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The objective of this paper is to introduce a multi-resolution approximation (MRA)
approach to the study of continuous function extensions with emphasis on surface
completion and image inpainting. Along the line of the notion of diffusion maps introduced
by Coifman and Lafon with some “heat kernels” as integral kernels of these operators in
formulating the diffusion maps, we apply the directional derivatives of the heat kernels
with respect to the inner normal vectors (on the boundary of the hole to be filled in)
as integral kernels of the “propagation” operators. The extension operators defined by
propagations followed by the corresponding sequent diffusion processes provide the MRA
continuous function extensions to be discussed in this paper. As a case study, Green’s
functions of some “anisotropic” differential operators are used as heat kernels, and the
corresponding extension operators provide a vehicle to transport the surface or image data,
along with some mixed derivatives, from the exterior of the hole to recover the missing
data in the hole in an MRA fashion, with the propagated mixed derivative data to provide
the surface or image “details” in the hole. An error formula in terms of the heat kernels
is formulated, and this formula is applied to give the exact order of approximation for the
isotropic setting.

© 2008 Elsevier Inc. All rights reserved.

1. Introduction

Extension of continuous functions is a classical problem with a very long history, dating back at least to Urysohn’s
Lemma, the Tietze Extension, and Whitney’s Extension Theorem (see, for example, [2,24,29] and references therein). How-
ever, it was perhaps the recent paper [7] by Yu. Brudnyi and P. Shartsman, on the extension of smooth functions, that
facilitates in stimulating the more current and exciting work of Charles Fefferman and his colleagues, in a series of papers
[6,17–21,23], on the study of linear operators for smooth function extensions and data fitting.

On the other hand, the subject of image inpainting is relatively new. In fact, the terminology of “digital image inpainting”
was coined only as recently as the turn of the century, by Sapiro, Ballester, Bertalmio, and Caselles in their paper [5] pre-
sented at the 2000 SIGGRAPH Conference. In a later SIGGRAPH Conference Proceeding paper [16] published in 2003, Drori,
Cohen-Or, and Yeshurun studied image inpainting by considering larger holes, and/or with missing large-scale structures
and smooth areas to recover, and coined this problem area as “image completion” (see also [26]).

While the spirit of image inpainting/completion is no different from that of smooth function extension, the general ap-
proaches of these two problem areas are quite different. Indeed, for image inpainting, with the exception of a few attempts,
such as using non-decimated tight wavelet frames to better achieve redundancy [8] or variational formulation in terms of
wavelet coefficients [12], the universal approach has been based on numerical solution of certain partial differential equa-
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tions, which are either formulated in terms of steepest decent applied to the Euler–Lagrange equations of minimum-energy
models (see, for example, [4,11,28]), or modeled as Navier–Stokes equations for incompressible fluid [3]. Here, total variation
(or TV) is the commonly used density function for the internal energy functional.

In this paper, we introduce an MRA approach to filling in holes for continuous function extensions with application to
surface completion and image inpainting. Along the line of study of diffusion maps with certain “heat kernels” as kernels
of the corresponding integral operators, introduced by Coifman and Lafon and thoroughly studied in [15] and by others, we
apply the directional derivatives of these heat kernels with respect to the inner normal vectors (on the boundary of the
hole to be filled in) as integral kernels of the data “propagation” operators. In other words, while each integral transform

(T j f )(x) =
∫
D

f (y)G j(x, y)dy, (1)

with heat kernel G j(x, y) can be used to introduce diffusion maps, the propagation operators P j , defined by

(P j v)(x) =
∫
∂ D

v
(

y(s)
)

g j
(
x, y(s)

)
ds, (2)

where

g j(x, y) := −c j−1(y)

(
∂

∂N
G j(x, ·)

)
(y) (3)

(with the directional derivative taken with respect to the unit inner normal vectors N on the boundary ∂ D of D), provide
a vehicle for transporting certain data d j(F ) from the exterior of the hole D to recover the missing data in the hole D . We
will consider d0(F ) = F |∂ D , where F (x) denotes the surface or image data function in the exterior of D; and for increasing
values of j = 1,2, . . . ,n, d j(F ) will denote certain mixed derivatives of F (x) of increasing orders.

We now introduce the MRA “detail-extension” operators

E j = T0 · · · T j−1 P j, j = 1, . . . ,n. (4)

While the “ground-level” propagation operator P0 is used to provide a continuous function extension by using the data
d0(F ) = F |∂ D of function values, this extension is usually unsatisfactory, particularly for application to surface completion
and image inpainting, since surface geometry and image features are not well represented by the data d0(F ). To import
geometry and/or feature details to fill in the hole D , the extension operators E1, . . . , En can be applied to certain mixed
derivative data d1(F ), . . . ,dn(F ), respectively, and the process can be carried out consecutively to add MRA details to the
ground-level continuous function extension.

As an illustrative case study, we apply the lagged-diffusivity formulation in [28] to linearize the Perona–Malik diffusion
operators (see [25]) in formulating the heat kernels, and hence the detail-extension operators. For this particular considera-
tion, the integral operators in (1) can be used to derive a compact error formula to give the sharp approximation order.

2. Anisotropic data propagation

A popular and effective mathematical model for image noise reduction (commonly called “image de-noising”) is the
following anisotropic diffusion partial differential equation (PDE), with image domain D ⊂ R

2 and non-constant diffusion
conductivity function c(p),0 � p < ∞, introduced and studied by Perona and Malik [25]:⎧⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

∂

∂t
u = ∇ · (c

(|∇u|)∇u
)

in D, t � 0,

∂

∂N
u

∣∣∣∣
∂ D

= 0,

u(x,0) = u0(x), x in D.

(5)

Hence, u0(x) denotes the (noisy) image to be processed, and the solution u = u(x, t), x ∈ D and t > 0, of the initial-valued
Neumann PDE (5) is the one-parameter family of the de-noised images, with the time variable t as the parameter. (See, for
example, [14,25] for typical conductivity functions.)

A rigorous mathematical treatment of the diffusion PDE (5), particularly in regularization of the diffusion conductivity
c(p) = c(|∇u|) by convolving u with some lowpass function s(x) such as the Gaussian (i.e. replacing p = |∇u| by |∇s ∗ u|),
was thoroughly studied by Lions et al. [1,9]. In another development, Vogel and Oman [28] considered the “lagged diffusivity
iteration” approach:⎧⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

∂

∂t
u j = ∇ · (c

(|∇u j−1|)∇u j) in D, t � 0,

∂

∂N
u j

∣∣∣∣
∂ D

= 0,

j

(6)
Please cite this article in press as: C.K. Chui, An MRA approach to surface completion and image inpainting, Appl. Comput. Harmon. Anal. (2008),
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where j = 1,2, . . . , and u0 = u0 thus decoupling the nonlinear PDE (5) to an iterative family of linear PDE’s (6). Again by
regularization of the diffusion conductivity as mentioned above, it can be proved that for any T > 0, there exists some r,
0 < r < 1, such that u j(x, t) converges uniformly for (x, t) ∈ D × [0, T ] to the solution u(x, t) of the regularized nonlinear
PDE, with o(r j) rate of convergence.

We now turn to the problem of continuous function extensions. Let Ω be a simply connected domain in R
d , d � 2,

and let D1, . . . , Dm be bounded and simply connected sub-domains of Ω that are pairwise disjoint, so that Ω̃ :=
Ω \ (D1 ∪ · · · ∪ Dm) is a d-dimensional “Swiss cheese” with m holes. The problem is to extend a given continuous function
F (x) defined on Ω̃ to some continuous function Fe(x) on Ω , so that Fe(x) possesses certain distinct features of F (x) in
the “holes” D1, . . . , Dm . The goal of this paper is to introduce an MRA approach to transport these features from Ω̃ to the
holes D1, . . . , Dm . In application to surface completion, these could be geospatial features in terrain modeling, or surface
geometrical characteristics in surface design for manufacturing. On the other hand, in application to image inpainting, fea-
tures of multiresolution image edges and textures are of utmost importance. Of course the problem of continuous function
extension is no different from that of function data recovery, with the missing data considered as function values in the
holes D1, . . . , Dm to be recovered.

Similar to just about all methods for surface completion (see [13] and references therein) and image inpainting (see
[11,27]), our method is also local, in the sense that only data information F (x) in the neighborhoods of the boundaries
∂ D1, . . . , ∂ Dm will be used to extend F (x) from Ω̃ to Fe(x) in filling in the holes D1, . . . , Dm , respectively. Hence, we may
consider only one hole D ⊂ Ω to be filled in, and Ω̃ := Ω \ D . Throughout our discussions, it is necessary to assume that
the boundary ∂ D of D satisfies certain (piecewise) smooth condition. For convenience, we will simply state that ∂ D is
“sufficiently smooth.” Similarly we will require F (x) to have certain order of partial derivatives, by simply stating that F
satisfies “sufficiently high order of smoothness.” More precise smoothness conditions for the validity of our study should be
clear to the interested reader.

To apply the idea of anisotropic diffusion to continuous function extensions, the first obstacle is the lack of initial con-
ditions (such as u0(x) for the Perona–Malik PDE (5)). For this reason, we eliminate the time variable by considering the
steady-state equation (such as ∂

∂t u(x, t) = 0 in (5) and (6)). In addition, due to the necessity of “linearization” of the elliptic
spatial differential operator in the anisotropic PDE model, we follow the “lagged diffusivity iteration” in [28] with or without
regularization of the diffusion conductivity c(|∇u|) as in [1,9]. Hence, in the following, we will use the notation

c j(x) := c
(∣∣∇u j(x)

∣∣) or c
(∣∣∇s ∗ u j(x)

∣∣), x ∈ D ⊂ R
d, (7)

for j = 0, . . . ,n − 1, where s(x) is any suitable lowpass function such as the Gaussian (with any desirable choice of variance)
and u j is the solution of the linear PDE (6) assuming the knowledge of u j−1. We therefore need some suitable function
c−1 ∈ C1(D) ∩ C(D̄) to get started. If an initial continuous function extension Fe(x) of F (x) from Ω̃ to Ω is available, we
may choose c−1(x) = C(|∇u−1(x)|) or c(|∇s ∗ u−1(x)|), where u−1 = Fe|D . Otherwise, we simply set c−1(x) = 1, independent
of the choice of the conductivity function c(p). For this particular choice, we have

∇ · (c−1(x)∇ f (x)
) = (� f )(x), (8)

where � = ∇ ·∇ denotes, as usual, the Laplacian operator. For j = 0, . . . ,n, we will therefore consider the “lagged diffusivity”
operators

(L j f )(x) = ∇ · (c j−1(x)∇ f (x)
)
, x ∈ D, (9)

where L0 = � according to (8) if no initial continuous extension of F (x) is available. The heat kernels to be considered in
this paper are Green’s functions G j(x, y) of the differential operators L j ; that is,{

(L j)G j(x, y) = δ(x, y), x, y ∈ D,

G j(x, y)|y∈∂ D = 0, x ∈ D.

As already discussed in the introduction, the “diffusion operators” T j are the integral operators with kernels G j(x, y) as
defined in (1). Hence, assuming that ∂ D is sufficiently smooth, we may use the (heat) “propagation kernels”

g j(x, y) := −c j−1(y)

(
∂

∂N
G j(x, ·)

)
(y)

where N denotes the unit inner normal vector of ∂ D at y ∈ ∂ D , to introduce the “propagation operators” P j defined in
(2), where the integral is taken over the boundary ∂ D , with surface area differential denoted by ds. The detail-extension
operators E j defined in (4) will be used to provide details of the extension Fe(x) of F (x) from Ω̃ to Ω . The following
extension of Green’s formula will be an important tool for our discussion in the next section.

Lemma 1. For sufficiently smooth functions f ,h, c j−1 ∈ C(D) with h|∂ D = 0,∫
D

f (y)(L jh)(y)dy =
∫
D

h(y)(L j f )(y)dy −
∫
∂ D

c j−1(y) f (y)
∂

∂N
h(y)ds, (10)

where y is parametrized in terms of s.
Please cite this article in press as: C.K. Chui, An MRA approach to surface completion and image inpainting, Appl. Comput. Harmon. Anal. (2008),
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Proof. By taking the difference of the two identities:

∇ · ( f c j−1∇h) = c j−1(∇ f ) · (∇h) + f L jh;
∇ · (hc j−1∇ f ) = c j−1(∇h) · (∇ f ) + hL j f ,

we have

f L jh = hL j f + ∇ · (c j−1( f ∇h − h∇ f )
)
.

Hence, formula (10) follows immediately by applying the Divergence Theorem and noting that

∂

∂N
h(y) = (∇h(y)

) · N,

since h|∂ D = 0. Observe that the negative sign in (10) results from using the inner normal. �
3. Continuous function extension

Our MRA approach to continuous function extension to be discussed in this section was motivated by the interesting
work of Chan and Shen [10,11], where the second order of approximation by the harmonic continuous function extension
uh is improved to the fourth order by incorporating some bi-harmonic function ua that vanishes on the boundary (see
[10, pp. 258–263]). More precisely, let F (x) be a sufficiently smooth function defined in Ω ⊂ R

d but with missing portion
F D := F |D , D ⊂ Ω , to be recovered, and let the diameter of D be diam(D) = 2ε > 0. Also, denote the L∞(D) norm by ‖ ‖D .
Then it is shown in [10,11] that the solution uh of the Dirichlet problem{

�uh = 0 in D,

uh|∂ D = F |∂ D on ∂ D
(11)

provides a “linear inpainting” scheme for the recovery of F D , i.e. with second-order uniform approximation error bound,
namely:∥∥F D − uh

∥∥
D = O

(
ε2), (12)

and that by adding ua to uh , the bi-harmonic extension

ubh := uh + ua (13)

of F provides a “cubic inpainting” scheme for the recovery of F D , namely:∥∥F D − ubh
∥∥

D = O
(
ε4) (14)

(see [10, Theorem 6.5]), where ua in (13) is the solution of the PDE{
�ua = ũh in D,

ua|∂ D = 0,
(15)

and the function ũh in (15) is generated by linear inpainting by using the boundary data �F |∂ D ; that is, ũh solves the
Dirichlet problem (11) but with boundary data �F |∂ D instead of F |∂ D .

Let G�(x, y) denote Green’s function of the Laplacian operator � and

g�(x, y) = −
(

∂

∂N
G�(x, ·)

)
(y).

Then in terms of the corresponding propagation operator P� and detail-extension operator E� := T � P� , where T � and P�

are defined in (1) and (2) with G j and g j replaced by G� and g� , respectively (i.e. by considering the constant conductivity
function c(p) = 1), the solutions uh and ua of (11) and (15) are given by{

uh = P�(F |∂ D),

ua = E�(�F |∂ D),
(16)

by applying Lemma 1 with c j−1(y) = 1 and h(y) = G�(x, y), x ∈ D . In other words, the “detail” ua is used by Chan and
Shen [10,11] to improve the order of approximation of uh as in (13), from (12) to (14).

In the present paper, this point of view is extended from a single level of detail extension to an MRA extension scheme,
and from the Laplacian operator � to the general lagged diffusivity anisotropic operators L j defined in (9), with c j−1(x) as
in (7). Precisely, while the “ground level” extension
Please cite this article in press as: C.K. Chui, An MRA approach to surface completion and image inpainting, Appl. Comput. Harmon. Anal. (2008),
doi:10.1016/j.acha.2008.05.001
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u0 = P0(F |∂ D), (17)

with j = 0, in (2)–(3), provides a continuous function extension of F from Ω̃ = Ω \ D to D , the MRA detail extensions are
defined by

w j = E j
(
d j(F )

)
, j = 1, . . . ,n, (18)

with E j defined in (4), where the d j(F )’s denote certain desirable mixed derivatives of F of increasing orders for j =
1, . . . ,n, computed in Ω̃ . By adopting the standard convention that an empty product is the identity; namely: T1 · · · T j−1 =
Identity operator for j = 1, we observe that for each j = 1, . . . ,n, w = w j is the solution of the PDE

{
L0 w = (T1 · · · T j−1 P j)

(
d j(F )

)
in D,

w|∂ D = 0

and hence, the extension

un := u0 + w1 + · · · + wn in D (19)

preserves the property of continuous function extension, in that

un|∂ D = u0|∂ D = F |∂ D , n = 1,2, . . . .

Since each w j in (19) is obtained without any alteration of u j−1, for j = 1, . . . ,n, we have an MRA structure, with u j as the
jth level continuous function extension of F from Ω̃ = Ω \ D to D by adding the jth-level details w j , for j = 1, . . . ,n.

By choosing the mixed derivatives

d j(F ) := L j−1 · · · L0 F on ∂ D, (20)

we have the following error formula for the continuous function extension un of F from Ω̃ = Ω \ D to D .

Theorem 1. Let F be a sufficiently smooth function in Ω with missing portion F D := F |D , and let w j be the jth level details with
boundary data d j(F ) as in (20). Then the error of recovery of F D by un is given by

F D(x) − un(x) = (T0 · · · Tn)(Ln · · · L0 F D)(x), x ∈ D. (21)

In particular,

‖F D − un‖D � Cn

n∏
j=0

‖T j‖, (22)

where Cn := ‖(Ln · · · L0)F D‖D and

‖T j‖ := sup
x∈D

∫
D

∣∣G j(x, y)
∣∣dy. (23)

Proof. By applying Lemma 1 with h(y) = G0(x, y), x ∈ D , we have

F D(x) =
∫
D

F D(y)L0G0(x, y)dy

=
∫
D

(L0 F D)(y)G0(x, y)dy −
∫
∂ D

F (y)c−1(y)
∂

∂N
G0(x, y)ds

= (
T0(L0 F D)

)
(x) + u0(x)

or

F D(x) − u0(x) = (
T0(L0 F D)

)
(x), (24)

which verifies (21) for j = 0. For 1 � j � n, we may again apply Lemma 1 with h(y) = G j(x, y), x ∈ D , to obtain
Please cite this article in press as: C.K. Chui, An MRA approach to surface completion and image inpainting, Appl. Comput. Harmon. Anal. (2008),
doi:10.1016/j.acha.2008.05.001
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f j(x) := (L j−1 · · · L0 F D)(x) =
∫
D

f j(y)L j G j(x, y)dy

=
∫
D

(L j f j)(y)G j(x, y)dy +
∫
∂ D

f j(y)g j(x, y)ds

= (
T j(L j · · · L0 F D)

)
(x) +

∫
∂ D

(d j F )(y)g j(x, y)ds

= (
T j(L j · · · L0 F D)

)
(x) + P j(d j F )(x).

Hence, by applying the operator T0 · · · T j−1 to each term and the definition (4), we have

(T0 · · · T j−1)(L j−1 · · · L0 F D)(x) = (T0 · · · T j)(L j · · · L0 F D)(x) + (
E j(d j F )

)
(x),

which, by telescoping, yields

(
T0(L0 F D)

)
(x) −

n∑
j=1

(
E j(d j F )

)
(x) = (T0 · · · Tn)(Ln · · · L0 F D)(x).

It therefore follows from (18) and (24) that

F D(x) − (u0 + w1 + · · · + wn)(x) = (T0 · · · Tn)(Ln · · · L0 F D)(x),

which agrees with the error formula (21) by applying the definition of un in (19). �
Therefore, to determine the order of approximation by MRA continuous function extension, we need to estimate the

norms ‖T j‖ of the “diffusion” operators.

4. Smooth inpainting and surface completion

The objective of this section is to extend the results of smooth inpainting in [10,11] and derive sharp error estimates.
That is, we restrict our study to the isotropic setting, with constant conductivity function c(p) = 1, so that L j = � and
G j(x, y) = G�(x, y) for all j. To apply Theorem 1, we consider the boundary data:

d0(F ) = F |∂ D and d j(F ) = � j F |∂ D , j = 1, . . . ,n, (25)

so that the error bound in (22) becomes

‖F D − un‖D �
∥∥�n+1 F D

∥∥
D

∥∥T �
∥∥n+1

(26)

where

∥∥T �
∥∥ := sup

x∈D

∫
D

∣∣G�(x, y)dy
∣∣ = sup

x∈D

∣∣∣∣
∫
D

G�(x, y)dy

∣∣∣∣ (27)

by the property of Green’s function for the Laplacian operator �. Hence, by following [10, pp. 260–261], we set

u(x) :=
∫
D

G�(x, y)dy

and observe that u(x) is the solution of the PDE{
�u(x) = 1, x ∈ D,

u(x) = 0, x ∈ ∂ D,
(28)

by applying Lemma 1. For the ball D = Dε := {|x − x0| < ε} ⊂ R
d with diameter = 2ε , it is clear, as observed in [10,

Lemma 6.4], that this solution is given by

u(x) = |x − x0|2 − ε2

2d
.

Hence, the norm ‖T �‖ in (27) has the sharp estimate ‖T �‖ � ε2/2d, and it follows from (26) that

‖F D − un‖D �
∥∥�n+1 F D

∥∥
D

(
ε2 )n+1

, n = 0,1, . . . , (29)
Please cite this article in press as: C.K. Chui, An MRA approach to surface completion and image inpainting, Appl. Comput. Harmon. Anal. (2008),
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which yields (12) and (14) with n = 0 and 1, respectively for D = Dε , by noting that uh = u0 and ubh = uh + ua = u0 + w1.
For D ⊂ Dε in general, the same argument in [10, Lemma 6.3] for R

2 applies to R
d to yield the estimate (29).

Of course if D has diameter � 2
√

2d, the error bound in (29) is useless. Fortunately, for application to continuous surface
completion and image inpainting, we are interested in dimension d = 2, for which Green’s function G�(x, y) of � for the
simply connected domain D can be expressed in terms of the conformal mapping function φx(y), x ∈ D ⊂ R

2, that maps D
one-to-one onto the unit disk with center at the origin, such that φx(x) = 0 and φ′

x(x) > 0. More precisely,

G�(x, y) = 1

2π
ln

∣∣φx(y)
∣∣. (30)

Here, as usual, R
2 is identified with the complex plane, with x and y being considered as the complex variable and pa-

rameter, respectively. Therefore, instead of the estimate (29) as a consequence of considering D ⊂ Dε , we may compute the
conformal map φx(y) of some polygonal region that contains D by using the Schwarz–Christoffel mapping (see, for example,
[22]), and then estimate the operator norm in (27), with D replaced by the polygonal region, more directly.

Returning to the isotropic setting with D ⊂ R
d , d � 2, we remark that the poly-harmonic extension (or expansion)

un = u0 + w1 + · · · + wn of F , terms of its boundary data (25), is governed by the error formula

F (x) − un(x) =
∫
D

Kn+1(x, y)�n+1 F (y)dy, x ∈ D, (31)

and satisfies the “Hermite interpolation” property:

� j(F − un)|∂ D = 0, j = 0, . . . ,n, (32)

where K1(x, y) := G�(x, y) and

K j+1(x, y) :=
∫
D j

G�(x, y1) · · · G�(y j, y)dy1 · · ·dy j (33)

for j = 1, . . . ,n.
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