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Abstract

We develop a local Lagrange interpolation scheme for quartic C1 splines on triangulations. Given an arbitrary triangulation �,
we decompose � into pairs of neighboring triangles and add “diagonals” to some of these pairs. Only in exceptional cases, a few
triangles are split. Based on this simple refinement of �, we describe an algorithm for constructing Lagrange interpolation points such
that the interpolation method is local, stable and has optimal approximation order. The complexity for computing the interpolating
splines is linear in the number of triangles. For the local Lagrange interpolation methods known in the literature, about half of the
triangles have to be split.
© 2007 Elsevier B.V. All rights reserved.
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1. Introduction

There exists a vast literature on local Hermite interpolation, quasi-interpolation and related methods for splines on
triangulations (cf. the survey of Nürnberger and Zeilfelder [24] and the references therein). On the other hand, local
Lagrange interpolation methods for bivariate splines were developed only in the past five years [14,18–21,25–28,30].
The difficult problem of local Lagrange interpolation with bivariate splines was first formulated and discussed in the
book of Chui [4]. This is an important problem in many fields of applications, since for the reconstruction of surfaces
only data are used and no derivatives. In this connection, we note that it is known that if one would use a Hermite
interpolation method (instead a Lagrange interpolation method), one would lose one approximation order. In particular,
Hermite interpolation methods do not guarantee to obtain the approximate derivatives by some local method in the
desired approximation order.
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We denote by Sr
q(�) the space of splines of degree q and smoothness r on a triangulation �. The Lagrange inter-

polation problem for Sr
q(�) is to construct sets {z1, . . . , zd} such that for any given data f1, . . . , fd a unique spline

exists such that

s(zi) = fi, i = 1, . . . , d,

where d is the dimension of Sr
q(�). Roughly speaking, local Lagrange interpolation means that for i = 1, . . . , d, the

change of the value fi changes the interpolating spline s locally in a neighborhood of zi .
A fundamental problem is to develop local Lagrange interpolation methods which have optimal approximation order.

It is well known that for arbitrary triangulations �, the space Sr
q(�) has optimal approximation order if q �3r + 2 (cf.

[7,16,10]). For q < 3r + 2, the approximation order of Sr
q(�) for arbitrary triangulations � is not optimal (cf. [3]). In

order to obtain optimal approximation order for the space S1
4(�), the triangulation � has to be modified (cf. [5,6], see

also [11]). Non-local methods are developed in [1,9,23].
Local Lagrange interpolation methods with optimal approximation order were developed recently in [14,28,18,19,15]

for the spaces S1
q(�), q �3, and Sr

q(�) for r �2 and certain q, where about half of the triangles of � are split into

three subtriangles. The resulting triangulation �̂ has twice as much triangles as �.
In this paper, we describe the first local Lagrange interpolation method with optimal approximation order for S1

4(�̃),
where only “diagonals” are added to � and in exceptional cases, a few triangles of � are split. In this case, the resulting
triangulation �̃ has a simpler structure than �̂. Moreover, the number of triangles in �̃ increases only by the factor of
about 3

2 , since for about half of the quadrangles (formed of two triangles from �) a diagonal is added. The aim of the
paper is to develop a local Lagrange interpolation method with optimal approximation order for quartic C1 splines on
arbitrary triangulations. Since this spline space does not possess optimal approximation order, the triangulation has to
be refined.

The idea of our algorithm is as follows: given an arbitrary triangulation �, we decompose � into pairs of neighboring
triangles i.e., convex and non-convex quadrangles, where only some isolated triangles remain. Then by consider-
ing common edges of these quadrangles, we create certain classes of quadrangles. Based on these classes, we add
“diagonals” to some of the convex and non-convex quadrangles (see Fig. 7). Only in exceptional cases, a few triangles
of � are split. The resulting triangulation is denoted by �̃. Then based on this decomposition, we choose interpolation
points, first on the edges of the quadrangles and then in their interior.

In this way, we obtain a Lagrange interpolation set for S1
4(�̃). By using the above structure, we prove that the

corresponding interpolation method is local, stable and has optimal approximation order, i.e.,

‖f − s‖�K · h5,

where h is the maximal diameter of the triangles in �̃, ‖.‖ is a standard norm, and K is a constant depending on the
smallest angle of �. In order to guarantee these properties, degenerate and near-degenerate edges have to be taken into
special consideration. The complexity for computing the interpolating splines is linear in the number of triangles.

Local Lagrange methods are important for the construction and reconstruction of surfaces, since only data are needed
and no derivatives. A standard approach is as follows. Given scattered data, in practice, one constructs a continuous
linear spline based on a fine triangulation (which for example, represents a real world object) with approximation
order h2

fine (where hfine is the mesh size of the fine triangulation). This linear spline interpolates the given data. The
corresponding fine triangulation depends on the data and is not regular, in general. Then by using the information of
the linear splines, a coarse subtriangulation (which in general, is not a regular triangulation) with larger mesh size h is
constructed by using mesh simplification methods (see [8,13], for instance). By applying Lagrange interpolation one
constructs a quartic C1 interpolating spline defined on the coarse subtriangulation which interpolates the linear spline.
The data are taken directly from the linear spline. This is done such that, in our case, h2

fine is about h5. In this way,
significant data compression rates are obtained. Obviously, this method is more effective than to use a regular coarse
triangulation and the C1 spline interpolates at a subset of characteristic points.

Numerical tests of local Lagrange interpolation methods for bivariate splines (involving test functions as well as real
world data) and further details on the implementation of our approach were given in Nürnberger et al. [21], Nürnberger
and Zeilfelder [26,28], and Zeilfelder [31] (see also [23–25,30]). The tests showed that these interpolation methods
lead to significant data compressions and work efficiently, i.e., the interpolating splines can be computed on a standard
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PC for large data sets with up to millions of points. Moreover, in Nürnberger and Zeilfelder [28] examples comparing
Lagrange and Hermite interpolation are discussed.

The paper is organized as follows. In Section 2, we describe quartic C1 splines, its piecewise Bézier–Bernstein
form, the interpolation problem, and smoothness conditions. Algorithms for decompositing and refining arbitrary
triangulations are given in Section 3. Our approach of constructing local Lagrange interpolation points and the main
result are presented in Section 4. In Section 5, we give some auxiliarly results, which we use in the proof of the main
theorem to be found in the final section. We conclude the final section by giving an error bound of our interpolation
method and a remark.

2. Spline spaces and interpolation

Throughout the paper, we consider the space of bivariate C1-splines of degree 4 (quartic C1 splines) with respect to
�, defined as

S1
4(�) = {s ∈ C1(�): s|T ∈ P4, T ∈ �},

where P4 = span{xiyj : i, j �0, i + j �4} denotes the space of bivariate polynomials of degree 4 and C1(�) the space
of all continuously differentiable functions on �.

We use the well-known Bézier–Bernstein representation of bivariate splines. Given a triangle T = �(v1, v2, v3) in
�, let

DT := {P [T ]
i,j,k := (iv1 + jv2 + kv3)/4: i + j + k = 4}

be the set of domain points on T. Then, every quartic spline s can be written as

s|T (z) =
∑

i+j+k=4

a
[T ]
i,j,k · Bi,j,k(z), z ∈ T , (1)

where

Bijk(z) = 4!/(i!j !k!)�i
1(z)�

j
2(z)�

k
3(z)

are the Bernstein (basis) polynomials of degree 4 associated with T. Here, �m, m = 1, 2, 3 are the unique linear
polynomials satisfying the interpolation property �m(vl) = �ml, l = 1, 2, 3 called barycentric coordinates. It is well
known that every continuous quartic spline is uniquely determined by the Bézier Bernstein coefficients a

[T ]
i,j,k , i+j+k=4,

T ∈ �.
A set L = {z1, . . . , zd} ⊆ �, where d is the dimension of a spline space S1

4(�), is called a Lagrange interpolation
set for S1

4(�), if for any given data f1, . . . , fd , a unique spline s ∈ S1
4(�) exists such that

s(zi) = fi, i = 1, . . . , d. (2)

A Lagrange interpolation method for S1
4(�) is called n-local if there exists an integer n such that for each Bézier

Bernstein coefficient ai,j,k of the interpolating spline s ∈ S1
4(�), the following condition holds: there exists a suitable

vertex v such that ai,j,k is uniquely determined using only the interpolation values in Li,j,k := L ∩ stn(v). Here
st(v) = st1(v) ⊆ � denotes the union of all triangles with vertex v and

stn(v), n�2, (3)

is defined inductively as the union of all triangles in � that intersect stn−1(v) (see Fig. 1). We say that a Lagrange
interpolation method for S1

4(�) is local, if the method is n-local for a suitable n. Moreover, such an interpolation
method is called stable, if there exists a constant C depending only on the smallest angle in � such that each Bézier
Bernstein coefficient ai,j,k of the interpolating spline s ∈ S1

4(�), satisfies

|ai,j,k|�C · max
z∈Li,j,k

|f (z)|. (4)

In the following, we recall a well-known result (cf. [2,4,12]) in our setting of quartic C1 splines. The next theorem
characterizes the C1 smoothness of two bivariate quartic polynomial pieces in their Bézier–Bernstein representation
on neighboring triangles across the common edge.
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Fig. 1. Stars for a vertex v. The region st(v), st2(v) and st3(v) is marked dark gray, bright gray and white, respectively.

Theorem 1. Let two neighboring triangles T1 = �(v1, v2, v3) and T2 = �(v1, v2, v4) and a continuous spline s on
T1 ∪ T2 with

s|T1
= p1 =

∑
i+j+k=4

a
[T1]
i,j,kBi,j,k and s|T2

= p2 =
∑

i+j+k=4

a
[T2]
i,j,kBi,j,k ,

be given. Then, s is differentiable across the common edge [v1, v2], if and only if for all i + j = 3,

a
[T2]
i,j,1 = a

[T1]
i+1,j,0�1(v4) + a

[T1]
i,j+1,0�2(v4) + a

[T1]
i,j,1�3(v4). (5)

We note that it follows immediately from (5) that

|a[T2]
i,j,1| =

∣∣∣a[T1]
i+1,j,0�

[T1]
1 (v4) + a

[T1]
i,j+1,0�

[T1]
2 (v4) + a

[T1]
i,j,1�

[T1]
3 (v4)

∣∣∣
�C · max{|a[T1]

i+1,j,0|, |a[T1]
i,j+1,0|, |a[T1]

i,j,1|}, (6)

and, if �[T1]
1 (v4) �= 0,

|a[T1]
i+1,j,0| =

∣∣∣(1/�[T1]
1 (v4))(a

[T2]
i,j,1 − a

[T1]
i,j+1,0�

[T1]
2 (v4) − a

[T1]
i,j,1�

[T1]
3 (v4))

∣∣∣
�C̃ · max{|a[T2]

i,j,1|, |a[T1]
i,j+1,0|, |a[T1]

i,j,1|}, (7)

where i + j = 3. The constant C depends only on the smallest angle in T1. Moreover, it is obvious that the constant
C̃ depending on the angle � (v3, v1, v4) is non-zero, if it exists, i.e., �[T1]

1 (v4) �= 0, or equivalently, the vertices v2, v3,
and v4 do not lie on a common line.

In addition, we use the following important notions throughout the paper. Two triangles T1, T2 from � are called
neighboring triangles if they share a common edge e. An edge e is called degenerate at a vertex v if the remaining edges
of T1 and T2 with endpoint v have the same slope. Moreover, choosing a small � > 0, we call an edge e near-degenerate
at the vertex v, if the angle between the remaining edges of T1 and T2 with endpoint v is in [�− �, �+ �]. We choose � as
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e e e

Fig. 2. Degenerate, near-degenerate and proper edge (from left to right).

small as possible but big enough such that the Bézier–Bernstein coefficients of the interpolating splines can be computed
in a stable way. If e is neither degenerate nor near-degenerate at both vertices, then we call e a proper edge. Fig. 2
illustrates these notions. The algorithms described in the next section (decomposition of triangulation, classification of
quadrangles) result in a refinement �̃ of the given triangulation �, where we add some additional degenerate edges and
take care of the near-degenerate case.

3. Decomposition and refinement of triangulations

In Section 4, we describe our algorithm for constructing local interpolation sets for quartic C1 splines. For doing
this, we first decompose a given triangulation by considering degenerate and near-degenerate edges. Based on this
decomposition, we create classes of quadrangles and then refine the triangulation.

3.1. Decomposition of triangulations

Let a triangulation � of a polygonal domain � ⊆ R2 be given i.e., � is a set of closed triangles such that each
non-empty intersection of two triangles in � is a common edge or a common vertex.

In the following, we decompose � into three disjoint sets denoted by �T , �1
Q, and �2

Q. �1
Q and �2

Q consist of

quadrangles Q formed by pairs of neighboring triangles T1, T2 in �. �2
Q contains quadrangles with proper diagonals,

while the quadrangles in �1
Q contain degenerate or near-degenerate diagonals. Our algorithm guarantees that any two

quadrangles from �1
Q do not have a common edge. �T consists of some remaining isolated triangles not contained in

�1
Q and �2

Q.

Algorithm 1 (Decomposition of �). (i) Let e1, . . . , en be the interior edges of the triangulation � which are proper
and let the sets �1

Q, �2
Q and �T be empty. Let all triangles of � be unmarked. (ii) Start an inductive procedure with

e1 by putting the quadrangle Q = T1,1 ∪ T1,2 into �2
Q, where T1,1 and T1,2 are the neighboring triangles of � which

have e1 as a common edge. Mark the triangles T1,1 and T1,2. (iii) For i = 2, . . . , n, apply the inductive step with ei

as follows. If Ti,1 and Ti,2 are the neighboring triangles of �, which have ei as a common edge and both triangles are
unmarked, then put the quadrangle Q = Ti,1 ∪ Ti,2 into �2

Q, and mark the triangles Ti,1 and Ti,2. Otherwise, omit ei .
(iv) Put all unmarked triangles of � into �T which have no unmarked neighbors. Mark these triangles. (v) If Ti,1 and
Ti,2 are two unmarked neighboring triangles of � such that all other neighboring triangles of � are marked, then put
Q = Ti,1 ∪ Ti,2 into �1

Q. Mark the triangles Ti,1 and Ti,2. (vi) The remaining unmarked triangles of � form chains of

length at least three. Add edges as shown in Fig. 3 and put quadrangles and triangles into �2
Q, �1

Q, and �T according
to steps (iii), (iv), and (v) of the algorithm. (vii) If no unmarked triangles of � remain, the algorithm stops.

We illustrate Algorithm 1 with two examples shown in Figs. 4 and 5. In these figures the quadrangles from �2
Q

are marked gray, while the quadrangles with (near-)degenerate diagonals i.e., quadrangles in �1
Q, are marked white,

and �T is illustrated by black triangles. We note that the quadrangles in �1
Q are identified by the algorithm, since we

have to be free to choose appropriate interpolation points (see next section) close to the near-degenerate edges. These
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Fig. 3. The remaining unmarked triangles after step (v) of Algorithm 1 yield chains of length at least three. In this case, the interior edges are
degenerate or near-degenerate at some vertex such that no pairs of triangles for �2

Q can be combined. Considering three such triangles, three cases
can occur. In the cases (a) and (b) the second “diagonale” and in the case (c) a Clough–Tocher split creates further proper edges and quadrangles
that break the chains.

Fig. 4. Decomposition of uniform triangulations, i.e., three- and four-directional meshes.

Fig. 5. Decompositions of a general triangulation. The quadrangles from �2
Q are colored gray, while the quadrangles with (near-) degenerate diagonals

i.e., quadrangles in �1
Q, are white. Triangles in �T are marked black. The decomposition obtained from Algorithm 1 is not unique in general.

examples show that in general, only steps (i)–(v) are necessary for the complete decomposition of the triangulation.
However, there exist exceptional cases with many degenerate edges, such that step (vi) has to be applied. We remark
that, if (vi) has to be applied, it immediately follows from steps (iv) and (v) that the remaining unmarked triangles form
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K0 K1 K3 K4K2

Fig. 6. From the left to the right: quadrangles in the class Kj , j = 0, . . . , 4. K2 consists of three subclasses. Common edges with quadrangles in
K0, . . . ,Kj−1 and triangles of �T , respectively, are illustrated by thicker lines.

chains of length at least three, which are treated inductively. In particular, Fig. 3 shows which edges are added to �,
when this case occurs (see also Section 3.3). Also note that it is clear that �T consists of isolated triangles, because
otherwise a further quadrangle would have been chosen by the algorithm. Moreover, it is obvious that the decomposition
obtained by applying Algorithm 1 is not unique in general (see Fig. 5). On the other hand, each decomposition has
more or less the same properties, namely the number of quadrangles in �1

Q is essentially smaller than the number of

quadrangles in �2
Q, and �T consists of a relatively small set of triangles. The four-directional mesh (Fig. 4, right) is a

quite typical example with many degenerate edges, but the algorithm creates many quadrangles in �2
Q, because proper

edges are considered first.

3.2. Classification according to common edges

Based on the decomposition of � from the previous subsection, we further classify the quadrangles of �1
Q and �2

Q.
Roughly speaking, we construct five classes Kj , j = 0, . . . , 4, of quadrangles such that each Q ∈ Kj has exactly j
common edges with quadrangles in Kl , l = 0, . . . , j . Here, we use the priority principles introduced in [28] (see also
[14,18,19,31]) which is the key for the locality of our interpolation method (Fig. 6).

Algorithm 2 (Classification of quadrangles). Step (i) Start with Kj =∅, j = 0, . . . , 4. Put all quadrangles of �1
Q into

K0 and mark all triangles in �T and all quadrangles in �1
Q. Let the quadrangles Q1

1, . . . , Q
1
m1

of �2
Q be unmarked. For

j =1, . . . , 4 proceed with step (j +1), which is as follows. Let Q
j
1, . . . , Q

j
mj

be the remaining unmarked quadrangles.

For i = 1, . . . , mj consider Q
j
i . If Q

j
i has exactly j − 1 common edges with the marked triangles and quadrangles,

then put Q
j
i into the class Kj−1 and mark Q

j
i . Otherwise, omit Q

j
i . Step (vi) Put the remaining unmarked quadrangles

into K4.

The different classes of quadrangles produced by Algorithm 2 are shown in Fig. 6. Note that quadrangles containing
near-degenerate edges are put into class K0. The reason for doing this is that these edges have to be handled with care
to guarantee the stability of the interpolation method, and our approach described below shows that this can be done
by choosing an appropriate set of interpolation points in the quadrangles of �1

Q.

Lemma 2. The following statements hold:

(i) No two elements in �T ∪ K0 have a common edge.
(ii) All quadrangles in �1

Q are contained in K0.
(iii) No two quadrangles in Kj , j ∈ {1, . . . , 4}, have a common edge.

Proof. According to steps (iv) and (v) of Algorithm 1, no two elements in �T ∪�1
Q have a common edge. Moreover, by

step (ii) of Algorithm 2 a quadrangle in �2
Q has no marked neighbor, when it is put into K0. This proves (i). Statement

(ii) is an immediate consequence of step (i) of Algorithm 2. Now, let us assume that two quadrangles Q1 and Q2 in
Kj , j ∈ {1, . . . , 4}, have a common edge. Then according to Algorithm 2, both quadrangles had exactly j marked
neighbors when they are chosen by the algorithm. We may assume that Q1 has been considered before Q2. Hence,
Q1 was already marked, when considering Q2. This implies that before Q1 is considered, Q2 has only j − 1 marked
neighbors, such that Q2 would have been put into Kj−1 in an earlier step. This is a contradiction. This completes the
proof. �
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(8) (9)

(1) (2) (3) (4) (5)

(6) (7) (10)

Fig. 7. Refinement of the quadrangles in Kj , j = 2, . . . , 4. The edges in common with neighboring quadrangles from Ki , i = 0, . . . , j − 1, and

triangles from �T are shown as thicker lines. The edges added to define �̃ are shown as dashed lines. (1), (2), (6), and (7) show the convex and
non-convex cases, where a quadrangle in K2 is not refined. In these cases the thick edges belong to different triangles. In the convex cases (3), (4),
and (5), the second diagonal is added. In the non-convex cases (8), (9), and (10) the midpoint of the diagonal is connected to the remaining two
vertices.

3.3. Refinement of triangulation

In this subsection, we describe a refinement of the triangulation suitable for our local Lagrange interpolation method.
Let � be an arbitrary triangulation and the sets �1

Q, �2
Q, and �T as well as the classes Kj , j =0, . . . , 4, be constructed

as in the previous subsections. We emphasize that it follows from the above that in some exceptional cases a few
triangles of � have already been refined.

Consider each quadrangle in �2
Q. In two cases Q will be refined. (i) Q is in K3 or K4, or (ii) Q is in K2 and

moreover, both edges of Q in common with some quadrangles and triangles in K0, K1, and �T , respectively, are
edges of the same triangle in contained in Q (see Fig. 7, (3) and (8)).

Let Q be such a quadrangle and [u, v] be its diagonal. We refine Q as follows. (i) If Q is convex, then we add the
second diagonal i.e., we connect the remaining two vertices of Q. (ii) If Q is non-convex, then we connect the remaining
two vertices of Q with the midpoint ( 1

2 )(u + v) of its diagonal. We denote the refined triangulation by �̃.

Remark. If we add the second diagonal to a convex quadrangle Q, the angles of the resulting refined partition are only
bounded from below by �/2. Hence, in particular cases where angles �� may appear, we treat such quadrangles in the
same way as described in (ii) for the non-convex case. For simplicity, we did not formulate this as a special rule in the
above refinement.

4. Construction of interpolation points

We choose points for unique interpolation by quartic C1 splines on �̃. First, we choose points on the edges of the
refined triangulation �̃. These points uniquely determine the interpolating spline on all edges of the quadrangles in
�1

Q, but only on the boundary edges of the quadrangles in �2
Q. In a second step, interpolation points are chosen in the

interior of the quadrangles based on the corresponding class.
Let �̃, �1

Q, and �2
Q be constructed as described in Section 3. First, we create an additional classification Nj ,

j = 0, . . . , 4, of the quadrangles in �1
Q and �2

Q, with respect to common vertices. Then according to these classes, we
choose the interpolation points on the edges.

Algorithm 3 (Classification with respect to common vertices). (i) Start with Nj =∅, j = 0, . . . , 4, and let all vertices
of �̃ be unmarked. (ii) For j = 0, . . . , 3 consider the quadrangles Q1, . . . , Qn of �1

Q and �2
Q. If Qi has exactly j

marked vertices, then put Qi into the class Nj and mark the vertices of Qi . Otherwise, omit Qi . (iii) The remaining
quadrangles yield the class N4.

The following observations are essential for the locality of our interpolation method.
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Lemma 3. The following statements hold:

(i) No two quadrangles in N0 have a common vertex.
(ii) If two quadrangles in Nj , j = 1, . . . , 4, have a common vertex v, then there exists a quadrangle in Ni , i < j ,

with vertex v.

Proof. Since all vertices of a quadrangle assigned to N0 have to be unmarked, no vertex of � can be a vertex of two
(different) quadrangles in N0. This proves (i). Now, let Q1, Q2 be two quadrangles in Nj , j ∈ {1, . . . , 4}, with a
common vertex v. We may assume that Q1 has been assigned before Q2. Then, v is marked when Q2 is assigned by
Algorithm 3. Now, let us assume that v was also unmarked before Q1 has been assigned. Then before Q1 was assigned,
Q2 would have had v and j − 1 unmarked vertices differing from v. In this case Q2 would have been put into Nj−1,
in an earlier step. This is a contradiction. Therefore, v was already marked when Q1 has been considered. Hence, there
exists a quadrangle in Ni , i < j , with vertex v. This completes the proof. �

In the following, we construct Lagrange interpolation points for S1
4(�̃). We first choose points on the edges and then

in the interior of the triangles of �̃.
Let Q be a quadrangle consisting of two triangles T1 = �(v1, v2, v3) and T2 = �(v1, v3, v4). We may assume that

v1, . . . , vk , k ∈ {1, . . . , 4}, are the marked vertices of Q, as Q was assigned to Nk . Then we define Le
Q as the set of

points ((4 − �j )vj + �j vj+1)/4, v5 := v1, where (i) �j = 0, . . . , 3, j = 1, . . . , 4, if Q is in N0, (ii) �1 = 2, 3, �2,
�3 = 0, . . . , 3, �4 = 0, 1, 2, if Q is in N1, (iii) �1 = 2, �2 = 2, 3, �3 = 0, . . . , 3, �4 = 0, 1, 2, if Q is in N2, (iv) �1,
�2 = 2, �3 = 2, 3, �4 = 0, 1, 2, if Q is in N3, and (v) �j = 2, j = 1, . . . , 4, if Q is in N4 (see Fig. 8, upper row).

Moreover, we replace (3v1 + v2)/4 (if contained in Le
Q) by (3v1 + v3)/4, and replace (v2 + 3v3)/4 (if contained

in Le
Q) by (v1 + 3v3)/4, and add (v1 + v3)/2, if the quadrangle Q is in �1

Q i.e., if its interior edge is degenerate or
near-degenerate (see Fig. 8, lower row).

Moreover, for each triangle T =�(v1, v2, v3) in �T , we define Le
T to be the set of points v1 and ((4−�)v1 +�vj )/4,

� = 1, 2, j = 2, 3, if T has two boundary edges [v1, v2] and [v1, v3], and the point (v1 + v2)/2, if T has exactly one
boundary edge [v1, v2]. Otherwise, let Le

T be empty.
Finally, let

Le :=
⎛
⎜⎝ ⋃

Q∈�1
Q∪�2

Q

Le
Q

⎞
⎟⎠ ∪

⎛
⎝ ⋃

T ∈�T

Le
T

⎞
⎠ . (8)

Now, we choose additional points in the interior of the quadrangles. Let Q be a quadrangle consisting of two triangles
T1 = �(v1, v2, v3) and T2 = �(v1, v3, v4). If Q is refined (see Section 3.3), then we denote the triangles of Q by

T1 T2

v1

v2

v3

v4

N2 N3N1N0 N4

Fig. 8. Chosen points on the edges of the quadrangles. Each Nj , j = 0, . . . , 4, represents a quadrangle in the class Nj . The points on the edges of

the quadrangles in �2
Q (upper row) and the quadrangles in �1

Q (lower row) are marked by black dots. From the left to the right: none, one, two, and
three vertices of the quadrangles are marked by Algorithm 3. For illustrating purposes we assume here that v1, . . . , vj are the marked vertices, if
the quadrangle is in Nj .
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T1 T2
T2

T3

T4
T1

v2

v3

v2

v3

v1

v4

v1

v4
v

(1) (3) (4) (5)(2)

(9)(8)(7) (10)(6)

Fig. 9. Lagrange points chosen in the interior of the quadrangles are marked by black dots. Marked edges of the quadrangles are illustrated by thicker
lines. In (1)–(4), the quadrangles are not refined and the choice of interpolation points coincides in the convex and non-convex case. In (5)–(10),
where the quadrangles are refined, one additional interpolation point is chosen in the convex case.

Tj = �(z, vj , vj+1), j = 1, . . . , 4, where v5 := v1, and z is the new vertex in the interior of Q. We define Li
Q as a set

of points in Q in correspondence to the assigned class Kj , j ∈ {0, . . . , 4} of Algorithm 2. Seven cases occur:
(i) Q ∈ K0. Then, we choose the five points (2v1 + v2 + v3)/4, (v1 + 2v2 + v3)/4, (v1 + v2 + 2v3)/4, (v1 + v3)/2,

and (v1 + v3 + 2v4)/4 (see Fig. 9, (1)). (ii) Q ∈ K1. Let [v1, v2] be the marked edge when assigning Q. Then, we
choose the three points (v1 + v2 + 2v3)/4, (v1 + v3)/2, and (v1 + v3 + 2v4)/4 (see Fig. 9, (2)). (iii) Q ∈ K2. Let
[v1, v2] and [v1, v4] be the marked edge when Q was assigned. Then, we choose the point (v1 + v2 + 2v3)/4 (see Fig.
9, (3)). (iv) Q ∈ K2. Let [v1, v2] and [v3, v4] be the marked edge when Q was assigned. Then, we choose the point
(v1 + v3)/2 (see Fig. 9, (4)). In the remaining cases Q is refined. (v) Q ∈ K2. Let [v1, v2] and [v2, v3] be the marked
edge when Q was assigned. Then, we choose the points ((3−�)v1 +v2 +�z)/4, �=2, 3, ((4−�)v1 +�z)/4, �=2, 3, 4,
and ((2 − �)v1 + �z + 2v4)/4, � = 1, 2. Moreover, we choose (z + v3)/2 if and only if Q is convex (see Fig. 9, (5) and
(6)). (vi) Q ∈ K3. Let [v1, v2], [v2, v3], and [v4, v1] be the marked edge when Q was assigned. Then, we choose the
points ((3 − �)v1 + v2 + �z)/4, �= 2, 3, ((4 − �)v1 + �z)/4, �= 3, 4, and (z+ v4)/2. Moreover, we choose (z+ v3)/2
if and only if Q is convex (see Fig. 9, (7) and (8)). (vii) Q ∈ K4. Then, we choose the points ((3 − �)v1 + v2 + �z)/4,
� = 2, 3, and z. Moreover, we choose (v1 + 3z)/4 if and only if Q is convex (see Fig. 9, (9) and (10)).

Moreover, for each triangle T =�(v1, v2, v3) in �T let Li
T be the three points (2v1 +v2 +v3)/4, (v1 +2v2 +v3)/4,

and (v1 + v2 + 2v3)/4.
This leads to the following set of points chosen in the interior of the quadrangles and triangles (Fig. 10):

Li :=
⎛
⎜⎝ ⋃

Q∈�1
Q∪�2

Q

Li
Q

⎞
⎟⎠ ∪

⎛
⎝ ⋃

T ∈�T

Li
T

⎞
⎠ . (9)

Now, we are ready to state the main result of our paper. The proof will be given in Section 6. Let �̃ be the refinement
of an arbitrary triangulation �, described in Section 3.3. Moreover, let the sets Le and Li be as defined in (8) and (9),
respectively.

Theorem 4. L := Le ∪ Li is a Lagrange interpolation set for S1
4(�̃). Moreover, the interpolation method is local

and stable.

An example for an interpolation set is shown in Fig. 10.

5. Auxiliarly results

In this section we establish some auxiliarly results which are essential for the proof of the main theorem (Theorem
4) given in the next section. Here, we consider the computation of the Bézier–Bernstein coefficients corresponding to
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Fig. 10. Classes of quadrangles for the triangulation in Fig. 5. The quadrangles in Kj , j = 0, . . . , 4, are indicated by the corresponding numbers

(left). An example of an interpolation set for S1
4(�̃) resulting from our method is shown on the right. Interpolation points chosen on the edges of

the quadrangles, in the interior of the quadrangles, and in the interior of the triangles in �T are indicated by black dots, black squares, and black
triangles, respectively.

interior domain points of the quadrangles, where the five classes Kj , j = 0, . . . , 4, resulting from Algorithm 2 are
taken into consideration. In what follows, we let �(Q) = {T1, T2}, where T1 = �(v1, v2, v3) and T2 = �(v1, v3, v4).

Lemma 5 (Q ∈ K0, see Fig. 9, (1)). Let all coefficients a
[Tm]
i,j,k , m = 1, 2, with i = 0, j = 0, or k = 0 of a spline

s ∈ S1
4(�(Q)) be determined. Then, the interpolation values f (P ), P ∈ Li

Q\{(v1 + v3)/2}, uniquely determine the

six Bézier–Bernstein coefficients a
[Tm]
i,j,k , i, j, k�1, m = 1, 2.

Proof. The coefficients a
[T1]
1,1,2, a[T1]

1,2,1, and a
[T1]
2,1,1, are computed from the values f (P ) at the points P ∈ {(2v1+v2+v3)/4,

(v1 + 2v2 + v3)/4, (v1 + v2 + 2v3)/4} by solving a system of three linear equations. This system can be written as⎛
⎝2 1 1

1 2 1

1 1 2

⎞
⎠ · x = y, (10)

where x = (a
[T1]
1,1,2, a

[T1]
1,2,1, a

[T1]
2,1,1)

t and y ∈ R3 is uniquely determined by the values f (P ), P ∈ {(2v1 + v2 + v3)/4,

(v1 + 2v2 + v3)/4, (v1 + v2 + 2v3)/4}, and the remaining 12 determined Bézier–Bernstein coefficients associated
with the domain points on T1. By using (5), it is easy to see that the smoothness conditions across [v1, v3] uniquely

determines the coefficients a
[T2]
2,1,1 and a

[T2]
1,2,1. We have

a
[T2]
1,2,1 = �[T1]

1 (v4)a
[T1]
2,2,0 + �[T1]

2 (v4)a
[T1]
1,3,0 + �[T1]

3 (v4)a
[T1]
1,2,1,

a
[T2]
2,1,1 = �[T1]

1 (v4)a
[T1]
3,1,0 + �[T1]

2 (v4)a
[T1]
2,2,0 + �[T1]

3 (v4)a
[T1]
2,1,1. (11)

Finally, the coefficient a
[T2]
1,1,2 is computed as

a
[T2]
1,1,2 =

(
16

3

) [
f

(
v1 + v3 + 2v4

4

)
−

(
1

256

)
(a

[T2]
4,0,0 + 4a

[T2]
3,1,0 + 6a

[T2]
2,2,0 + 4a

[T2]
1,3,0 + a

[T2]
0,4,0)

−
(

1

32

)
(a

[T2]
3,0,1 + 3a

[T2]
2,1,1 + 3a

[T2]
1,2,1 + a

[T2]
0,3,1) −

(
3

32

)
(a

[T2]
2,0,2 + a

[T2]
0,2,2)

−
(

1

8

)
(a

[T2]
1,0,3 + a

[T2]
0,1,3) − a

[T2]
0,0,4

]
, (12)

where we use the remaining interpolation condition. This completes the proof. �



C.K. Chui et al. / Journal of Computational and Applied Mathematics 216 (2008) 344–363 355

Lemma 6 (Q ∈ K1, see Fig. 9, (2)). Let all coefficients a
[Tm]
i,j,k , m=1, 2, with i =0, j =0, or k =0 and the coefficients

a
[T1]
1,1,2 and a

[T1]
2,1,1 of a spline s ∈ S1

4(�(Q)) be determined. Then, the interpolation values f (P ), P ∈ Li
Q\{(v1 +v3)/2}

uniquely determine the four Bézier–Bernstein coefficients a
[T1]
1,2,1 and a

[T2]
i,j,k , i, j, k�1.

Proof. Analogously as in (12), the Bézier–Bernstein coefficient a
[T1]
1,2,1 is uniquely computed by using the interpolation

value f ((v1 +2v2 +v3)/4) and the remaining 14 coefficients associated with the domain points on T1. Then, as in (11),
the coefficients a

[T2]
2,1,1 and a

[T2]
1,2,1 are uniquely computed by (5), using the C1 smoothness across [v1, v3]. Finally, the

coefficient a
[T2]
1,1,2 is uniquely computed, analogously as in (12), by using the interpolation value f ((v1 + v3 + 2v4)/4)

and the 14 determined coefficients associated with the domain points on T2. This completes the proof. �

Lemma 7 (Q ∈ K2, see Fig. 9, (3)). Let all coefficients a
[Tm]
i,j,k , m=1, 2, with i =0 or j �1, of a spline s ∈ S1

4(�(Q))

be determined. Then, the interpolation value f ((v1 + 2v2 + v3)/4) uniquely determines the four Bézier–Bernstein
coefficients a

[T2]
i,j,k , i�1, j �2, m = 1, 2.

Proof. The coefficient a
[T1]
2,2,0 is uniquely determined by

a
[T1]
2,2,0 = (1/�[T1]

2 (v4))(a
[T2]
2,1,1 − a

[T1]
3,1,0�

[T1]
1 (v4) − a

[T1]
2,2,0�

[T1]
2 (v4)),

which results immediately from (5). Analogously, a
[T1]
1,3,0 is uniquely computed by

a
[T1]
1,3,0 = (1/�[T1]

1 (v4))(a
[T2]
0,3,1 − a

[T1]
0,4,0�

[T1]
2 (v4) − a

[T1]
0,3,1�

[T1]
3 (v4)).

Hence, all coefficients associated with the domain points on [v1, v3] are determined. Then, the coefficient a
[T1]
1,2,1

is uniquely computed as in the proof of Lemma 6. Finally, the C1 smoothness across [v1, v3] as in (11) uniquely
determines the remaining coefficient a

[T2]
1,2,1, where we use (5), again. This completes the proof. �

Lemma 8 (Q ∈ K2, see Fig. 9, (4)). Let all coefficients a
[T1]
i,j,k , i = 0 or j = 0, 1, and a

[T2]
i,j,k , i = 0, 1 or j = 0, of

a spline s ∈ S1
4(�(Q)) be determined. Then, the interpolation value f ((v1 + v3)/2) uniquely determines the three

Bézier–Bernstein coefficients a
[T1]
1,2,1, a

[T1]
2,2,0 and a

[T2]
2,1,1.

Proof. The Bézier–Bernstein coefficient a
[T1]
2,2,0 is uniquely determined as

a
[T1]
2,2,0 = ( 1

6 )(16f (P2,2,0) − a
[T1]
4,0,0 − 4a

[T1]
3,1,0 − 4a

[T1]
1,3,0 − a

[T1]
0,4,0). (13)

Then, the C1 smoothness across [v1, v3] uniquely determines a
[T2]
2,1,1 as in the proof of Lemma 5. Using (5), we can see

that a
[T1]
1,2,1 is also uniquely determined as

a
[T1]
1,2,1 = �[T2]

1 (v3)a
[T2]
2,2,0 + �[T2]

2 (v3)a
[T2]
1,3,0 + �[T2]

3 (v3)a
[T2]
1,2,1.

This completes the proof. �

In the remaining lemmas, we consider the cases when Q is refined. Here and in the following, we let z be the new
vertex in the interior of Q and set �(Q)={T1, T2, T3, T4}, where T1 =�(z, v1, v2), T2 =�(z, v2, v3), T3 =�(z, v3, v4),
and T4 = �(z, v4, v1).

Lemma 9 (Q ∈ K2, see Fig. 9, (5) and (6)). Let all coefficients a
[Tm]
i,j,k , m = 1, 2, i�1, and a

[Tm]
i,j,k , m = 3, 4, i = 0,

of a spline s ∈ S1
4(�(Q)) be determined. Then, the interpolation values f (P ), P ∈ Li

Q, uniquely determine the 18

Bézier–Bernstein coefficients a
[Tm]
i,j,k , m = 1, 3, i�2, and a

[Tm]
i,j,k , m = 2, 4, i�1.
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Proof. The three coefficients a
[T1]
4−j,j,0, j = 0, 1, 2, are uniquely determined by solving a system of linear equations,

using the interpolation values f (P ), P ∈ {((4 − �)z + �v1)/4: � = 0, 1, 2}. This system can be written in the form⎛
⎝1 0 0

3 4 2

1 4 6

⎞
⎠ · x = y, (14)

where x = (a
[T1]
4,0,0, a

[T1]
3,1,0, a

[T1]
2,2,0)

t and y = (y1, y1, y3) is given by

y1 = f (z),

y2 =
(

256

27

)
f

(
3z + v1

4

)
−

(
4

9

)
a

[T1]
1,3,0 +

(
1

27

)
a

[T1]
0,4,0,

y3 = 16f

(
3z + v1

4

)
− 4a

[T1]
1,3,0 − a

[T1]
0,4,0.

The coefficient a
[T1]
2,0,2 is computed using (5):

a
[T1]
2,0,2 = (1/�[T1]

1 (v3))(a
[T2]
1,1,2 − a

[T1]
1,1,2�

[T1]
2 (v3)).

Now, analogously as in (14), the coefficient a
[T1]
3,0,1 is uniquely determined by a

[T1]
4,0,0, a

[T1]
j,0,4−j , j = 0, . . . , 2, and the

value f ((3z + v2)/4). Then, the coefficient a
[T1]
2,1,1 is computed as in (12), using the value f ((z + v1 + v2)/4) and the

remaining 14 Bézier–Bernstein coefficients associated with the domain points in T1. Now, the coefficients a
[T4]
3−j,1,j ,

j = 0, . . . , 2, are uniquely determined by using (5):

a
[T4]
3−j,1,j = a

[T1]
4−j,0,j�

[T1]
1 (v4) + a

[T1]
3−j,0,1+j�

[T1]
2 (v4) + a

[T1]
3−j,1,j�

[T1]
3 (v4), j = 0, . . . , 2.

(Note, that �[T1]
3 (v4) is zero, if and only if [z, v1] is degenerate at z.) Moreover, a

[T4]
1,3,0 is computed as

a
[T4]
1,3,0 = (1/�[T4]

1 (v3))(a
[T3]
0,1,3 − a

[T2]
0,4,0�

[T2]
2 (v3) − a

[T4]
0,3,1�

[T2]
3 (v3)).

(Note, that again �[T2]
2 (v4) is zero, if and only if [z, v1] is degenerate at z.) The coefficient a

[T4]
1,1,2 is computed as in (12),

using the value f ((z + 2v4 + v1)/4) and the remaining 14 Bézier–Bernstein coefficients associated with the domain
points in T4. Now, we consider Bézier–Bernstein coefficients associated with domain points in T2 and T3. Using (5),
the coefficients a

[T2]
2+j,1−j,1, j �1, and a

[T3]
2−j,1,1+j , j �1, are uniquely determined as (5):

a
[T2]
2+j,1−j,1 = a

[T1]
3+j,1−j,0�

[T1]
1 (v3) + a

[T1]
2+j,1−j,1�

[T1]
2 (v3), j = 0, 1,

a
[T3]
2−j,1,1+j = a

[T4]
3−j,0,1+j�

[T4]
1 (v3) + a

[T4]
2−j,1,1+j�

[T4]
2 (v3), j = 0, 1.

If Q is convex, then analogously as in (13), the coefficient a
[T2]
2,0,2 is computed by the interpolation value f ((z + v3)/2)

and the four determined Bézier–Bernstein coefficients associated with the domain points on [z, v2]. If Q is non-convex,
the formula in (5) yields

a
[T2]
2,0,2 = (1/�[T2]

3 (v4))(a
[T3]
2,1,1 − a

[T2]
3,0,1�

[T2]
1 (v4) − a

[T2]
2,1,1�

[T2]
2 (v4)).

Finally, a
[T3]
1,2,1 is uniquely determined and computed by (5):

a
[T3]
1,2,1 = a

[T2]
2,2,0�

[T2]
1 (v4) + a

[T2]
1,1,2�

[T2]
2 (v4) + a

[T2]
1,0,3�

[T2]
3 (v4),

where �[T2]
3 (v4) is zero, if and only if [z, v3] is degenerate at z. The proof is complete. �
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Lemma 10 (Q ∈ K3, see Fig. 9, (7) and (8)). Let all coefficients a
[Tm]
i,j,k , m = 1, . . . , 3, i�1, and a

[T4]
i,j,k , m = 4, i = 0,

of a spline s ∈ S1
4(�(Q)) be determined. Then, the interpolation values f (P ), P ∈ Li

Q, uniquely determine the 15

Bézier–Bernstein coefficients a
[Tm]
i,j,k , i�2, m = 1, . . . , 3, and a

[T4]
i,j,k , i�1.

Proof. Except for a
[T1]
2,2,0, each of the unknown Bézier–Bernstein coefficient is uniquely determined and computed by

using analogous arguments as in the proof of Lemma 9. From (5), we obtain

a
[T1]
2,2,0 = (1/�[T1]

1 (v4))(a
[T4]
1,1,2 − a

[T1]
1,3,0�

[T1]
2 (v4) − a

[T1]
1,2,1�

[T1]
3 (v4)).

The proof is complete. �

Lemma 11 (Q ∈ K4, see Fig. 9, (9)). Let Q be convex and all coefficients a
[Tm]
i,j,k , m = 1, . . . , 4, i�1, of a spline s ∈

S1
4(�(Q)) be determined. Then, the interpolation values f (P ), P ∈ Li

Q, uniquely determine the 13 Bézier–Bernstein

coefficients a
[Tm]
i,j,k , i�2, m = 1, . . . , 4.

Proof. Except for a
[T1]
2,2,0 and a

[T4]
2,2,0, each unknown Bézier–Bernstein coefficient is uniquely determined and computed

by using analogous arguments as in the proof of Lemma 9. By (5), we obtain for these coefficients

a
[T1]
2,2,0 = (1/�[T1]

1 (v4))(a
[T4]
1,1,2 − a

[T1]
1,3,0�

[T1]
2 (v4) − a

[T1]
1,2,1�

[T1]
3 (v4)),

a
[T4]
2,2,0 = (1/�[T4]

1 (v3))(a
[T3]
1,1,2 − a

[T4]
1,2,1�

[T4]
3 (v3)).

The proof is complete. �

Lemma 12 (Q ∈ K4, see Fig. 9, (10)). Let Q be non-convex and all coefficients a
[Tm]
i,j,k , m = 1, . . . , 4, i�1, of a

spline s ∈ S1
4(�(Q)) be determined. Then, the interpolation values f (P ), P ∈ Li

Q, uniquely determine the 13

Bézier–Bernstein coefficients a
[Tm]
i,j,k , i�2, m = 1, . . . , 4.

Proof. It can be seen analogously as in the proof of Lemma 11 that the coefficients a
[Tm]
2,2,0, m = 1, . . . , 4, a

[T1]
4,0,0 and

a
[T1]
3,0,1 are uniquely determined. The remaining seven Bézier–Bernstein coefficients are computed by solving a system

of linear equations. To explain this, we introduce the following notation for the quadrangle Q (see Fig. 11): z = (0, 0),
v1 := (0, −x̂), v2 := (ỹ, mỹ), v3 := (0, x̂), and v4 = (x̃, nx̃), where x̂, x̃ > 0, ỹ < 0, and m, n ∈ R. Since [z, v2] and
[z, v4] are not parallel, we have m �= n.

Furthermore, let x�, � = 1, . . . , 5, be the unknown coefficients, i.e., we set

x = (x1, x2, x3, x4, x5)
t = (a

[T1]
2,1,1, a

[T3]
2,1,1, a

[T3]
3,0,1, a

[T4]
2,1,1, a

[T4]
3,0,1)

t .

In the following, we consider the homogeneous problem and show that only the trivial solution (x1, . . . , x5)=0 satisfies
all C1 smoothness conditions of S1

4(�(Q)). From (5), we obtain a
[T2]
2,1,1 = −a

[T1]
2,1,1 = −x1, a

[T2]
3,0,1 = −a

[T1]
3,1,0 = −x5, and

− x1 = �[T3]
1 (v2) · −x5 + �[T3]

2 (v2) · 0 + �[T3]
3 (v2) · x2,

x4 = �[T3]
1 (v1) · x3 + �[T3]

2 (v1) · x2 + �[T3]
3 (v1) · 0,

x1 = �[T4]
1 (v2) · x5 + �[T4]

2 (v2) · x4 + �[T4]
3 (v2) · 0,

x3 = �[T1]
1 (v4) · 0 + �[T1]

2 (v4) · x5 + �[T1]
3 (v4) · 0,

The interpolation condition at that point P = (2z + v1 + v2)/4 in the interior of T1 and (1) imply

0 = 4(�[T1]
1 (P ))3 · �[T1]

2 (P ) · x5 + 12(�[T1]
1 (P ))2 · �[T1]

2 (P ) · �[T1]
3 (P ) · x1.
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v  = (x,nx)4
~ ~

 –x1

 –x5 x2

x3

x4
x5x1

T1

T2

T4

T3

v  = (0,x)^
3

(y,my) = v2
~~

1v  = (0, –x)^

Fig. 11. Structure of Q and notations used in the proof of Lemma 12. For better illustration Q is drawn convex in the figure (and therefore z = (0, 0)

is not shown as the midpoint of the line segment between v1 = (0, −x̂) and v3 = (0, x̂)), while the lemma deals with the non-convex case.

Due to the structure of Q, the barycentric coordinates appearing above are computed as follows:

�[T3]
3 (v2) = �[T4]

3 (v2) = ỹ

x̃
, �[T3]

1 (v1) = 2, �[T1]
2 (v4) = x̃

x̂
(m − n),

�[T4]
1 (v2) = 1 − ỹ

x̃
− ỹ

x̂
(n − m), �[T3]

1 (v2) = 1 − ỹ

x̃
− ỹ

x̂
(m − n),

�[T3]
2 (v1) = −1, �[T1]

1 (P ) = 1
2 , �[T1]

2 (P ) = �[T1]
3 (P ) = 1

4 .

This leads to the system⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1
ỹ

x̃
0 0 −1 + ỹ

x̃
+ ỹ

x̂
(m − n))

0 −1 2 −1 0

−1 0 0
ỹ

x̃
1 − ỹ

x̃
− ỹ

x̂
(n − m)

0 0 −1 0
x̃

x̂
(m − n)

3

64
0 0 0

1

64

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

·

⎛
⎜⎜⎜⎜⎜⎝

x1

x2

x3

x4

x5

⎞
⎟⎟⎟⎟⎟⎠ = 0. (15)

We compute the determinant D of the 5 × 5 matrix corresponding to this system as

D = 3ỹ2

16x̃x̂
(m − n) �= 0.

Therefore, given arbitrary interpolation values all Bézier–Bernstein coefficients a
[Tm]
i,j,k , i�2, m=1, . . . , 4, are uniquely

determined. This completes the proof. �

6. Proof of main result and error bound

In this section, we prove the main results of our paper given in Theorem 4. Moreover, we establish an error bound
for our interpolation method.

Proof of Theorem 4. Given f ∈ C(�), we show how to uniquely compute the Bézier Bernstein coefficients of the
interpolating spline s. Simultaneously we show that this computation is local and stable. We do this by first considering
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the spline along the edges of the quadrangles and useAlgorithm 3 in connection with the choice of interpolation points at
the edges. Once we have shown that the spline s is uniquely determined along the edges, we consider the classification
resulting from Algorithm 2 which is based on the decomposition of Algorithm 1. Using this classification and the
interpolation conditions in the interior, we show that the spline is uniquely and locally determined in the interior.

We begin by considering the edges of the quadrangles. Let Q ∈ N0, where N0 is the first class of quadrangles
determined by Algorithm 3. The Bézier Bernstein coefficients of s that are associated with the domain points on a
boundary edge e of Q are uniquely determined by the interpolation conditions at the interpolation points on e. This is
univariate, polynomial interpolation. More precisely, the coefficients are computed by solving a system of five linear
equations. Fixing an appropriate triangle T in Q, this system can be written in the form

⎛
⎜⎜⎜⎜⎜⎝

1 0 0 0 0

81 108 54 12 1

1 4 6 4 1

1 12 54 108 81

0 0 0 0 1

⎞
⎟⎟⎟⎟⎟⎠ · x = y, (16)

where x = (a
[T ]
4,0,0, a

[T ]
3,1,0, a

[T ]
2,2,0, a

[T ]
1,3,0, a

[T ]
0,4,0)

t and y ∈ R5 is determined by the values of f in P
[T ]
4,0,0, P

[T ]
3,1,0, P

[T ]
2,2,0,

P
[T ]
1,3,0, and P

[T ]
0,4,0. Hence, these coefficients depend only on the data values of f from points in st(v), where v is a

suitable vertex, and in (4) the constant becomes C = ‖M−1‖, where M is the matrix on the left side of (16). The same
argument can be applied to each of the boundary edges of the quadrangles in N0. Since the quadrangles in N0 do not
have common vertices (Lemma 3, (i)), all these coefficients are determined independently.

We proceed by considering the quadrangles from the classes N1, N2, N3, and N4 (in this order). Since we
can now apply a similar argument as in Nürnberger et al. [22] (see also [19]), we can be relatively brief, here. The
Bézier–Bernstein coefficients associated with the domain points on the boundary edges e of quadrangles from these
classes (as well as those on the diagonal of the quadrangles in �1

Q) are now uniquely determined by the interpolation

conditions on e and the C1 smoothness at the endpoints of e being vertices of a quadrangle in a class with lower index.
For each class, we determine these Bézier–Bernstein coefficients by solving a system of linear equations, which can
be written in the form M1x = y, where M1 is a submatrix of M, and x, and y are similar as in (16). Note that Lemma
3 (ii) implies that for each class Nj all these coefficients are determined independently. In particular, there is no
propagation within each of these classes, because the method guarantees that propagation is only possible from lower
to higher indexed classes. It follows that these coefficients associated with the domain points on the boundary edges e
of quadrangles from N1, N2, N3, and N4 depend only on the data values of f from points in stn(v), where v is a
suitable vertex, and n = 3, 5, 7, and 9, respectively. Moreover, we note that involving C1 smoothness at the endpoints
leads to stable computations depending only on the smallest angle of �̃. Hence, at this point, we conclude that for the
coefficients of consideration (4) holds with an appropriate constant C.

Now, we consider the remaining Bézier–Bernstein coefficients of s associated with domain points in the interior. For
each triangle T ∈ �T , the three interpolation conditions involving the values f (P ), P ∈ Li

T , uniquely determine the

Bézier–Bernstein coefficients a
[T ]
2,1,1, a

[T ]
1,2,1, and a

[T ]
1,1,2. These coefficients are computed by solving a system of three

linear equations, which is analogous to the system in (10) appearing in the proof of Lemma 5. In view of Lemma 2(i),
for each of these triangles these coefficients are determined independently. It follows that these coefficients depend only
on the data values of f from points in st9(v), where v is a suitable vertex, and we obtain (4) with a constant C depending
on ‖M−1

0 ‖, where M0 is the matrix on the left side of (10). Next, we consider the quadrangles in �1
Q ∪ �2

Q, where we
take into account the class Ki , i = 0, . . . , 4, to which the quadrangle belongs as well as the order given by Algorithm
2. Again, we emphasize that the interpolation method guarantees that propagation is only possible from lower to higher
indexed classes, and not within a class. In the following, we briefly call the edges of quadrangles already considered
C1 determined edges. Let Q ∈ K0. It follows from the above that all Bézier–Bernstein coefficients associated with the
domain points on the edges of Q are already uniquely determined. Hence, the assumptions of Lemma 5 are satisfied.
Therefore, Lemma 5 together with the interpolation conditions imposed for points in the interior of Q imply that all
coefficients associated with the domain points in the interior of Q are uniquely determined. In view of Lemma 2(i), again,
these coefficients depend only on the data values of f from points in st9(v), where v is a suitable vertex, and we obtain
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(4) with a constant C depending on ‖M−1
0 ‖, where M0 is the matrix on the left side of (10). Now, let Q ∈ K1. Then,

exactly one edge e of Q is C1 determined. Let e =[v1, v3]. Now, using (5), the Bézier–Bernstein coefficients a
[T1]
1,1,2 and

a
[T1]
2,1,1 are uniquely determined. Here, we use that the Bézier–Bernstein coefficients associated with the domain points

in the neighboring quadrangle of �T ∪K0 are already determined. In view of Lemma 2(iii) (case j =1), it follows that
these coefficients depend only on the data values of f from points in st9(v), where v is a suitable vertex. Since we use
(6) here, these computations are also stable involving only the smallest angle of �̃. Now, the suppositions of Lemma 6
are satisfied. Therefore, it follows from the remaining interpolation conditions that all coefficients associated with the
domain points in the interior of Q are uniquely determined. It follows that these coefficients depend only on the data
values of f from points in st10(v), where v is a suitable vertex, and the corresponding constant C in (4) involves the
maximum of all constants appearing in (6) when following the proof of Lemma 6 as well as the smallest angle of �̃.
Now, let Q ∈ K2. In all three cases (see third, fourth, and fifth quadrangle from the left in Fig. 6), the Bézier–Bernstein
coefficients associated with the domain points on the edges of Q are already determined. Since s is already uniquely
determined on the neighboring triangles and quadrangles in �T ∪ K0 ∪ K1, it follows from the C1 smoothness
(5) that some Bézier Bernstein coefficients associated with the domain points in the interior of Q are determined. In
what follows we describe these coefficients more precisely. If the edges [v1, v3] and [v1, v4] are C1 determined, these
coefficients are a

[Tm]
1,j,k , m = 1, 2. Otherwise, if the edges [v1, v3] and [v2, v4] are C1 determined, these coefficients are

a
[T1]
i,1,k , and a

[T2]
1,j,k . Finally, if the edges [v1, v3] and [v2, v3] are C1 determined, these coefficients are a

[Tm]
1,j,k , m=1, 3. The

corresponding computations are stable, since (6) and (7) hold. Moreover, it follows that these coefficients depend only
on the data values of f from points in st11(v), where v is a suitable vertex. Now, the suppositions of Lemma 7, 8, and
9, respectively, are satisfied. Therefore, it follows from the interpolation conditions that all coefficients associated with
the domain points in the interior of Q are uniquely determined. We conclude that these coefficients depend only on the
data values of f from points in st12(v), where v is a suitable vertex, and the corresponding constant C in (4) involves
the maximum of ‖M−1

2 ‖, (M2 being the matrix on the left side of (14)) and all constants appearing in Eqs. (6) and (7)
when following the proof of the Lemma 7, 8, and 9, respectively. Note that we use Lemma 2(iii) (case j = 2), here.
Now, let Q ∈ K3. Then, exactly three edges of Q are C1 determined. Let [v1, v3], [v1, v4], and [v2, v3] be these edges.
Hence, using (5), the coefficients a

[Tm]
i,j,k , i�1, m = 1, . . . , 3, are uniquely determined since s is already determined on

the neighboring triangles and quadrangles in �T ∪ K0 ∪ . . . ∪ K2. Since (6) holds, this computation is stable and
these coefficients depend only on the data values of f from points in st12(v), where v is a suitable vertex. Now, the
suppositions of Lemma 10 are satisfied. Therefore, the interpolation conditions imply that all coefficients associated
with the domain points in the interior of Q are uniquely determined. Hence, these coefficients depend only on the data
values of f from points in st13(v), where v is a suitable vertex, and the corresponding constant C in (4) involves the
maximum of all constants appearing in Eqs. (6) and (7) when following the proof of Lemma 10, and therefore the
smallest angle of �̃. Note that we use Lemma 2(iii) (case j = 3), here. Finally, let Q ∈ K4. Since all edges of Q are
C1 determined, all coefficients a

[Tm]
i,j,k , i�1, m = 1, . . . , 4, are uniquely determined by using (5). It follows that these

coefficients depend only on the data values of f from points in st13(v), where v is a suitable vertex, and moreover these
computations are stable. Now, the suppositions of Lemmas 11 and 12, respectively, are satisfied. Therefore, it follows
from the interpolation conditions that all coefficients associated with the domain points in the interior of Q are uniquely
determined. Hence, these coefficients depend only on the data values of f from points in st14(v), where v is a suitable
vertex, and the corresponding constant C in (4) involves the maximum of ‖M−1

4 ‖, where M4 is the matrix on the left
side of (15)), and all constants appearing in Eqs. (6) and (7) when following the proof of the lemmas, and therefore the
smallest angle of �̃. Again, we use Lemma 2(iii) (case j = 4), here.

We conclude that all Bernstein Bèzier coefficients of s are uniquely determined from the interpolation conditions.
Each coefficient depends only on the data values of f from points in st14(v), where v is a suitable vertex. Moreover,
we have shown that the corresponding constant C in (4) involves the norm of a fixed number of matrices as well as the
smallest angle of �̃, but no further geometric properties of �̃ . In connection with the proof of the below Theorem 13,
the proof is complete. �

The arguments in the proof of Theorem 4 are based on the priority principles resulting from Algorithm 2 and 3,
and show that the value of f (P ) at an interpolation point P may influence the computation of the Bézier Bernstein
coefficients associated with domain points in st14(v). However, according to our experience this might happen in rare
cases, only. Another example for this kind of propagation is given in Fig. 12.
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N1

N2

N3

K0

K1
K2

K3

K4

st1

st2

st3

st4

st5
st8

st9 st10

st11

st6 st7
N0 N4

v

Fig. 12. Propagation of an interpolation value. In this somewhat extreme example, the interpolation value f (v) at v may have an influence on the
computation of some of the Bézier–Bernstein coefficients in st11(v). In this illustration, each Nj , j = 0, . . . , 4, represents a quadrangle in the class
Nj and each Kj , j = 0, . . . , 4, represents a quadrangle in the class Kj .

In the following, we give bounds on the error of our interpolation method, which show that the interpolating splines
yield optimal approximation order. To do this, we denote partial derivatives by Di

xD
j
y and let | · |5,� be the usual Sobolev

semi-norm defined for functions from the Sobolev space W 5∞(�). In addition, for any piecewise polynomial function s̃

on �̃, we let ‖s̃‖B be the maximum of the infinity norms of s̃ over the triangles of a triangulation �B ⊆ �̃. Furthermore,
we let h be the maximal diameter of the triangles in �̃ and sf ∈ S1

4(�̃) be the interpolating spline of f ∈ W 5∞(�)

corresponding to our method.

Theorem 13. There exists a constant K depending only on the smallest angle in �, such that

‖Di
xD

j
y (f − sf )‖� �Kh5−i−j |f |5,�,

where 0� i + j �4.

Proof. The proof of this result is similar to the proof of Theorem 7.1 in Nürnberger et al. [19]. Let T be a triangle of
�̃ and set B := st14(v), where v is an appropriate vertex of T. Then, it is well known that there exists a polynomial
qf ∈ P4 such that

‖Di
xD

j
y (f − qf )‖B �K0H

5−i−j |f |5,B ,

where H is the diameter of B, K0 is a constant depending only on the smallest angle of the triangles in B, and 0� i+j �4.
Since H �28h, it follows that

‖Di
xD

j
y (f − qf )‖B �K1 · h5−i−j |f |5,B , (17)

with K1 := 285 · K0, where 0� i + j �4. Since sqf
= qf , we obtain

‖Di
xD

j
y (f − sf )‖T �‖Di

xD
j
y (f − qf )‖T + ‖Di

xD
j
y (qf − sf )‖T , (18)

and hence it suffices to estimate the second term because of (17). The Markov inequality (see [29]) yields

‖Di
xD

j
y (qf − sf )‖T �K2 · h−i−j‖qf − sf ‖T ,

where K2 depends on the smallest angle in T. The polynomial piece (qf − sf )|T ∈ P4 can be written in its Bézier
Bernstein form as

qf − sf =
∑

i+j+k=4

a
[T ]
i,j,kBi,j,k .

The Bernstein polynomials form a partition of unity. In particular, they are non-negative on T. Hence,

‖qf − sf ‖T � max
P

[T ]
i,j,k∈DT

|a[T ]
i,j,k|. (19)
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v v

Fig. 13. Singular vertex (left) and near-singular vertex (right).

Now, we use Theorem 4. It follows from (4), where L[T ]
i,j,k ⊆ B ∩ L, that for all P

[T ]
i,j,k ∈ DT

|a[T ]
i,j,k|�C · maxz∈B∩L|(f − qf )(z)|�C · ‖f − qf ‖B ,

where C is a constant depending only on the smallest angle �̃ in �̃. Inserting this in (19) and then in (18), we obtain

‖Di
xD

j
y (f − sf )‖T �K̃ · h5−i−j |f |5,B ,

with K̃ = K1(1 + CK2), which immediately implies an estimate of the desired type with a constant K̃ depending only
on the smallest angle �̃ in �̃. To show the assertion with a constant K depending on the smallest angle � in �, it now
suffices to show that �̃�( 1

3 )�. The refinement �̃ is obtained by adding edges to some of the quadrangles (see Section
3.3). Moreover, in some exceptional cases (see Fig. 3, right) we apply Clough–Tocher splits. In this case, the above
relation between the angles �̃ and � has been shown in Lai and Schumaker [17]. According to the remark in Section
3.3, it now suffices to consider a non-convex quadrangle for which we add edges. In case of a refined non-convex
quadrangle, we let v = (v1 + v2 + v3)/3 be the barycenter of T1, where we use the notations in Fig. 9. Moreover, let
P be the intersection point of the lines �1, �2 throughv2, v and v1, v3, respectively. In order to prove �̃�( 1

3 )� in this
situation, we show that P = z, where z is the new vertex included in Q. Since P ∈ �1, we have P = 	v2 + (1 − 	)v for
a suitable 	. It follows from the definition of v that P = v2(	 + (1 − 	)/3) + v1(1 − 	)/3 + v3(1 − 	)/3 and hence,
because of P ∈ �2, 	 = −1/2. Thus, P = (v1 + v3)/2 = z. This proof of the theorem is complete. �

Remark. In Lai and Schumaker [16] interior vertices v of � were called near-singular, if exactly four edges of �
emanate at v, and each of these edges is near-degenerate at v. Moreover, v is called singular if the four edges have
exactly two different slopes (see Fig. 13). A possible extension of our decomposition method is to regard cells of
singular and near-singular vertices as elements of �1

Q and �2
Q from the beginning of the algorithm. If this is done,

special triangulations like the four-directional mesh or other triangulations with a lot of singular vertices would have
certain advantageous properties for the resulting quartic C1 splines. On the other hand, it is well known that near-singular
vertices can sometimes lead to unstable computations of the interpolating spline. In order to keep our decomposition
of triangulations simple while treating near-singular vertices properly, we described the simpler approach, here.
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