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ABSTRACT 

We  describe  in an expository  manner  ongoing  research  concerned  with  the  identification 
and  extraction  of  topographic  features  relevant to automated  navigation  algorithms  for an auto- 
nomous  underwater  vehicle.  These  features  are  presented  within  the  framework  of  the extremal 
point topography network 0, an idea  going  back to Arthur Cayley  and J. Clerk  Maxwell. 
The  computational  problems  addressed  here  are  the  reconstruction of  the  surface  terrain  from 
irregular spaced bathymetric data and  the  subsequent  extraction  of  the  EPTN.  While  clearly  no 
single best method  exists  for  this  latter  step,  we  present  here a description  of  several  methods 
we  have  tried  with  some success. The data used for  this  research is that  for a  selected  area  of 
Lake  Winnipesaukee,  New  Hampshire. 
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1. INTRODUCTION 
An autonomous  underwater  vehicle (AUV) has 

two types of  information  available  to  it: (1) A priori 
information  incorporated  into  its  design  representing 
an initial  state  for  both it and its  envionment,  and 
(2), sensory  space information  acquired  by  sensors as 
it  moves  through  space-time.  From  the  designer’s 
point  of  view,  desirable  features  of a priori  informa- 
tion  are (l), its  static  persistence  over  time,  and (2), 
its  representation  of  environmental  features  outside 
any  temporally  fixed  sensory  space  frame,  i.  e.,  “glo- 
bal”  information.  These  two  characteristics  of a 
priori  information  are  of  fundamental  importance to 
the  success  of  global  (spatial)  long  range  (time)  navi- 
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gation  for  an  AUV. 
For A W  route  planning and self localization. 

an  obvious  instance  of  such  desirable a  priori  infor- 
mation is the  topographic  features  of  the  bottom  sur- 
face  terrain:  They  do  not  change  within  the 
timeframe  of  task  execution,  and in general,  relevant 
features  extend  well  beyond  the  range  (from  any 
given  location) of sensors  designed  for  their  detec- 
tion.  If  such  features  are  not  available a priori,  then 
intelligent  behavior  most  surely  will  be to acquire 
such  features as an  adjunct to whatever  other tasks 
are  assigned it [18,24].  In this paper  we  are  assuming 
that a  priori  data is available. 

Topographic  features  enter  into  AUV  route 
planning  (with  respect to carrying  out a given task), 
by  giving utility to some  features  and avoidance to 
others.  For  example,  within a search task, the 
“ridges”  provide  utility  by  indicating a  route  which 
maximizes  the  area  searched  by  “line  of  sight”  tech- 
niques.  Conversely,  ridge  avoidance  may be indi- 
cated  if  the A W  is the  search  target,  in  which  case 
“passes”  through  the  ridges  connecting  “ravines” 
may  then  have  utility.  Such  considerations  lead 
naturally  to  the  idea  of  representing,  not  only  the 
Glevation  terrain  function,  but  also  the 
utility/avoidance  terrain  functions,  which  may  be 
thought  of as global nonlinear  transformations of the 
elevation  function [ 19,281. 

Secondly,  topographic  features  enter  into  glo- 
bal  navigation  by  potentially  providing  for  matches 
between  observed  features  and a  priori  stored  ones. If 
the  sensors  used in acquiring  these  landmarks  are 
passive,  this  provides  a  passive  solution  to  the  self 
localization  problem. 

Analogous  global  route  planning/localization 
by  humans is  performed  from  pictorial  navigation 
charts.  Presented  with  such a chart,  a  trained human 
must  visually  interpret  [17]  what  he sees in  order  to 
make  the  information  mentally  available  for  use  in 
navigation.  An  autonomous  vehicle  algorithmic 
navigator  has  no  comparable  visual  interpretive  sys- 
tem,  and  hence  merely  storing  “digitized”  charts  is 
inadequate. A much  more  explicit  representation  of 
chart  data  for A W  navigation  is  needed. 

Navigation  chart  data  is  of  two types: Primary 
data  conveying  the  location  of  physical  features 
which are  detectable  from  physical  measurements 
made  on  the  actual  topography,  and  (2), secondary 
data,  corresponding  to  geographical,  political, mili- 
tary etc.  boundaries,  not  inherently  detectable by 
physical  measurement.  Here  we  will  be  concerned 
exclusively  with  the  algorithmic  extraction  of  pri- 

. mary information  from  data  obtained  by  physical 

.measurement  of  terrain. 
Specifically,  the  process  by  which this topo- 

graphic a  priori  information  is to be  made  available 
to the AUV is dealt  with  here.  This  process  may be 
divided  up  into  the  following  steps: 
(1)  The reconstruction of  the  surface terrain from 

bathymetric data. 
(2)  The identification of  the  topographic  features 

relevant  to  the  class  of tasks to be  undertaken 
by  the  AUV. 

(3) The extraction of  these  features  in  which  their 
implicit  iconic  representation  is  made  into  an 
explicit  symbolic  one. 

(4) And  finally,  their  various  potential representa- 
tions as computer  data  structures  in  which  the 
requirements of the  specific  algorithms 
involved  are  taken  into  account. 
In this paper  we  will  be  primarily  concerned 

with  (1)  and  (2). 

2. THE  EXTREMAL  POINT  TOPOGRAPHY 
NETWORK 

More  specifically,  the  problem  addressed in 
this  research  is  the  following:  Given a  collection of 
irregularly  spaced  depth  soundings,  algorithmically 
generate a topographic  feature  network  map  consist- 
ing  of  the  following: 
(1) Rank  ordered  elevation  minima,  where  rank is 

determined  by  “watershed”  collecting at that 
minimum. 

(2)  Ravines  connecting  adjacent  elevation  minima, 
together  with “blind“ ravines. 

(3) Rank  ordered  elevation  maxima,  ranked  analo- 
gously to elevation  minima. 

(4) Ridges  connecting  adjacent  elevation  maxima, 
together  with  ridge  “bifurcations”. 
(1)-(2)  and (3)-(4) each  define  the  nodes  and 

directed  edges of disjoint  networks  except  at points 
of  edge  intersections  which  are a fifth type: 
(5) Passes, or  saddle  points,  which  are  ridge 

minima  through  which  ravine  maxima  pass. 
Imagine a vertical  plane  through  an  elevation 

minimum  or  maximum:  It  intersects  the  terrain  sur- 
face  in a curve  which  must  have at  least  one 
inflection  point  to  either  side  of  the  minimum  or 
maximum. As  the  plane is  imagined  to  rotate  about 
the  minimum/maximum, it generates  a  closed  curve 
made  up  of  these  points.  (In  order to maintain  clo- 
sure,  portions of these  curves may be  forced  to  coin- 
cide  with  ridges  and  ravines  respectively.) These 
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points  form  a  sixth  class: . 

(6) The  closed  curve skrounding each  elevation 
minimum/maximum  made  up  of  the  inflection 
points  or  “parabolic”  points smunding it. 
These  curves  provide  a  consistent  definition  for 

the  area  surrounding  each  minimum  and maximum, 
which  in  turn  gives  a  specific  interpretation  for  the 
t e r m s  “valley” and  “hill”.  For  example,  the  ratio 
of  the  average  difference  in  height between ‘this 
closed curve  and  the  minimum  or  maximum,  and  the 
area inside  the  curve  provides  a  consistent  method  of 
distinguishing  between “pits” and ’ “shallow  val- 
leys”,  and “peaks” and  “hills”,  respectively. 

Figure  1 - Contour  plot  of  synthetic  surface  consist-’ 
ing  of  “rolling  hills”  terrain. A perspective  view is 
given  in  figures 7, 8 and 9. 

In  figure 1 we depict  a  perspective  view  ‘of  a 
51 by 51  grid  of  sampled  values  taken f b m  .the  sur- 
face: 

z = sin(x)tsin0~sin(.OIxy)t.025xy. OSryS4x 

In  ‘figures 2 and 3 the  ravines and-  ridge, respec- 
tively, of this  surface  are  shown as sequences  of  vec-. 
tom terminating at minima  and  maxima.  These 
ravines  and  ridges  were  extracted  from  the 51 by  51 
,grid using  the  descending/ascending  count  method 
described  in  Section 6. In  figure 4, contour  lines  and 
undifferentiated  ravines  and  ridges are superimposed 
using  data to be discussed  in  a  later  section. 

The  characterization  of  topography  by (1)-(5) 
has been  known  since  the  time  of  Cayley [a] and 
Maxwell [20]. More  recently,  those  doing  research  in 
computer  vision  have  applied  these  labelings tq 
imagery[l4,15].  Since  terrain is continuous,  concepts 

Figure 2 - The  ravines  of  the  synthetic  surface shown 
in figure 1 are shown as arrows  in  the  direction  of 
their  respective  minima. 

from elementary  differential  geometry seem readily 
applicable [16,22], and  lend  support to the  ideas of 
(1)-(6). A grammar [27] would  even  make  possible 
the  “parsing”  of  terrain.  This  network  we  call  the 
(elevation) extremal point topography network 
0. 

There are two  methods  for  giving  a  formal 
definition to these  extremal  point  classes: (1) The 
differential  geometry  definition is based on intrinsic 
properties  (principle  curvatures)  independent  of  any 
coordinate  system [8], while (2). for  purposes of ter- 
rain classification,  these  extremal  points  may be 
defined in terms  of terpin height  and  gradient (z 
coordinate),  and hence are extrinsic in their 
definition.  We  will  not  attempt  a  formal  definition 
.here, but  rather  rely  on  the  reader’s  intuition. 

One  useful  analog  in  this  r-pect  is to think of 
the  teqain as being  rained  on  and to imagine,  the 
resulting  water flow. In this hydrophysical  model 
[25], ridges  separate  watershed  regions,  while  ravines 
join  them.  Note  that  the  ridge  and  ravine  networks 
are  duals  of  one  another as may be seen by  inverting 
the  terrain so that the hills  become  the  valleys  and 
vice-versa. 

One’  point  of  clarification  should be made.  how- 
ever: A plane  surface,  horizontal  or  not,  has  neither 
ridges or ravines,  nor  does  a  hemispherical  surface 
(either  upper  or  lower  portion).  These surfacei are 
unique  with  respect to this  propoerty.  In  differential 
geometry  terms,  this  is  due  to  the  two  principal  cur- 
vatures  being  equal at‘ all points (called umbilic 
points)  of  such surfaces [MI.  For  terrain,  spherical 
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Figure 3 - Same as figure 2, but  showing  the  ridges. 
Note  that  the  ravines  and  ridges  are  disjoint. 

Figure 4 - Contour  lines  and  undifferentiated  ravine 
and  ridge  lines  are  shown  superimposed  using  data 
from  Lake  Winnipesaukee,  New  Hampshire. 

and  flat  topographic  features  may be of  interest,  but 
will  not  show  up as features in the EPTN. 

The  actual  number  of  minima  and  maxima  on 
any  portion  of  terrain is unbounded in number as one 
increases  the  resolution  of  measurement.  As a  result, 
the EPTN becomes ‘more and  more  dense,  and  hence 

. some  method  of  truncating it to  .the  ‘desired  resolu- 
tion is necessary.  This is accomplished in the  follow- 
ing  way. 

Two  minima  (maxima)  are udjacent if there  is 
a  ravine  (ridge)  connecting  them  through a  single 

pass. A minima  (maxima)  adjacency  matrix is 
formed by  listing  the  minima  (maxima)  across  the 
top  and  down  the  si&  in  order  of  decreasing rank. 
An entry  of  one  or zero indicates  that the respective 
minima  (maxima)  are  adjacent or not.  Truncation to 
some  desired  resolution is then  accomplished  by 
truncating  the  matrix to some  upper  left  hand por- 
tion. 

Associated  with the original  terrain is the two 
dimensional  gradient surface, which  when heated in 
an analogous  way  through  the  use  of (1)-(6) results 
in  the gradient  extremal point topography network. 
In  the  gradient  network,  minima  and  maxima 
correspond to level  and  steepest  regions.respectively. 

Even  more  generally,  the EPTN may  be  calcu- 
lated for any  two  dimensional scalar field.  For  exam- 
ple,  the  EPTN may be calculated from a mapping  of 
the  magnitude  of  the  deviations  in  the earth’s mag- 
netic  field,  and  then  subsequently used as navigation 
landmarks [321. 

The  point  of  view  taken here is that  these 
exmmal point  networks  provide  most  of  the  infor- 
mation, to the  extent  that  topographic fead are to 
be  taken  into  account,  needed  for  navigation.  The 
.practical  computational  problem to be  solved is that 
of  automatically  generating  this  network from a finite 
discrete set of irregularly spaced deptldelevation 
measurements. 

There  are  at  least two distinct  approaches to 
the  problem  of  identifying  and  extracting  the 
extremal  point  network  (1)  Methods  which  classify 
each  “pixel”  based  on  taking  into  account  only a 
limited  number  of  adjacent  neighboring  values,  and 
(2). methods  which are global in the  sense that the 
labeling  at a  point  may be affected  by values arbi- 
traily distant. 

In  this  paper we describe a combination of 
local  and  global  strategies  for  extracting  the  extremal 
point  network  and  the  result  of  their  application to 
actual  bathymetric data. This data is that  used  in  the 
Multiple  Autonomous  Underwater  Vehicle (MAW) 
[l] h j e c t  and  consists  of a selected a m  of  Lake 
Winnipesaukee,  New  Hampshire. 

3. RECONSTRUCTION OF THE ELEVATION 
TOPOGRAPHY FROM BATHYMETRY 

By bathymetric  data is meant a finite  sample  of 
three dimensional  points (zi, xi, yi). taken from an 
unknown  surface  terrain  function z =Ax, y). For  pur- 
poses here,  we  will  also  assume  that f is single 
valued,  e.  g.,  there  are  no  vertical “cliffs” or 
“caves”.  The  value z is  the  depth  and x and y may 
be thought  of as latitude  and  longitude.  Hence 
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z =Ax, y )  may  be  thought  of as the terrain  elevation 
function. We  are  usually  also  given x and y fange 
limits, 5 x 5 x,,,.x, and ymin S y S ymaX. 

Given  such a  set of  data,  the task is to  find a 
function f which  “best”  fits  the  data,  subject to 
zi =fixis yi) and  hence  is an interpolating  approxima- 
tion off. We  may  also  want an approximation  of  the 
gradient Vf as well as the  first  several  derivatives of 
f. For  some  purposes it may be sufficient to approxi- 
mate f and Vf by a regular m by n grid  of  values Zii 
and VZ,, ltiSm, 1SjSn. 

This is the bivariate  interpolation problem 
[3,4,12,13], and has a  large  literature  associated  with 
various  methods  for  its  solution.  Note  that  this  is a 
surface  rebresentation  problem,  and is not to be con- 
fused  with  the  surface  modeling  problem  arising  in, 
for  example,  computer aided design. 

For  bathymetric  data,  the  sample  points, 
obtained from sonar  ranging  for  example,  may  or 
may  not  satisfy  the  following  conditions: 
(1) Rem& SDacing;  The  sampled  points  fall  on 

the  vertices  of a  straight  line  grid  with  variable 
(or  constant)  spacings  between  the  lines. 

An additional  consideration  for (1) is whether  data is 
available  for  all  points  or  just  some sakple. 
(2) Uniformly  Distribute&  The  sampled  points  are 

uniformaly  distributed  over  the  region,  or  are 
distributed  according to some  other a priori 
known  probability  distribution. 
Note that  if (1) is true,  then  (2)  will  also be 

true,  though  the  resulting  distribution  may  be  compli- 
cated if the  grid  spacings  are  not  constant. 

In addition, it is often  the case that  bathymetric 
data, is available  in  the  form  of  contours  drawn as a 
2-dimensional  map  overlay,  and  the  .original  data 
points are unavailable.  Contour  data,  in  addition  to 
explicitly  providing zj samples,  also  provide  informa- 
tion  about  the  direction  of  the gradieni i.  e.,  the gra- 
dient  at  a  point on the  contour is perpendicular to the 
contour  at  that  point. 

For  elevation  data  obtained by  stereometry 
applied  to  aerial  photographic pairs, conditions (1) 
and  (2)  may be satisfied.  However,  for  bathymetric 
data this is typically  not  the  case  and  hence  the  case 
of  generating.  regularly  spaced  interpolating  values 
from  irregularly  spaced  sample  points ‘ i s  important. 
The  strategy  used  here is described  in [ 11,291 and is 
as follows. 

Since  three  points  determine a plane, a bivari- 
ate linear  interpolation is obtained  by  finding  three 
data  points  in  the  vicinity  of x, y ,  passing a plane 
through  them  and  evaluating it at x, y to  obtain  the 

interpolated  value 2. 

More  specifically,  given  the  data  depths 20, z1 
and z2, at  three  non-collinear  points (XO, yo), (x1,  yl)  
and (%, yz), respectively,  the  interpolated  depth Z and 
gradient V’ at an (interior)  point (x, y )  of  the  triangle 
formed  by  these  three  points  may be calculated as 
follows:  First,  let 

A = ~(Y1-Yo~(~z~oH~l-~o~(YzYo~l 
B = ~ ( ~ 1 - ~ 0 ) ( ~ ~ x O ~ ~ l - x O > t ~ z ~ o ~ l  

c = [(~l-xO)(Y2-Y~(YI-Yo)t~2-xO)l 

D = -[Ax~+Byl+C~l]. 

The  equation  of  the  plane  is  then 

h+BpCz+D = 0, 

and  we  have  the  following  interpolated  values  at 
position x. y: 

Z =  Ax+By+D 
-C 

Vf = --Z,--Z, - A +  B +  
c c  

Gradient  direction 6 = tan-’(s) 
A 

Note  that  adjacent  triangles  meet  along a com- 
mon  edge so that  the  resulting  interpolated  values  are 
continuous  over  the  entire  collection  of  triangles. 
However,  the  gradient  across  triangle  boundaries is 
discontinuous.  If  continuity is desired  here,  one 
must  go  to  higher  order  methods [2,31]. 

Since  for  a  given x, y position,  there is in  gen- 
eral  more  than  one  triple  of  data  points  forming a tri- 
angle  “containing” x, y,  the  problem  then  becomes 
one  of  determining,  in  general,  which  triple  of  data 
points  gives  the  “best”  fit. 

Rather  than  find  this  triangle  each  time a  loca- 
tion x, y is given,  we  desire a  “triangulation”  of  the 
region to be interpolated.  That  is,  we  desire a collec- 
tion of  triangles  of  data  points,  together  with a data 
structure,  which  will  for  location x, y ,  point  to a  tri- 
angle  containing x,  y. One  way  which  gives  good 
results is the Delaunay  triangulation [7], also  called 
the Thiessen  triangulation [9]. Intuitively,  the 
Delaunay  triangulation  is  one  in  which  the  triangles 
are  as  equiangular  as  possible- sb as to  avoid  long 
thin  triangles. It may be generated  by taking the 
graph  dual  of  the Voronoi  diagram [23] of  the  data 
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points.  See  figure 5. 

I 
\ 
\ 

I 
\ 

Figure 5 - A Delaunay  triangulation  (solid  lines)  and 
its  graph  dual,  the  Voronoi  diagram  (dashed  lines)  of 
the  given  data  point  soundings. 

The  Voronoi  diagram is a graph  in  which  each 
region  contains  one  data  point  along  with all those 
points  of  the  plane  which  are  closer  to  that  data  point 
than any  other  data  point.  The  desired  dual  graph  of 
the  Voronoi  diagram is then  formed  by  connecting 
up  those  data  points  whose  corresponding  regions  are 
adjacent  in  the  Voronoi  diagram.  This  divides  that 
portion  of  the  plane  “interior” to the  data  points  into 
disjoint  triangles so that  any  given x,  y location  falls 
into  a  unique  triangle  formed  by  three  data  points[9]. 

Once  such a triangulation  is  available, it then 
becomes  easy  to  generate a regularly  spaced  grid  of 
values Zv for any grid  increment.  Higher  order 
methods,  e.  g.,  biquadratic  and  bicubic  methods  often 
start with a grid  obtained in such a way. 

There  are  a  number  of  implementations  of 
these  ideas  which  meet  various  additional  require- 
ments,  such as incremental  addition  of  new  data 
points.  In  [9,10,29,30]  both  theory  and  the  descrip- 
tion  of a  practical  implementation  is  given.  For  our 
purpose  we  have  chosen  to  use an implementation 
authored  by  Javier  Bema1  of  the  Center  for  Applied 
Mathematics of the  National  Bureau  of Standards [5]. 
This  program  was  designed  with  relatively  large  data 
sets  in.  mind,  and  utilizes  efficient  methods  for  com- 
puting  the  Voronoi  diagram. 

For A W  navigation  we  contend  that  there  is 
little  or  no  need  to  store  the  entire  surface  explicitly, 
but  rather  what is needed is  the  ability to evaluate 
the  functions f and V’ at  arbitrary  points.  This  is 
accomplished  by  storing  just  the  coefficients  of  the 
splines (as is done  in [lo]) and  not  their  values at 
some fixed grid  resolution.  Initially,  a  preprocess 

phase  would  do  the  fitting  from  whatever  data is 
available,  and  the  result  incorporated in the run time 
system  of an A W .  The  ability to incrementally  add 
data points  without a complete  refitting is also  possi- 
ble. 

This  method  of  representing  the terrain eleva- 
tion  function,  combined  with  the  explicit  storage  of 
the  extremal  point  topography  network,  also  obtained 
offline  in a preprocessing  step,  not  only  conserves 
storage,  but  potentially  simplilies  and speeds up 
A W  global  route  planninghelf  localization  algo- 
rithms  by  already  having  extracted  out  the  most  per- 
tinent  information. 

4. IDENTIFICATION  OF THE E m :  NEIGH- 
BOR  DIFFERENCING  METHOD 

In  this  method  our  objective is to extract  glo- 
bal information  through  local  operations.  Every 
(grid)  point  will  be  classified  on  the  basis  of an 
analysis  of  its  neighboring  points  (Figure 6). The 
difference  in  height  of a point  with  each  of  its  eight 
neighboring  points is determined.  These  differences 
then, in tum, determine  the  features  assigned to the 
point.  The  method used to analyze a point’s  neigh- 
bors  is an extension of that  followed in [26]. Wl 

P4  P3  P2 

Figure 6 - Location  of  eight  neigh- 
bors for  pixel po. 

For a given  point Po and its  neighbors PI, 

D i  = the  difference in height  between po and 
its i-th  neighbor ( i = 1, ..., 8 ) ; 
D’ = the  negative  of  the  sum  of all  negative 
differences; 
D- = the sum of  all  positive  differences; 
NC = number of  sign  changes  of Di (with  NC 
initialized  at 1); 
LC = number  of  points between two  sign 
changes. 
Using  these  we  give  classification  criteria  for 

elevation  maxima,  elevation  minima,  and  passes 
(saddle  points). 

Letting tp, tf, tps,  and ts be thresholds  (or  error 
tolerance  values),  the  following  point  classifications 
are  made: 
(1) if D+ e tf and D‘ > tp, the  point  is an elevation 

P2P3P4P5, Pap7, and P8 we set 

maxima; 
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Figure 7 - This is a  screen  photo of a  surface  with 
elevation  minima,  elevation  maxima,  and  the  passes 
being  determined by  the  neighbor  differencing 
method  and  denoted by the  numbers 1, 2,  and 3 
respectively. 

(2) if D' > tp  and D- < tf, the  point  is  an  elevation 

(3) if D+ + D- e tf, the  point is a  flat; 
(4) if NC 2 4 and (3) does not hold, the point is 

a pass; 
(5 )  if I D' - D- I < ts, D' + D-> tss. NC = 2, 

and LC = 4,  the  point  is  a  plane ( with a non 
zero  slope). 
In our implementation we  have  assigned  the 

following  values  or  ranges to the  threshold  (or  error 
tolerance)  variables; 0 5 tf 5 1 ., tp = 1.0.  and ts = tss 
= 10.0 . 

To determine if a p o i & '  should be labeled a 
ravine point, we have broken  with the Peucker [261 
procedure.  Using  the  notation  of  Figure 6, and 
defining  points  P9 = P ,P = Pz, PI1 =. P3,  and PI, = 
P for notational convenience, we  say  that a point  Po 
$11 be labled a  ravine  point if the  following  condi- 
tions hold 
(a)  There is a  point  Pi, 1 5 i 5 4, such  that h. > h, 

. and hi4 > h,, where hk is  the  height ( or  Ldepth 

(b) . For  the i of  part  (a) , there  is  a j, ic j <i+4, 

(c) There  is  a  number k, i+4 < k c i+8,  such  that 

minima; 

1 LO 

) component  for  the  pomt  Pk; 

such  that hjLl > hj and h. > h.; 
J+1 J 

hk-l > hk and 'k+] > hk 

Figure 8 - This  is  a  screen  photo  of  the  same  surface 
as figure 7 with  the  extrema1  points  being  determined 
by  the  local  surface  fitting  method. 

A point  is  labeled  a  ridge  point if  the  inequali- 
ties of (a), (b), and (c) can  be  reversed.  Using  the 
above  notation, we consider  the  point Po and  its 
neighbors.  Then  we  say Po is a ridge  point  if: 
(d)  There  is a point Pi, 1 I i 5 4, such  that hi < h, 

(e)  For  the i of part (d) , there  is  a j, i c j <i+4, 

(0 There  is a number k, i+4 < k < i+8,  such  that 

and hid < h,; 

such  that h. < h. and h. < h.; 
1-1 J J+1 J 

and h < hk. 
k+ 1 

5. IDENTIFICATION OF  THE EPTN:  LOCAL 
SURFACE  FITTING  METHOD 

This approach  has  been  somewhat  motivated 
by  the  work  of  Haralick [ 14,151: His procedure to 
label a pixel  (a  grid  location ) was based on an 
analysis of a  cubic  patch  defined  with  the  pixel as  its 
center.  We  opted  for a  quadratic  patch  and  'per- 
formed  analysis  to  determine  the  elevation max- 
ima  points,  elevation  minima  points,  and  passes  (sad- 
dle  points).  This  approach  is  based  on a  distance 
weighted,  least-squares  approximation  technique  [211. 
This  procedure  Seems  suitable  since  the  data  is  of 
non-mathematical  origin for which  numerical  approx- 
imations  are  not'  usually  appropriate.  We  consider a 
point Pi and  its  eight  neighboring  points  or  twenty- 
foui  neighboring  points. With the  total  of  nine ( or 
twenty-five)  points  we fit a  least-square  quadratic 
surface to these  points.  That  is,  our  aim  is to find a 
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polynomial  P(x,y),  which is of  degree  two: 

m y )  = cca + Cldr + COlY 

+ c2d + Cl'llry + cod (5.1) 

which  will be as accurate  a fit as possible,  in  the 
usual  least-squares  sense,  to  the  grid data points 
(xj,yj'  with  associated  z.  value. 

The  steps to be taken are: 
(1) At  a  given  point  of  the  mesh  (not  a  mesh 

boundary  point),  determine  a  quadratic  least- 
squares  fit  for  the  point  and its neighbors  for 
the  polynomial  equation (5.1). If (x,,yi> is the 
grid  point  being  considered,  then  the  quadratic 
patch to be considered in the  next  step  is  the 
quadratic  defined  by  the  least-square  procedure 
with  domain 

J 

xi-.h/25x5xi+h!2 (5 .24  

' yi-w25y5yi+h!2 (5.2b) 

where h is the  distance  between  adjacent  grid 
mesh points. 

(2)  Determine  the  critical  points  for  the  quadratic 
of (5.1). Note  there  is  but  one  critical  point 
for this equation  and it is determined  by  solv- 
ing  two  linear  equations  for  the  zero.  The  two 
equations  are: 

@(x,y)/dr = c ~ o + 2 c ~ + c ~ ~ y  ; 

@(x,y)/dy = CO~+C~1%+2C02y . 
The  coordinates  of  their  common  zero  are: 

xo = (CO~C~~-~C~C~O)/(~CZOC~-C:~) 
YO = ~ ~ ~ 0 ~ ~ 1 - ~ ~ ~ 0 ~ 0 1 ~ ~ ~ ~ ~ 2 0 ~ 0 ~ ~ ~ 1 ~ .  

(3) Determine  if  the  critical  point lies in  the 
domain  given in (5.1). That  is,  determine  if x,, 
and yo satisfy  equations ( 5 2 1 )  and  (5.2b). 

(4)  If  the  critical  point  is  in the domain,  then  the 
determination  of  whether it  is  a local  maxima, 
minima,  or  saddle  point  is  made.  If 
(4C,Cm-Cfl) e 0.0, then we have  a  saddle 
point.  If  (4CaoCm-C&) > 0.0 and C2, > 0.0. 
then we have  a  local  minimum.  If 
(4CaoCm-C:1) > 0.0 and C, < 0.0, then  we 
have  a  local  maximum. 
The  approaches  of  Sections  4  and 5 have been 

compared  on  test  data.  Either  of  the  procedures  can 
determine  the  elevation  minima  and  elevation  max- 
ima with ease (figures 7, 8 and 9). The  method of 
Section 5 has been found to capture the pass  (saddle 
point)  locations  much  better  than  the  above  local 
difference  method  of  Section  4  (figures 7 and 8). 

Figure 9 - This  is  a  screen  photo  of  the  same surfak 
as figure 7 with  the  ravine  and  ridge  points  being 
determined  by  the  neighbor  differencing  method  and 
denoted  by  the  numbers 5 and 6 respectively. 

Additional  related  work  yet to be  completed: If 
we  wish  to  determine  the  curve (that passes  through 
a pass) for  the  ridge  connecting  adjacent  elevation 
maxima  or  determine  the  curve  (that  passes  through 
a  pass)  for the ravine  connecting.adjacent  elevation 
minima,  it  would  seem  reasonable  to  attempt an 
optimization  approach.  Since  we  are  seeking to 
define  a  continuous  curve  that  passes  through  a  par- 
ticular  point  one  could: 
(1) determine  the  passes  (saddle  points)  by  the 

above  least  square  procedure  of  Section 5 
(because  of  its  reliability); 

(2) use each  pass  (saddle)  point as the start point 
for  an  optimization  procedure  where  the  optim- 
ization  surface is locally  defined  by  the  above 
least  square  patch  fit. 
This  approach  has been very  successful  with 

the  simplicial  search  optimization  method  being 
applied  on  a  single  patch.  We  have  not  yet  imple- 
mented  this  procedure  using  a  multi  least  square 
patch fit surfice. Lastly we point  out  that  this 
method,  or  any  of  a  number  of  optimization  methods 
could be applied  easily  (with  good  results)  if  the 
surface was approximated  by  a  piecewise  bicubic 
Hermite  interpolant. 

Another  problem to be  explored is the 
minimum  path  length between two  points  on  the  bot- 
tom  surface  while  surface  contact is maintained.  That 
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is two distinct  points  on a curved  surface can be  con- 
nected  by  many  different  paths  on  the  surface;  each 
path  has,  in  general, a  different  length  and  the 
minimum  one is the  one  of  interest.  Optimizing 
motion  planning  across a curved  surface  for  a  semi- 
autonomous  or  autonomous  underwater  vehicle  (that 
is the  vehicle  travels  close  to  the  bottom  surface) is 
an example  of a  practical  application.  In  terms  of 
this problem  we  can state  our special interest is in 
the  pass  locations.  Given  the  location  of  an  under- 
water  vehicle  that is hugging  the ocean floor,  and 
below  the  pass  points,  what  is the best  path to take 
that  minimizes  the  distance  traveled from the  present 
position to the  nearest  pass. 

6. IDENTIFICATION OF THE EPTN 
DESCENDING/ASCENDING  COUNT  METHOD 

The  method  described  next  is  based  on a  literal 
application  of  the  “rainfall”  model:  For  any  pixel, 
water  will  flow  from it in  the  (negative)  direction  of 
the  gradient.  For a discretized  grid,  in  which  each 
neighbor is treated as having  eight  neighbors,  this 
will  be in the  direction  of  the  neighbor  whose  eleva- 
tion  value  is  least  among  the  eight. 

From ,the viewpoint  of  this  least  or  minimal 
valued  neighboring  pixel,  it  may  be  the  minimal 
neighbor  for  others as well.  We  call  the  number  of 
times this occurs  the descending minimal  neighbor 
c o w  for  this  pixel.  It  is  the  number  of  times  this 
pixel  serves as the  minimal  pixel  for  its  eight  neigh- 
bors, and will vary between zero  and  eight:  Zero if it 
does  not  serve  as a minimum  for  any  neighbor,  (the 
most  frequent  case)  and a maximum  of  eight at an 
elevation  minimum.  Intermediate  values (three 
through  seven)  indicate  ravine  like  pixels  in  which 
water  flows  into  them  from  three  or  more  adjacent 
pixels. 

If  this  count is made’  on an entire  grid  of 
elevation  pixels  and  the  resulting  grid of  values 
thresholded to include  only  those  values  in  excess  of 
two,  the  resulting  grid  should  indicate  those  pixels 
forming  ravines.  Figure 2, previously  noted  in  Sec- 
tion 2, depicts  the  result  of  performing  this  operation 
for  the  synthetic  image  of  figure  1.  The  direction  of 
the  arrows is determined  by  the  direction  of  the 
minimal  neighbor. 

The  analogous  count  obtained  by  finding  the 
maximal valued neighbor  we call the ascending m- 
imal  neighbor  count. Values  greater  than  three 
correspond  to  ridges.  Figure 3, also  previousl$  noted 
in  Section 2, depicts  this  for  figure 1. 

Note  that  this  method  does  not  provide a 
means  for  labeling  passes,  but  of  course  may  be 

combined  with a method  for  doing  this. 
In  order  to turn the  above  idea  into  an  efficient 

algorithm,  the  following  should  be  noted.  In  passing 
through  the  raster  of  pixels,  rather  than  finding  the 
number  of  pixels  for  which  the  current  one is the 
minimum,  the  following is more  efficient: 
(1) Attach to each  pixel an initial  count of  zero. 
(2) In  raster  order,  for  each  pixel po (skipping 

border  pixels),  determine  among  its  eight 
neighbors,  the  neighbor pm with  the  smallest 
value. 

(3) If pm is  higher  than po, then po is  a local 
minimum,  and  there is nothing to do. 

(4) Otherwise, pm is  lower  than po and  hence  add 
one to pm’s count. 

7. IDENTIFICATION  OF THE EPTN:  ACCU- 
MULATIVE  GRADIENT  METHODS 

The  methods  described  here  result  from  push- 
ing  the  “rainfall’  model  even  further:  For  each  pixel 
we  count  the  number  of  pixels  “above” it whose 
“runoff”, determined  by  always  following  the 
minimal  neighbor,  will  pass  through it. This  value is 
a vector  whose  direction  at  this  pixel is in  the  direc- 
tion  of  its  minimal  neighbor.  Its  magnitude  is  propor- 
tional  to  the  accumulative  descending  minimal  neigh- 
bor  count.  When  adding  to  the  count  of  the  minimal 
neighbor,  we  add in the  accumulative  descending 
minimal  neighbor  count  (which  must  have  already 
been  calculated),  of the pixel for which  this pixel is 
the  minimal  neighbor,  plus  one.  We  call  the  value 
calculated  in  this  way  the descending  accumulative 
gradient. 

Hence,  at a  local  elevation  minimum,  the  accu- 
mulative  gradient  will  be  the  number  of  pixels  in  the 
“watershed”  area  for  which it  is  the  collecting 
minimum, and  serves  to  rank  order  the  collection of 
minima. 

More  precisely, let go be  the  accumulative  gra- 
dient  for po and gi,  i=1,8, the  yet to be calculated 
accumulative  gradient  for  its  eight  neighbors.  Then if 
pi is  the  minimal  neighbor  of po, denoted  by pi t PO, 
po’s contribution  to gi is g ~ l .  The total accumula- 
tive  gradient  is  then 

gi x &0+1) 
&+Po 

where  the  summation is performed  by  letting  each  of 
the  neighbors  of pi take  the  role  of PO. 

While  the  above  serves  to  define  the  accumula- 
tive  gradient, it does  not  provide a method  of  calcu- 
lating  it:  In  order  to  calculate  the  accumulative gra- 
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dient  at  a  point po it  potentially  must  have  already 
been calculated at each  of its  neighbors, so that  when 
the  minimal  one  is  found,  its  accumulative  gradient 
can be added in to po’s. While  it is probably  possible 
to  use  an  iterative  “relaxation”  method to achieve 
the  same  result,  we  have  resorted  to  sorting  (which 
requires  nlog n steps),  into  descending  order  the 
entire  grid  of  elevation  values.  This  insures  that 
when a point is processed,  the  accumulative  gradient 
of  all  points  “above”  it  in  the  same  watershed  have 
made  their  contribution,  and is thus  available  to 
“flow” to its  minimal  neighbor. 

Similiar  remarks  as  those  given  for  the  accu- 
mulative  count  algorithm  apply  here:  Rather than 
find all the  pixels  that  flow  to  the  pixel  under  scru- 
tiny,  it  is  more  efficient to just find  the  minimal 
neighbor  and  add  into  its  accumulative  gradient  the 
contribution  made  by  this  pixel. 

Clearly,  the  inverse  operation  of  accumulating 
the  gradient  in  the  reverse  direction is possible  by 
moving  in  the  direction  of  the  maximal  neighbor 
rather  than  the  minimal  neighbor.  We  call  the  result- 
ing  vector  field  the  ascending  accumulative  gradient. 

While  these  accumulative  gradients  serve  to 
rank order  the  minima  and  maxima,  they  potentially 
have  other  uses  as  well.  One  such  application is 
motivated  by  the  need  to  represent  the  ability  of  the 
terrain  to  provide  protection  from sonar detecting 
devices.  This  is  accomplished  by  accumulating  the 
gradient  in a non-linear  way. 

For  example,  if it is desired to distinguish 
between  two  comparable  ravines  on  the  basis  of  their 
respective  width to height  ratios,  the  accumulative 
gradient  of  the  steeper  sloped  ravine can be 
“enhanced”  by  adding in a squared  term  represent- 
ing  this  steepness.  If pi  is the  minimal  neighbor  for 
po, let h = po-pi. Then  the  expression  for gi is 

gi = [go+(l+7)2~ 
h 

P i c P o  

where d is the  distance  between  grid  points.  Note 
that - is the  tangent  of  the  angle  of “grade”. h 

d 

8. APPLICATION TO LAKE  WINNI- 
PESAUKEE  BATHYMETRY 

To meet  the  needs  of  the MAUV project [ 11, 
approximatly 13,000 irregularly  spaced  soundings, 
spread  over a 1,700 meter  by 1,700 meter  region  of 
Lake  Winnipesaukee,  New  Hampshire  and  containing 
Diamond  Island  and  the  tip of Rattlesnake  Island, 
were  acquired  by  Alan  Bieber & Associates  of 
Lyme,  Connecticut.  Approximatly 11,OOO of these 

soundings,  together  with 140 “soundings”  of  depth 
zero  outlining  the  island  boundaries,  were  used  in  the 
triangulation  procedure  described  in  Section 3 to 
reconstruct a 1,632 meter  by 1632 meter  region  of 
the  lake  bottom.  This  reconstruction  is  in  the  form of 
a 816 by 816 grid  of  interpolated  points  with a two 
meter  intergrid  distance.  Figure 10 depicts a perspec- 
tive  view  of  the  resulting  surface. 

Figure 10 - The  reconstruction  of a 1632 meter  by 
1632 meter  region  of  Lake  Winnipesaukee  based  on 
approximately 11,OOO irregular  spaced  “soundings”. 
The  height  is  scaled  up  by a factor of 5. 

In  order to overcome  the  problem of “noisy” 
local  surface  structure,  the  grid was “smoothed”  by 
iteratively  passing a 3 by 3 Gaussian  convolution 
over  it  whose  “kernel”  was 

The  result  after  four  iterations  is  depicted  in  figure 
11 as  a  perspective  view  and  in  figure 12 as depth 
contours. 

The  desendindascending  count  method  for 
extracting  the  ridges  and  ravines  was  applied  to  the 
unsmoothed as well  as  smoothed  reconstructed  sur- 
face. By observing  the  number  of  isolated  fragments 
and  the  lengths  of  the  resulting  ridges  and  ravines,  an 
optimal  number  of  iterations  appears  to  be  five.  The 
resulting  ridges  and  ravines,  extracted  from  the 
smoothed  reconstruction,  are  shown  in  figures 13 and 
14 respectively. 

The  methods  of  Sections 4 and 5 have been 
applied to unsmoothed  as  well as smoothed  recon- 
structed  surfaces. 

As  can  be  seen  (figure 15), the  ridge  and 
ravine  points  can  be  easily  determined  when  the  lak- 
ebed  points  originate  from a smooth  reconstructed 
surface.  For  the  reconstruction  that  was  not 
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Figure 11 - The  results  of  “smoothing”  the  recon- 
struction  depicted  in  figure 10. The  smoothed  version 
is used only  for the purpose  of  extracting  topograph- 
ic  features. 

Figure 12 - A contour  plot  of  the  “smoothed”  recon- 
struction  depicted  in  figure 10. Depths  are in meters. 
Note that “L” refers to a  numerical  minimum 
(elevation maximum), while ‘.‘H” refers to an eleva- 
tion minimum. 

smoothed,  the  results are less  favorable  (figure la). 
We  prefer  the  approach  of  Section 5 over  that  of 
Section 4 for computing  saddle  points  if  compukr 
time is not a consideration.  For.’either  of  these  pro- 
cedures,  it is preferable to have  the data processed so 
as to have it appear to be from a  smooth  surfice. 

9. SUMMARY 
We . have given an infond description  of 

ongoing  work  concerned  with  the  use  of  bathymetric 
data for  storage  aboard an AUV for  ihe  purpo+  of 
supplying  information  relevant to algorithmic  global 

\ 
\ 

\ \  

. .  

Figure 13 - The  ravines  of  the  recostructed area ‘of 
Lake  Winnipesaukee as identified  by  the  descending 
count  method  of  Section 6. 

d 

Figure 14 - The  ridges  of  the  reconstructed  area  of 
Lake Winnipesqukee as identified  by  the  ascending 
count  method  of  Section 6. 

navigation.  The  feasibility  of  identifying the EPTN 
has been demonstrated  on actual data. The  extraction 
of  the EPTN from a  grid  and its conversion  into an 
encoding  of  the  resultant  graph  structures, as well as 
their  compilation  into data structures  appropriate  for 
their  use  by a  planning  algorithm  has  yet to be 
accomplished,  but is relatively  straight  forward. 

The  usefulness  of  the EPTN for  solving  the 
route  planning ind self localization  problems  for an 
A W  has yet to be demonstrated,  but  we  believe  that 
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Figure 15 - The  smooth  reconstruction of figure 11, 
with  the  ridge  and  ravine  points  labeled  by  the 
neighbor  differencing  method. 

Figure 16 - The  non-smooth  reconstruction  of  figure 
10, with  the  ridge  and  ravine  points  labeled ‘by the 
neighbor  differencing  method. 

as AUV  control  algorithms  become  more  sophisti- 
cated,  these  methods  will  become,  more  important. 
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