the corresponding templates for extraordinary vertices for this particular 1-
ring interpolatory scheme, which we will call “1-ring-interpolatory-subdivision” for later discussions. The templates
to be constructed are shown on the right among the three templates in Fig. 10. Here, we write

Q = βD =
[

0 145
512β

0 − 45
512β

]
, Qn =

[
1 − 145

512β

0 x1

]
. (5.2)

Analogous to the previous discussions, to determine β,x1, we consider the subdivision matrix S̃P of this interpolatory
scheme on a 3-ring neighborhood of the extraordinary vertex with valence n. Since this scheme has exactly the same
template sizes as those of the S2

3 -subdivision scheme, the formulation of S̃P follows immediately from the subdivi-
sion matrix SP for S2

3 -subdivision scheme, with P0,0,X,Y,Z,Wn,W replaced by P0,B,C,D,Qn,Q, respectively.
Hence, from the discussion on SP in Section 3, we know that S̃P is similar to a block diagonal matrix with the diagonal
blocks, Oj , 0 � j � n − 1, given by

O0 =
[

o0 ∗
06×8 06

]
, Oj =

[
o1(z

j ) ∗
06 06

]
, 1 � j � n − 1, (5.3)

where

o0 =
⎡⎢⎣

Qn B D C

Q B + 2C P0 + 2C 2B

0 0 D 0
0 0 2D C

⎤⎥⎦ ,

o1(z) =
⎡⎣B + C(z + 1

z
) P0 + D(z + 1

z
) B(1 + z)

0 D 0
0 D(1 + 1

z
) C

⎤⎦ .

Observe that D has only one non-zero eigenvalue − 45
512 and C has two non-zero eigenvalues 1

8 and − 5
512 , and that

B + C

(
zj + 1

zj

)
=

[ 3
8 + 1

4 cos 2πj
n

0

− 47
512 − 17

256 cos 2πj
n

69
512 − 5

256 cos 2πj
n

]
.

Thus, the non-zero eigenvalues of S̃P are consist of the eigenvalues of the matrix
[ Qn B

Q B+2C

]
as well as the values

Fig. 10. Templates of 1-ring C2 interpolatory scheme for regular vertices, edge vertices, extraordinary vertices of valence n.
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− 45

512
(with multiplicity n − 1),

1

8
(with multiplicity n − 1), − 5

512
(with multiplicity n − 1),

3

8
+ 1

4
cos

2πj

n
,

69

512
− 5

256
cos

2πj

n
, 1 � j � n − 1.

For the Q and Qn in (5.2), the eigenvalues of
[ Qn B

Q B+2C

]
are given by 1, 59

512 , and

λ± = 5

16
+ x1

2
± 1

64

√
400 − 1280x1 + 1024x2

1 − 155β.

Analogous to Loop’s scheme and S2
3 -subdivision, we may set

λ+ =
(

3

8
+ 1

4
cos

2π

n

)2

,

and choose a sufficiently small value of λ− to facilitate the selection of x1 and β .
For example, if we set λ− = 0, then we have

x1 = −a, β = 512

31
a,

where the value of a, as given in (1.3), is a function of the valence n.
If we choose λ− = 5

256 , then we have

x1 = −155

256
+

(
3

8
+ 1

4
cos

2π

n

)2

, β = 10 − 16

(
3

8
+ 1

4
cos

2π

n

)2

.

For this particular choice of λ−(= 5
256 ), it is worthwhile to mention that by setting n = 6, Qn and Q are exactly the

same as the weights P0 and 6D for regular vertices, as given in (5.1), respectively.
In the following, let us consider the simpler case λ− = 0, and choose

Q = 512

31
aD, Qn =

[
1 − 145

31 a

0 −a

]
, (5.4)

where D is again the matrix given in (5.1) and the formula of a is given in (1.3). For this particular choice, the eigen-
values of the corresponding subdivision matrix satisfy λ0 = 1, λ1 = λ2 with |λ1| < 1 and |λj | < |λ1|, j = 3,4, . . ..
Therefore, if the corresponding characteristic map is regular and injective, then the scheme is at least C1 for extra-
ordinary vertices of arbitrary valence n. In Fig. 11, we show the 2-dimensional meshes of v3

i near the extraordinary
vertices with valences n = 3, n = 4, n = 5, n = 7, after this 1-ring interpolatory subdivision scheme is applied to the
(initial) control vectors v0

i that are constructed from the eigenvectors of the subdominant eigenvalues of the subdivi-
sion matrix S̃P as described in Section 3. Again, these meshes suggest the regularity and injectivity properties of the
characteristic maps.

Since the constant vector y0 for reproduction of constants is given by [1,0], it is tempting to set s0
k,1 = 0. For

example, for the initial triangular control net of saddle shape as shown on the top-left picture of Fig. 12, we obtain the
subdivision surface shown in the top-middle figure by applying the interpolatory scheme in Fig. 10 to control vectors
with control vertices of this net as the first columns, and 0 as the second columns. This requires 5 iterative steps, with
a zoom-in picture shown on the top-right figure to illustrate the detail of the surface. For comparison, the modified

Fig. 11. Control meshes after 3 iterations for “Characteristic maps” of 1-ring interpolatory scheme with valences n = 3, n = 4, n = 5, n = 7.
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Fig. 12. Control net (top-left), and subdivided surface (top-middle) and zoom-in part (top-right) by 1-ring interpolatory scheme in Fig. 10, and
subdivided surface (bottom-left) and zoom-in part (bottom-right) by modified butterfly scheme.

butterfly scheme (Zorin et al., 1996) is applied, again using 5 iterative steps, to yield the subdivision surface and its
zoom-in picture to the same region, shown on the bottom-left and bottom-right figures, respectively.

However, it does not seem to be a good idea to set the shape control parameters to be 0 in general, particularly when
the 1-ring interpolatory scheme is applied to control vertices that are “corner” vertices of a polyhedron. The reason is
that since new vertices generated from each iterative step always lie on the subdivision surface, the first few iterative
steps are particularly important in determining the geometric shape of the subdivision surface. In Appendix B, we will
explain why shape control parameters

s0
j,1 = −tj v

0
j

with tj in (0,2] could be preferable choices for this type of control vertices v0
j . In general, however, since surface

geometry is very sensitive to the change of shape control parameters, the choice of these parameters is an important
issue. This problem will be addressed in our future work.

As an example, let us again consider the octahedron with vertices v0
j , 0 � j � 5, shown on the top-left of Fig. 13

to be put in the first columns of the control vectors. Then applying the interpolatory scheme in Fig. 10 to the control
vectors (v0

j ,−2v0
j ),0 � j � 5, namely, by setting tj = 2, we obtain the finer and finer meshes as shown in Fig. 13,

after 1, 2, 3 iterations, respectively. The limiting surface is shown in the bottom-middle of Fig. 13. With the same
octahedron on the top-left of Fig. 13 as the initial control net, the modified butterfly scheme (Zorin et al., 1996) is
applied to render the limiting surface shown in the bottom-right picture of Fig. 13 for comparison.

Appendix A. Spectral analysis

This subsection is devoted to the discussion of the spectral property of the subdivision matrices. The primary tool is
the discrete Fourier transform (DFT). Although DFT of cyclic (block) matrices has been well studied in the literature,
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Fig. 13. Control net (octahedron, on top-left), finer meshes with 1, 2, 3 iteration steps, and limiting surface (bottom-middle) by 1-ring interpolatory
scheme in Fig. 10, and limiting surface by modified butterfly scheme (bottom-right).

we include a brief discussion here for the convenience of the interested reader not familiar with the topic (see also
Reif et al. (2005)).

Let

C =
⎡⎢⎣

C0 C1 · · · Cn−1
Cn−1 C0 · · · Cn−2
· · · · · · · · · · · ·
C1 C2 · · · C0

⎤⎥⎦ (A.1)

be a cyclic block matrix with r × r sub-matrix Cj blocks. Let z = e
2π
n

i and consider the Kronecker product

Un := [
zkj

] ⊗ Ir = [
zkj Ir

]
k=0,...,n−1, j=0,...,n−1;

of [zkj ] with the identity matrix Ir . Then by direct calculations, the DFT of C, defined by Ĉ := UnCU−1
n , can be

written as

Ĉ = diag
(
Ĉ0, Ĉ1, . . . , Ĉn−1

)
,

with

Ĉj :=
n−1∑
k=0

Ckz
−jk.

Observe that since the matrix C and its DFT Ĉ are similar to each other, they have the same eigenvalues.
In the following, we apply the DFT to transform the subdivision matrices of the S2

3 -subdivision and S2
3 -

interpolatory-subdivision schemes into block diagonal matrices. The following notations are needed for our discus-
sion. First, diag(M0) will denote the matrix C defined in (A.1) with Cj = 0,1 � j � n − 1; that is, diag(C0) is the di-
agonal block matrix with each diagonal block being C0. Clearly, the DFT of diag(C0) is itself. Next, C(C0,C1;Cn−1)
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will denote the matrix C defined in (A.1), but with Cj = 0, j �= 0,1, n − 1. Then, the DFT Ĉ(C0,C1;Cn−1) of
C(C0,C1;Cn−1) is given by

diag

(
C0 + C1 + Cn−1,C0 + C1

1

z
+ Cn−1z, . . . ,C0 + C1

1

zn−1
+ Cn−1z

n−1
)

.

We also use C(C0,C1;Cn−2,Cn−1) to denote the matrix C defined in (A.1) with Cj = 0, j �= 0,1, n − 2, n − 1.

A.1. Subdivision matrix of S2
3 -subdivision

With the order of labeling the indices as illustrated in Fig. 4, the subdivision matrix SP of S2
3 -subdivision (with

templates given in Fig. 3) on a 3-ring neighborhood of an extraordinary vertex with valence n, is⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

Wn [X,X, . . . ,X] [Z,Z, . . . ,Z] [Y,Y, . . . , Y ] 0 0 0

1
n

⎡⎢⎢⎣
W

W
...

W

⎤⎥⎥⎦ C(X,Y ;Y ) C(P0,0,Z;Z) C(X,0;X) diag(X) C(X,0;Y ) C(Y,0;X)

0 0 diag(Z) 0 diag(X) diag(Y ) C(0,0;Y )

0 0 C(Z,Z;0) diag(Y ) C(Y,Y ;0) diag(X) diag(X)

0 0 0 0 0 0 0

0 0 0 0 0 0 0

0 0 0 0 0 0 0

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
.

Then USPU−1, where

U := diag(I2,Un,Un, . . . ,Un)

is a 7 × 7 diagonal block matrix, is given by⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

Wn [X,0, . . . ,0] [Z,0, . . . ,0] [Y,0, . . . ,0] 0 0 0⎡⎢⎢⎣
W

0
...

0

⎤⎥⎥⎦ Ĉ(X,Y ;Y ) Ĉ(P0,0,Z;Z) Ĉ(X,0;X) diag(X) Ĉ(X,0;Y ) Ĉ(Y,0;X)

0 0 diag(Z) 0 diag(X) diag(Y ) Ĉ(0,0;Y )

0 0 Ĉ(Z,Z;0) diag(Y ) Ĉ(Y,Y ;0) diag(X) diag(X)

0 0 0 0 0 0 0
0 0 0 0 0 0 0
0 0 0 0 0 0 0

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
.

Next, let L denote the square matrix (operator) for exchanging kn + j and (j − 2)6 + k + 2 (block matrix) rows,
where 0 � k � 5,2 � j � n + 1. Then following Zorin (2000) in exchanging (block matrix) rows, as well as the
corresponding (block matrix) columns, of USPU−1, we arrive at LUSPU−1L−1, which is a block diagonal matrix
with diagonal blocks given by⎡⎢⎢⎢⎢⎢⎢⎢⎣

Wn X Z Y 0 0 0
W X + 2Y P0,0 + 2Z 2X X X + Y Y + X

0 0 Z 0 X Y Y

0 0 2Z Y 2Y X X

0 0 0 0 0 0 0
0 0 0 0 0 0 0

⎤⎥⎥⎥⎥⎥⎥⎥⎦
,

0 0 0 0 0 0 0
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and ⎡⎢⎢⎢⎢⎢⎢⎣

X + Y(zj + 1
zj ) P0,0 + Z(zj + 1

zj ) X(1 + zj ) X X + Yzj Y + Xzj

0 Z 0 X Y Yzj

0 Z(1 + 1
zj ) Y Y (1 + 1

zj ) X X

0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0

⎤⎥⎥⎥⎥⎥⎥⎦ ,

where 1 � j � n − 1. Therefore, the subdivision matrix SP is similar to a block diagonal matrix with diagonal blocks
given by (3.4), as desired.

A.2. Subdivision matrix of S2
3 -interpolatory-subdivision

By using the same labeling as above, the subdivision matrix SG of the S2
3 -interpolatory-subdivision, with templates

given in Fig. 7 and Fig. 8, on a 3-ring neighborhood of an extraordinary vertex with valence n, is⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

Hn [J3, J3, . . . , J3] [L,L, . . . ,L] [K,K, . . . ,K] [N,N, . . . ,N ] [M,M, . . . ,M] [M,M, . . . ,M]

1
n

⎡⎢⎢⎣
H

H
...

H

⎤⎥⎥⎦ C(J3,K3;K3) C(G0,0,L;L) C(J,M;M,J) C(J,M;M) C(J,N;K) C(K,0;N,J )

0 0 diag(L) C(M,0;M) diag(J ) C(K,0;M) C(M,0;K)

0 0 C(L,L;0) C(K,N;N) C(K,K;0) C(J,M;0) C(J,0;M)

0 0 0 0 diag(N) 0 0
vs0 0 0 0 diag(M) diag(M) diag(N)

0 0 0 0 C(0,M;0) diag(N) diag(M)

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
,

where for n = 3, the (2,4)-block C(J,M;M,J) in the above block matrix is C(J,2M;J ). Withe the same 7 × 7
diagonal matrix U defined above, we see that USGU−1 is given by⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

Hn [J3,0, . . . ,0] [L,0, . . . ,0] [K,0, . . . ,0] [N,0, . . . ,0] [M,0, . . . ,0] [M,0, . . . ,0]⎡⎢⎢⎣
H

0
...

0

⎤⎥⎥⎦ Ĉ(J3,K3;K3) Ĉ(G0,0,L;L) Ĉ(J,M;M,J) Ĉ(J,M;M) Ĉ(J,N;K) Ĉ(K,0;N,J )

0 0 diag(L) Ĉ(M,0;M) diag(J ) Ĉ(K,0;M) Ĉ(M,0;K)

0 0 Ĉ(L,L;0) Ĉ(K,N;N) Ĉ(K,K;0) Ĉ(J,M;0) Ĉ(J,0;M)

0 0 0 0 diag(N) 0 0
0 0 0 0 diag(M) diag(M) diag(N)

0 0 0 0 C(0,M;0) diag(N) diag(M)

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
.

Again, we exchange both kn + j and (j − 2)6 + k + 2 (block matrix) rows and (block matrix) columns of USGU−1,
0 � k � 5,2 � j � n + 1, resulting in the matrix LUSGU−1L−1, which is a block diagonal matrix with diagonal
blocks given by (4.1) and (4.2). That is, the subdivision matrix SG is similar to a block diagonal matrix with diagonal
blocks given by (4.1) and (4.2), as desired.

Appendix B. Shape control parameters for 1-ring interpolatory subdivision

When the 1-ring-interpolatory-subdivision is applied to such vertices as those in the control net on the left of
Fig. 14, the position of an edge vertex is determined by 4 control vectors, v0

0,v0
1,v0

2,v0
3, say, with first components

u0,u1,u2,u3, respectively, which are among the vertices of the control net. Let s0, s0, s0, s0 denote the control para-
0 1 2 3
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Fig. 14. Finer mesh (right picture), after one iteration applied to triangles �u0u1u3 and �u0u1u2 (left picture), with vertex u1 (right picture)
corresponding to the ◦ on the edge [u0,u1] (left picture).

meters (i.e., second components of the control vectors) and u1 a new vertex, after one iteration, that corresponds to
the mid-point v0 = 1

2 (u0 + u1) (indicated by a ◦ in both pictures in Fig. 14) of the edge [u0,u1] of the control net.
Notice that the (1, 1)-entries of B and C are 3

8 and 1
8 , respectively. So, if all of the control parameters s0

0 , s0
1 , s0

2 , s0
3

are set to be [0,0,0]T , then the position u1 (indicated by • on the right of Fig. 14) could be a little too far away from
v0, indicated by ◦ in the same picture. But since this scheme is interpolatory, u1 also lies on the subdivision surface.
Therefore, it is almost certain that the limiting surface could be undesirably wavy. For this reason, it is not advisable
to set all control parameters s0

j to be [0,0,0]T , in general.
On the other hand, for any upper triangular matrix

U =
[

1 −t

0 1

]
, (B.1)

with t ∈ R, where the matrix weights

Pv := UP0U
−1, Dv := UDU−1, Bv := UBU−1, (B.2)

Cv := UCU−1, Qn,v := UQnU
−1, Qv := UQU−1,

provide another interpolatory scheme with templates shown in Fig. 15. This scheme generates subdivision surfaces
with the same order of smoothness as that of the surfaces generated by P0,D,B,C,Qn,Q.

For the new weights Pv,Dv,Bv,Cv,Qn,v,Qv in (B.2), obtained by a similar transformation with the matrix U that
carries a free parameter t , observe that the (1, 1)-entries of Bv,Cv are 3

8 + 47
517 t and 1

8 + 17
517 t , respectively. Hence, for

3
8 + 47

517 t , if we choose the value of t so that 3
8 + 47

517 t is close to 1
2 , then u1 would be close to v0. On the other hand,

for positive values of t , 1
8 + 17

517 t is significantly larger than 0, which implies that u1 is far away from v0. Fortunately,
since the value 47

517 is greater than 17
517 by a factor of 3, it is still advisable to choose a positive value of t . Indeed, a

positive t should imply less oscillation in the limiting surface. For this reason, we conclude that appropriate values of
t in the interval (0,2] should be good choices, in general.

For an initial mesh with control points {v0
j }j (i.e., the control net with {v0

j }j as vertices), it can be shown that
the subdivision surface generated by the 1-ring-interpolatory-subdivision scheme, with weights P0,D,B,C,Qn,Q,

Fig. 15. Templates of 1-ring C2 interpolatory matrix-valued scheme for regular vertices, edge vertices, and extraordinary vertices.
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applied to the control vectors {(v0
j ,−tv0

j )}j is identical to the subdivision surface generated by the scheme, with

weights Pv,Dv, Bv,Cv, Qn,v,Qv, applied to the control vectors {(v0
j ,0)}j . In other words, for a suitable choice of t ,

one could apply the templates in Fig. 10 with initial control vectors {(v0
j ,−tv0

j )}j , or equivalently, the templates in

Fig. 15 with initial control vectors {(v0
j ,0)}j . Therefore, from this observation and the discussion in the previous

paragraph, shape control parameters s0
j,1 = −tj v

0
j with some suitable tj in (0,2] should be good choices for control

vertices v0
j of the same type as those illustrated on the left of Fig. 14.

References

Catmull, E., Clark, J., 1978. Recursively generated B-splines surfaces on arbitrary topological meshes. Comput. Aided Design 10, 350–355.
Chui, C.K., Jiang, Q.T., 2003. Surface subdivision schemes generated by refinable bivariate spline function vectors. Appl. Comput. Harmonic

Anal. 15, 147–162.
Chui, C.K., Jiang, Q.T., 2005a. Refinable bivariate C2-splines for multi-level data representation and surface display. Math. Comp. 74, 1369–1390.
Chui, C.K., Jiang, Q.T., 2005b. Matrix-valued symmetric templates for interpolatory surface subdivisions I. Regular vertices. Appl. Comput.

Harmonic Anal. 19, 303–339.
Chui, C.K., Jiang, Q.T., 2006a. Matrix-valued subdivision schemes for generating surfaces with extraordinary vertices. Comput. Aided Geom.

Design 23, 419–438.
Chui, C.K., Jiang, Q.T., 2006b. Refinable bivariate quartic and quintic C2-splines for quadrilateral subdivisions. J. Comput. Appl. Math. 196,

402–424.
Doo, D.W.H., Sabin, M.A., 1978. Analysis of the behaviour of recursive division surfaces near extraordinary points. Computer Aided Design 10,

356–360.
Dyn, N., Gregory, J.A., Levin, D., 1990. A butterfly subdivision scheme for surface interpolation with tension control. ACM Trans. Graphics 2,

160–169.
Han, B., Yu, T., Piper, B., 2004. Multivariate refinable Hermite interpolants. Math. Comput. 73, 1913–1935.
Jia, R.Q., Jiang, Q.T., 2002. Approximation power of refinable vectors of functions. In: Wavelet Analysis and Applications. In: AMS/IP Stud. Adv.

Math., vol. 25. Amer. Math. Soc., Providence, RI, pp. 155–178.
Jia, R.Q., Jiang, Q.T., 2003. Spectral analysis of transition operators and its applications to smoothness analysis of wavelets. SIAM J. Matrix Anal.

Appl. 24, 1071–1109.
Loop, C., 1987. Smooth subdivision surfaces based on triangles. Master’s thesis, University of Utah, Salt Lake City.
Peters, J., Reif, U., 1997. The simplest subdivision scheme for smoothing polyhedra. ACM Trans. Graphics 16, 34–73.
Peters, J., Reif, U., 1998. Analysis of algorithms generalizing B-spline subdivision. SIAM J. Numer. Anal. 35, 728–748.
Reif, U., 1995. A unified approach to subdivision algorithms near extraordinary vertices. Comput. Aided Geom. Design 21, 153–174.
Reif, U., Peters, J., 2005. Structural analysis of subdivision surfaces—a summary. In: Jetter, K., et al. (Eds.), Topics in Multivariate Approximation

and Interpolation, 2005.
Umlauf, G., 2000. Analyzing the characteristic map of triangular subdivision schemes. Constr. Approx. 16, 145–155.
Warren, J., Weimer, H., 2002. Subdivision Methods for Geometric Design: A Constructive Approach. Morgan Kaufmann Publ., San Francisco.
Zorin, D., 1998. Stationary subdivision and multiresolution surface representations. PhD thesis, California Institute of Technology, Pasadena.
Zorin, D., 2000. A method for analysis of C1-continuity of subdivision surfaces. SIAM J. Numer. Anal. 37, 1677–1708.
Zorin, D., Schröder, P., DeRose, A., Kobbelt, L., Levin, A., Sweldens, W., 2000. Subdivision for Modeling and Animation, SIGGRAPH 2000

Course Notes.
Zorin, D., Schröder, P., Sweldens, W., 1996. Interpolating subdivision for meshes with arbitrary topology, SIGGRAPH 96, pp. 189–192.


