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Abstract. The introduction of vanishing moment recovery (VMR)
functions in our recent work (also called “fundamental functions” in
an independent paper by Daubechies, Han, Ron, and Shen) modifies
the so-called “unitary extension principle” to allow the construction
of compactly supported affine frames with any desirable order of van-
ishing moments up to the order of polynomial reproduction of the
given associated compactly supported scaling function. The objective
of this paper is to unify and extend certain tight-frame results in the
two papers mentioned above, with primary focus on the investigation
of tight frame generators with minimum supports. In particular, a
computational scheme to be described as an algorithm is developed
for constructing such minimum-supported tight frame generators. An
example is included as an illustration of this algorithm.

§1. Introduction

The parametric representation of curves and surfaces in terms of B-splines,
and more generally NURBS, is a standard method in computer-aided de-
sign and manufacturing (CAD/CAM). Local support, variation-diminish-
ing properties, and fast computational methods for B-splines and NURBS
constitute some of the most important features for the selection of these
basis functions for the CAD/CAM industry standards. However, only
during the past 15 years, the properties of B-spline multiresolution anal-
ysis and spline wavelets entered into the picture, and it was clear from
the very beginning that there does not exist an L2-orthonormal basis of
continuous spline-wavelets with compact support. This led to the idea
of using a semi-orthogonal spline-wavelet basis with local support for the
synthesis (the basis functions of the parametric representation) and dual
basis functions of global support, but exponential decay, for the analy-
sis (the dual functionals rendering the coefficients in the representation),
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although for better performance, change-of-bases is recommended in or-
der to use the same compactly supported spline-wavelets both for analysis
and for synthesis (see [1]). Of course, semi-orthogonal wavelets and their
duals have the maximum order of vanishing moments in the sense that
they annihilate all polynomials of degree L − 1, when Lth order B-spline
functions are used to construct the spline-wavelets.

To avoid the need of change-of-bases but still use compactly supported
spline-wavelets for both analysis and synthesis, a more general approach
to multiresolution representation of curves and surfaces is offered by tight
affine frames of L2 = L2(IR), which also lead to stable parametric rep-
resentations. In our present work, we discuss the shift-invariant setting
in L2. Extension to bounded intervals where B-splines with non-uniform
knot sequences provide a local basis, is studied in a paper under prepara-
tion.

For the L2 setting, tight affine frames are generated by functions
ψi ∈ L2 by shifts and dilations, such that the family

Ψ := {ψi;j,k = 2j/2ψi(2
j · −k); j ∈ ZZ, k ∈ ZZ, 1 ≤ i ≤ n}

satisfies

A‖f‖2 =
n∑

i=1

∑

j,k∈ZZ

|〈f, ψi;j,k〉|
2
, f ∈ L2(IR), (1)

where the constant A > 0, called the tight frame constant, does not de-
pend on f . If A = 1 we say that Ψ is a normalized tight frame. Here,
normalization is achieved simply by dividing each ψi by A

1/2. In order to
simplify notation, we also call the functions {ψi : 1 ≤ i ≤ n} tight frame

generators of Ψ. If the functions ψi are finite linear combinations of B-
splines, they can be employed as the multiresolution synthesis and analysis
tool for parametric spline curves and tensor-product surfaces. In addition
to having local support, the tight frame generators should also exhibit L
vanishing moments for the purpose of providing an effective analysis tool.

In the following, we consider a more general setting in our discussion
of the construction and characterization of tight frame generators. Let φ ∈
L2 be a refinable function with compact support, satisfying a refinement
equation

φ(x) =

N∑

k=M

pkφ(2x− k), (2)

where pk are real coefficients and φ is the normalized solution of (2) with

φ̂(0) = 1 such that the corresponding Laurent polynomial

P (z) =
1

2

N∑

k=M

pkz
k, (3)
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called the two-scale symbol of φ, satisfies P (−1) = 0. The integer L ≥ 1
is so chosen that P (z) = (1 + z)LP0(z), and P0 is a Laurent polynomial
with P0(−1) 6= 0. It is known [2,7] that the spaces Vj that are the clo-
sure of the span of the 2−jZZ-shifts of φ(2j ·), generate a multiresolution
approximation

{0} ← · · · ⊂ V−1 ⊂ V0 ⊂ V1 ⊂ · · · → L2(IR).

Without giving away much generality, we assume throughout that φ is a
minimally supported refinable function in V0, and therefore by the results
in [8], the integer shifts of φ constitute a Riesz basis of V0. (Note that this
conclusion does not generalize to higher dimensions.) The characterization
and construction of (minimally supported) tight frame generators ψi ∈ V1,
1 ≤ i ≤ n, that have L0 vanishing moments, where 1 ≤ L0 ≤ L is arbitrary,
is our main concern in this paper. The functions ψi can be defined by

ψ̂i(ω) = Qi(z)φ̂(ω/2), z := e−iω/2,

where Qi, 1 ≤ i ≤ n, are Laurent polynomials with real coefficients such
that

Qi(z) = (1− z)L0qi(z), 1 ≤ i ≤ n, (4)

with new Laurent polynomials qi. The factor (1−z)
L0 entails the vanishing

moment property of ψi.
A characterization of all orthonormal wavelets ψ (without the ne-

cessity of being defined by an MRA) appears in the book [6], and its
extention to tight frame generators {ψi} was given later by others such as
[5,12]. Tight frame generators in the given setting of an MRA (i.e. asso-
ciated with a compactly supported scaling function) can be characterized
by the identities

S(z2)P (z)P (1/z) +

N∑

i=1

Qi(z)Qi(1/z) = S(z), (5)

S(z2)P (z)P (−1/z) +

N∑

i=1

Qi(z)Qi(−1/z) = 0, (6)

which must be satisfied for all z ∈ C \ {0}. Here, the function S must be
a Laurent polynomial with S(1) = 1 and S(z) ≥ 0 on the unit circle (to
be denoted by T throughout this paper). Moreover, the functions ψi have
vanishing moments of order L0, i.e.,

∫

IR

x`ψi(x)dx = 0, 0 ≤ ` < L0, (7)
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if and only if

S(z)Φ(z)− 1 = O(|z − 1|2L0) near z = 1, (8)

where Φ(z) =
∑

k ckz
k is the autocorrelation symbol of φ defined by the

coefficients ck =
∫
IR
φ(x)φ(x+ k)dx. The last two statements were mostly

developed in [2], [4]. Minor improvements for tight frames are made in
the present paper in Theorems 1 and 2. We coined S as a vanishing
moment recovery (VMR) function in [2]; the term “fundamental function”
is employed in [4]. Well-known properties of the autocorrelation function
of cardinal B-splines show that L0 > 1 cannot be achieved, if φ is a cardinal
B-spline and S in (5)–(6) is the constant function 1. This was implicitly
assumed in the construction of tight frame generators in [12], however,
and one of the tight frame generators of their construction by a matrix
extension method has only one vanishing moment.

The outline of this paper is as follows. A review of some results in
[2], [4] with minor improvement is given in Section 2, where the charac-
terization by (5)–(8) is developed. The natural question that addresses to
whether or not for any refinable (stable) function φ, there exists a VMR
function S such that L0 = L vanishing moments can be obtained for all
compactly supported generators ψi, was answered to be positive in [2] (see
Theorem 3). In Section 3 we extend the technique in [2] for the construc-
tion of tight frame generators with two functions ψ1, ψ2, in order to find
all such generators that have minimum support. Although the derivation
looks rather technical, the outcome is a simple algorithm which is given
at the end of Section 3.

§2. Results for Tight Frames

In this section, we restrict our discussion to the results of the authors on
univariate tight frames in [2] and of Daubechies et al. in [4], particularly
in characterization and construction of tight frame generators.

Theorem 1. Let φ be a refinable function with compact support and
two-scale symbol P as in (3), and assume that the shifts of φ are stable.
Let Qi, 1 ≤ i ≤ n, be Laurent polynomials with real coefficients. Then the
functions ψi defined by ψ̂i(2ξ) = Qi(e

−iξ)φ̂(ξ) are tight frame generators,
with frame constant 1, if and only if there exists a Laurent polynomial S
with real coefficients, S(1) = 1, S(z) ≥ 0 on T, that satisfies (5)–(6).

Theorem 1 is a reformulation of a result in [2], under the additional
hypothesis of stability of the shifts of φ. Note that identity (5) implies
that Qi(1) = 0 holds for all 1 ≤ i ≤ n. This condition is necessary and
sufficient for the boundedness of the series on the right-hand side of (1).

The characterization of tight frame generators with L0 vanishing mo-
ments in (7) can also be given. The sufficiency of property (8) of the
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Laurent polynomial S was shown in [2]. Our subsequent discussion in the
present paper shows that (8) is also necessary.

Theorem 2. Let 1 ≤ L0 ≤ L and let the assumptions of Theorem 1 on
φ and Qi, 1 ≤ i ≤ N , be satisfied. Then the functions ψi are tight frame
generators, with frame constant 1 and L0 vanishing moments, if and only
if there exists a Laurent polynomial S with real coefficients, S(1) = 1,
S(z) ≥ 0 on T, that satisfies (5)–(6) and (8).

Proof: We recall from [1] that the autocorrelation symbol Φ satisfies
Φ(1) = 1 and

|P (z)|2Φ(z) + |P (−z)|2Φ(−z) = Φ(z2), z ∈ T. (9)

Consequently, we obtain

1

Φ(z)
−
|P (z)|2

Φ(z2)
= O(|z − 1|2L) near z = 1. (10)

Let 1 ≤ L0 ≤ L, where L is the multiplicity of the zero z = −1 of P . All
Laurent polynomials Qi, 1 ≤ i ≤ n, have the form (4), as a consequence
of (5), if and only if

S(z)− S(z2)|P (z)|2 = O(|z − 1|2L0) near z = 1. (11)

If we insert (10), we obtain the equivalent relation

S(z)−
1

Φ(z)
− |P (z)|2

[
S(z2)−

1

Φ(z2)

]
= O(|z − 1|2L0).

By analyticity of S and Φ near 1 and P (1) = 1, the previous relation is
equivalent to

S(z)−
1

Φ(z)
= O(|z − 1|2L0),

which, in turn, is equivalent to (8). If we combine this result with Theo-
rem 1, we obtain the result of Theorem 2.

There are many ways to find a Laurent polynomial S that satisfies
(8). By symmetry of Φ(eiξ) around 0, there exists a unique solution S of
(8) that has the form

S(z) =

L0−1∑

k=0

sk(z
k + z−k). (12)

The coefficients sk of this solution are real, so that S is real on the unit
circle and has minimum degree (possibly less than 2(L0−1)). The function
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S defined in this way may not be a VMR function, however. In addition
to (8), S must be chosen such that identities (5)–(6) admit Laurent poly-
nomial solutions for Qi, 1 ≤ i ≤ n. By rewriting these identities with an
argument −z for z, we have the equivalent condition

M(z) :=

(
S(z)− S(z2)P (z)P (1/z) −S(z2)P (1/z)P (−z)
−S(z2)P (z)P (−1/z) S(−z)− S(z2)P (−z)P (−1/z)

)

=

(
Q1(1/z) · · · Qn(1/z)
Q1(−1/z) · · · Qn(−1/z)

)


Q1(z) Q1(−z)

...
...

Qn(z) Qn(−z)


 , (13)

which we use as a substitute for (5)–(6) from now on. Apparently, the
VMR function S must be so chosen that, in addition to (8), the matrix
M(z) is positive semi-definite for all z ∈ T. This is accomplished in [2]
(see Theorem 5) as follows.

Theorem 3. Let the assumptions on φ in Theorem 1 be satisfied. Then
there exists a Laurent polynomial S with real coefficients, S(1) = 1, S(z) >
0 for all z ∈ T, such that (8) is satisfied and M(z) in (13) is positive
semidefinite for all z ∈ T.

We only mention the main ideas of the proof of this result. First, we
make use of spectral properties of the transfer operator

T|P |2(f)(z
2) = |P (z)|2f(z) + |P (−z)|2f(−z), z ∈ T,

which are developed in [9]. This leads to the construction of a Laurent
polynomialR that is an eigenfunction of T|P |2 with respect to an eigenvalue
0 < λ < 1, satisfies R = O(|1 − z|2L0) and R(z) > 0 on T \ {1}. The
existence of R, which is not shown in [9], can be deduced from a study of
positivity and irreducibility of the restriction of T|P |2 to certain invariant
subspaces. The notations in [11] prove to be very useful for this discussion.
Then, we construct a Laurent polynomial S with real coefficients, for which

1

Φ + βR
≤ S ≤

1

Φ +R
, 1 < β < 1/λ,

is satisfied on T. This problem is solved by trigonometric approximation
with interpolatory constraints at z = 1. The upper and lower bounds for
1/S are inserted in

T|P |2(1/S) ≤ T|P |2(Φ + βR) = Φ + βλR ≤ Φ+R ≤ 1/S, (14)

where the equality sign is justified by (9). Finally, the matrixM is shown
to be positive semi-definite on T, which is a consequence of

S(z)− S(z2)|P (z)|2

S(z)S(z2)
≥ (id− T|P |2)(1/S) =

detM(z2)

S(z)S(−z)S(z2)
,
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where the term in the middle is nonnegative by (14).
A similar result as stated in Theorem 3 for refinable functions φ with

dilation factor M ≥ 2 was recently obtained in our work [3]. The proof
does not provide precise bounds for the degree of S. For the special case
of cardinal B-splines, however, a precise analysis of the minimum degree
Laurent polynomial S in (12) is given in [4]. Moreover, it can be shown
that their result implies that the matrixM in (13) is positive semi-definite
on T. The same result is confirmed for low order B-splines (L ≤ 4) in [2].

§3. Tight Frames with Two Generators and Minimum Support

From now on we assume that the VMR function S is given such that (8)
holds and the matrixM in (13) is positive semi-definite on T. Moreover,
S is supposed to have minimum degree, whenever we discuss factoriza-
tions of M with minimum degree Laurent polynomials. We show, after
performing three consecutive transformations (15), (21), and (27) of this
matrix, that a factorization of M in (13) exists where we need only two
Laurent polynomials Q1 and Q2. Upper bounds for the degree of Q1 and
Q2 can be derived from Theorem 4. These bounds are experimentally
found to be sharp for tight frame generators from B-spline MRA of low
order. In this way, tight frame generators ψ1, ψ2 ∈ V1 with L0 vanish-
ing moments are constructed. Special emphasis is given to the aspect
of finding minimum degree Laurent polynomials Q1, Q2 in (13), because
they define tight frame generators with minimum support. This is the
reason why we keep track of the degree of all Laurent polynomials that
are involved in the construction, and why certain transformations of M
are chosen. Although this produces some notational overhead, there is
a simple algorithm at the end of this section which summarizes all steps
for the construction of tight frame generators with minimum support in a
compact way.

Before we begin with the construction, we need to agree on the mean-
ing of comparing size of support of function pairs (ψ1, ψ2). In the follow-
ing, |I| denotes the length of an interval I. For a function f on IR, we
let I(f) be the smallest interval that contains the support of f . We de-
fine a partial ordering as follows. The support of the pair (ψ1, ψ2) is
larger than the support of (ψ̃1, ψ̃2) if one of the two conditions is satis-
fied: (1) |I(ψ1)| > |I(ψ̃1)| and |I(ψ2)| ≥ |I(ψ̃2)|, or (2) |I(ψ1)| = |I(ψ̃1)|
and |I(ψ2)| > |I(ψ̃2)|. Similarly, we define a partial ordering for pairs
of Laurent polynomials. The pair (Q1, Q2) has larger degree than the
pair (Q̃1, Q̃2) if either deg(Q1) > deg(Q̃1) and deg(Q2) ≥ deg(Q̃2), or
deg(Q1) = deg(Q̃1) and deg(Q2) > deg(Q̃2). Here, the degree of a Lau-
rent polynomial Q(z) =

∑n
k=m akz

k is defined to be n−m, if aman 6= 0.
The space of all Laurent polynomials Q as above is denoted by L[m : n].
First we recall some important definitions and agree on the notations. The
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two-scale symbol of φ is given by

P (z) =

(
1 + z

2

)L

P0(z) =

NP∑

k=−MP

pkz
k, p−MP

pNP
6= 0.

The VMR function S is a Laurent polynomial with real coefficients, which
is real on T. Therefore, it has the expansion

S(z) =

NS∑

k=0

sk(z
k + z−k), sNS

6= 0.

The first transformation of the matrixM is performed by making use
of (4) in order to replace identity (13) with

M0(z) =

(
X(z) Y (z)
Y (−z) X(−z)

)

=

(
q1(1/z) q2(1/z)
q1(−1/z) q2(−1/z)

)(
q1(z) q1(−z)
q2(z) q2(−z)

)
,

(15)

where q1, q2 are (minimum degree) Laurent polynomials and

X(z) :=
S(z)− S(z2)P (z)P (1/z)

(1− z)L0(1− 1/z)L0
,

Y (z) :=
−S(z2)P (1/z)P (−z)

(1 + z)L0(1− 1/z)L0
.

(16)

By the assumptions on S and P , the functions X and Y are Laurent
polynomials that have the form

X(z) =

NX∑

k=0

xk(z
k + z−k), Y (z) =

NX∑

k=0

yk(z
k + (−1)kz−k), (17)

where NX = 2NS +MP + NP − L0 and the leading coefficients satisfy
xNX

= ±yNX
6= 0.

The determinant

detM0(z) =

S(z)S(−z)− S(z2)(S(−z)P (z)P (1/z) + S(z)P (−z)P (−1/z))

((1− z)(1− 1/z)(1 + z)(1 + 1/z))L0
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is an even Laurent polynomial which is nonnegative on T. We assume that
it does not vanish identically. Then we define

∆(z) =

N∆∑

k=0

δk(z
k + z−k), δN∆ 6= 0, (18)

such that 4∆(z2) = detM0(z). Note that

NX −N∆ ≥ NS +MP +NP −K ≥

{
1, if NS +MP +NP < 3,
2, if NS +MP +NP ≥ 3,

(19)

where K is the largest integer such that the coefficient of z2K in the
expansion of S(−z)P (z)P (1/z) + S(z)P (−z)P (−1/z) is nonzero. (If this
Laurent polynomial equals zero, we let K = 0.)

It is suitable to present the following result at this point, although
the proof of the existence can only be given later. The second part of the
theorem is clear, since X(z) = q1(z)q1(1/z) + q2(z)q2(1/z) by (15).

Theorem 4. With X, Y , and ∆ from above, let µ := min(2, NX −N∆).
Then there exist Laurent polynomials q1, q2 with real coefficients and
deg q1 = NX , deg q2 ≤ NX − µ which satisfy (15). Moreover, no pair
of Laurent polynomials (q1, q2) with deg q1 < NX and deg q2 < NX can
satisfy (15).

We continue with our preparations for the construction of a factoriza-
tion of M, from which the existence part of Theorem 4 will be deduced.
As the second transformation of M, we perform a polyphase decompo-
sition in order to decouple the entries of the matrix M0 in (15). If we
let

ν = 0, T (z) =
1

2

(
1 1
z −z

)
, if xNX

= yNX
,

ν = 1, T (z) =
1

2

(
1/z −1/z
1 1

)
, if xNX

= −yNX
,

(20)

we can define Laurent polynomials A, B, and C by
(

A(z2) B(z2)
B(1/z2) C(z2)

)
= T (z)

(
X(z) Y (z)
X(−z) Y (−z)

)
T t(1/z). (21)

Then q1, q2 satisfy (15) if and only if

qi(z) = z−ν+2`i [ui(z
2) + zvi(z

2)], i = 1, 2, (22)

where `i is an integer, the lowest order monomial of [ui(z
2) + zvi(z

2)] is
either 1 or z, and

(
A(z) B(z)
B(1/z) C(z)

)
=

(
u1(1/z) u2(1/z)
v1(1/z) v2(1/z)

)(
u1(z) v1(z)
u2(z) v2(z)

)
. (23)
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We also note that ∆ in (18) is the determinant of the matrix on the left-
hand side of (23). Therefore, d = u1v2 − u2v1 satisfies the relation

d(z)d(1/z) = ∆(z) = A(z)C(z)−B(z)B(1/z). (24)

For later reference we display the representations of the new Laurent poly-
nomials

A(z) =

NA∑

k=0

ak(z
k + z−k), ak =

x2k + (−1)νy2k
2

,

C(z) =

NC∑

k=0

ck(z
k + z−k), ck =

x2k − (−1)νy2k
2

,

B(z) =

NB∑

k=−MB

bkz
k, bk =

x2k+1 − (−1)νy2k+1
2

,

(25)

where we let y−k = −yk for odd k in the last expression, see (17). Here,
NA, NC , MB , and NB are the largest integers for which the summands
are nonzero. As a consequence of the choice of the parameter ν ∈ {0, 1}
in (20), we obtain that

NA = NX/2, MB , NB + 1, NC + 1 ≤ NX/2, if NX is even,

MB = (NX + 1)/2, NA, NC , NB + 1 ≤ (NX − 1)/2, if NX is odd.
(26)

The following observation summarizes the link between solutions of
(15) and (23).

Proposition 5. Let NX be given as in (17), and let N be the largest
integer less than or equal to (NX + 1)/2. If (q1, q2) is a solution of (15)
with deg qi ≤ NX , i = 1, 2, then the polyphase components u1, u2, v1, v2
of q1 and q2, as defined in (22), are elements of L[0 : N ] and define a
factorization (23).

Proof: If q1 and q2 satisfy the assumptions of the proposition, we obtain
from (22) that zν−2`iqi ∈ L[0 : NX+1]. Hence, the polyphase components
ui, vi in (22), i = 1, 2, are elements of L[0 : N ]. It is clear from the
construction that they define a factorization (23).

Remark. The value of the last proposition for the construction of tight
frame generators with minimum support can be seen as follows. In order
to find all minimum degree solutions (q1, q2) of (15), where deg qi ≤ NX ,
i = 1, 2, the search should be extended over all polyphase components
ui, vi ∈ L[0 : N ]. An algorithm that simplifies this search to an elementary
problem of linear algebra is developed next.
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Our main task remains to show the existence of the factorization of
the positive semi-definite matrix on the left-hand side of (23). We have
developed in [2] a method for the factorization of such matrices under cer-
tain constraints on the Laurent polynomial entries. Therefore, we arrange
for a “generic” form of the matrix by the following third transformation.
This transformation turns out to be more suitable for the discussion of
minimum degree factorizations than the transformation in Lemma 4 of
[2].

Lemma 6. Assume that there is no common zero in C \ {0} of all four
Laurent polynomials A, B, C, and B(1/z). Then for almost every r ∈ IR,

the Laurent polynomials Ã(z), B̃(z) defined by

(
Ã(z) B̃(z)

B̃(1/z) C(z)

)
=

(
1 r
0 1

)(
A(z) B(z)
B(1/z) C(z)

)(
1 0
r 1

)
(27)

have the form (25), with parameters NÃ = max(NA, NC ,MB , NB),MB̃ =

max(MB , NC), NB̃ = max(NB , NC), and Ã, B̃ have no common zeros in
C \ {0}.

Proof: The determinant of the matrix on the left hand side of (27) is the
same, for every r ∈ IR; indeed, it agrees with ∆ in (18). Consequently,
only the roots of ∆ are possible candidates for common zeros of

Ã(z) = A(z) + r(B(z) +B(1/z)) + r2C(z), B̃(z) = B(z) + rC(z).

For a fixed root z0 of ∆, there is at most one value of r ∈ IR such
that Ã(z0) = B̃(z0) = 0, except for the case where A(z0) = B(z0) =
B(1/z0) = C(z0) = 0. This shows that for at most 2N∆ values of r, the

Laurent polynomials Ã and B̃ can have common zeros, given the assump-
tion on A, B, and C of the lemma. Evidently, almost all values of r yield
NÃ = max(NA,MB , NB , NC). The other relations are clear as well. This
completes the proof of the lemma.

Remark. It follows from the invertibility of T in (21) that all four Laurent
polynomials A, B, B(1/z), and C have a common zero z0 6= 0, if and only
if X(z0) = X(−z0) = Y (z0) = Y (−z0) = 0. In the literature on stability
of refinable functions, a common zero of X and X(−z) is often called a
symmetric zero of X. Therefore, the assumption of Lemma 6 is equivalent
to the condition that X and Y have no common symmetric zeros. In our
experiments we never encountered a case where this condition is violated.

We have now completed the three transformations of the matrixM,
that are the combination of (15), (21), and (27). Note that N := NÃ is
the largest number among {NA,MB , NB , NC}. In view of (26), this is the
largest integer less than or equal to (NX +1)/2. Since all transformations
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are invertible, we find a one-to-one correspondence between all Laurent
polynomial solutions (ũ1, ũ2, ṽ1, ṽ2) of the factorization problem

(
Ã(z) B̃(z)

B̃(1/z) C(z)

)
=

(
ũ1(1/z) ũ2(1/z)
ṽ1(1/z) ṽ2(1/z)

)(
ũ1(z) ṽ1(z)
ũ2(z) ṽ2(z)

)
(28)

and the Laurent polynomial solutions (q1, q2) of (15), which gives

qi(z) = z2`i−ν(ũi(z
2) + (z − r)ṽi(z

2)), i = 1, 2. (29)

If we compare (29) with (22) and apply Proposition 5, we obtain

ũ1, ũ2, ṽ1, ṽ2 ∈ L[0 : N ], N = NÃ, (30)

if q1, q2 have degree at most NX . It is this “a priori” specification of
the degree of the polynomials ũ1, ũ2, ṽ1, ṽ2, which renders the following
procedure for the construction of solutions feasible. Our main tool is a
link between all factorizations of the type (28) under the constraints (30)
and the system of equations

B̃(z)ũ1(z)− d(z)ũ2(1/z)− Ã(z)ṽ1(z) = 0, (31)

B̃(z)ũ2(z) + d(z)ũ1(1/z)− Ã(z)ṽ2(z) = 0, (32)

ũ21(1) + ũ22(1) = Ã(1), (33)

where d is a Laurent polynomial that satisfies (24). Recall that d can
be viewed as a “square root” of the determinant ∆ of the matrix on the
left-hand side of (28). Note that (33) is merely a normalizing condition,
as long as u1 and u2 do not vanish simultaneously at 1.

The following result was shown in Theorem 4 of [2]. In order to
simplify notations, we leave out the tilde signs, which we then must do in
(31)–(33) and (28) as well. The result is reformulated in order to expose
the main tools needed for the proof of Theorem 4 and our new algorithm at
the end of this section. The proof in [2] is based on arguments concerning
elementary algebraic properties of Laurent polynomials and arguments
from linear algebra and is omitted here.

Theorem 7. Let

(
A(z) B(z)
B(1/z) C(z)

)
be a matrix of Laurent polynomials

A,B,C ∈ L[−N : N ], A(z) =
N∑

k=0

ak(z
k + z−k) with aN 6= 0.

Suppose that the matrix is positive semi-definite on T, and the determi-
nant ∆ does not vanish identically. Then
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(i) If polynomials u1, u2, v1, v2 ∈ L[0 : N ] satisfy (28), then the equations
(31)–(33), with d := u1v2 − u2v1, are satisfied.

Let d ∈ L[0 : 2N ] be a polynomial that satisfies d(z)d(1/z) = ∆(z), and
assume, in addition to the aforementioned assumptions, that A and B
have no common zeros in C \ {0}. Moreover,
(ii) If u1, u2, v1 ∈ L[0 : N ] define a nontrivial solution of (31), then there

exists a polynomial v2 ∈ L[0 : N ] such that u1, u2, v2 is a nontrivial
solution of (32).

(iii) If u1, u2, v1, v2 ∈ L[0 : N ] define a nontrivial solution of (31)–(32),
then there is a constant c > 0 such that cu1, cu2, cv1, cv2 define a
factorization (28).

Let us discuss the meaning of Theorem 7 for our construction of min-
imum degree solutions (q1, q2) of (15). Parts (i) and (iii) of the theorem,
together with (30), confirm that it is sufficient to inspect all solutions of
(31)–(33) that are polynomials in L[0 : N ], in order to find all solutions
(q1, q2) whose degree does not exceed NX . The parameter d in the equa-
tions (31)–(32) must vary over all polynomials in L[0 : 2N ] which have
real coefficients and constitute a root of the determinant ∆. Therefore, d
has the form

d(z) = z`
N∆∑

k=0

dkz
k, (34)

where 0 ≤ ` ≤ 2N −N∆ and the real coefficients dk determine all possible
solutions of d(z)d(1/z) = ∆(z). There exist many methods in order to
obtain these polynomials, e.g. spectral factorization as proposed in [10].

The second part of Theorem 7 implies a considerable reduction of
the amount of work for solving (31)–(32). The following method makes
use of elementary linear algebra. We insert the unknown coefficients of
ũ1, ũ2, ṽ1, ṽ2, which we denote by ũ1,k etc., into two vectors

~x = (ṽ1,0, . . . , ṽ1,N , ũ1,0, ũ2,0, . . . , ũ1,N , ũ2,N )t,

~y = (ṽ2,0, . . . , ṽ2,N , ũ2,0,−ũ1,0, . . . , ũ2,N ,−ũ1,N )t.
(35)

Equation (31) can then be written as a linear homogeneous system Z~x = 0
by expanding the left hand side of (31) into a Laurent series and setting
the coefficient of zj , −N ≤ j ≤ 2N , to zero. Z is the corresponding real
matrix with 3N + 1 rows and 3N + 3 columns. Likewise, equation (32)
can be written as Z~y = 0 with the same matrix Z. Obviously, each of
the systems Z~x = 0 and Z~y = 0 admits nontrivial solutions, since the
number of unknowns in each system exceeds the number of equations by
2. Thanks to part (ii) of Theorem 7, the seemingly overdetermined system
(Z~x = 0, Z~y = 0), which has 6N +2 equations for 4N +4 unknowns, has
as solutions all quadruplets ũ1, ũ2, ṽ1, ṽ2 where (ũ1, ũ2, ṽ1) is a solution
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of the system Z~x = 0. This effect can also be read off the reduced row
echelon form of Z, which is part (i) of the following lemma. Other features
such as zero entries of the solution vectors ~x and ~y can also be determined
from simple properties of Ã, B̃, and d, see parts (ii) and (iii) of the lemma.
For ease of notation we skip the tilde sign again.

Lemma 8. Assume that the Laurent polynomials A,B,C in (25) and
d in (34) are given where N := NA ≥ max(NC ,MB , NB) and d ∈ L[` :
`+N∆] ⊂ L[0 : 2N ]. Furthermore, assume that A and B have no common
zeros in C \ {0}. Then the matrix Z from above has full rank. Its first
3N+1 columns are linearly independent, and its reduced row echelon form
is given by 


1 g1 h1
. . .

1 g3N+1 h3N+1


 . (36)

All solutions of the linear systems Z~x = 0 and Z~y = 0 are given by

~x = u1,Nα− u2,Nβ, ~y = u1,Nβ + u2,Nα, (37)

where

α = (−g1, . . . ,−g3N+1, 1, 0)
t, β = (h1, . . . , h3N+1, 0,−1)

t (38)

and u1,N , u2,N are free parameters. Moreover, the entries in the last two
columns in (36) satisfy

(i) gi = hi+1 and gi+1 = −hi for all i = N + 2, N + 4, . . . , 3N ,

(ii) gi = hi = 0 for all 1 ≤ i ≤ min(N −MB , `) and max(NB , ` + N∆ −
N) + 2 ≤ i ≤ N + 1,

(iii) hNB+1 = 0, if N∆ < N +NB − `.

Proof: The combined system Z~x = 0, Z~y = 0 is consistent, as mentioned
above. Let r := 3N + 1. If the first r columns of Z are linearly depen-
dent, there exists a nontrivial solution of Z~x = 0 with u1,N = u2,N = 0.
Hence, equation (31) has a nontrivial solution (u1, u2, v1) where the degree
of u1 and u2 is at most N − 1. By (ii) and (iii) in Theorem 7, the Lau-
rent polynomial A of degree 2N divides the nonzero Laurent polynomial
u1(z)u1(1/z) + u2(z)u2(1/z) of degree less than 2N − 1. This is a contra-
diction. Therefore, the first r columns of Z must be linearly independent.
This implies that Z has full rank and its reduced row echelon form is given
by (36). The vectors α, β in (38) are a basis of the solution set of Z~x = 0.
This leads to the form of the solutions for ~x and ~y in (37). Moreover,
since the coefficients u1,k, u2,k appear in the definition of both vectors ~x
and ~y, part (i) of the lemma follows by inserting the values u1,N = 1 and
u2,N = 0 in (37).
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For parts (ii) and (iii) of the lemma, only the system Z~x = 0 needs to
be analyzed. In order to prove part (ii), we define s = min(−MB , `−N)
and inspect the homogeneous equations for the coefficients of zj in (31),
where −N ≤ j < s. Only the product A(z)v1(z) contributes to these
coefficients. This leads to s+N equations of the form

−

j+N∑

k=0

aN+k−jv1,k = 0, −N ≤ j ≤ s− 1,

with unknowns v1,0, . . . , v1,s+N−1. These equations are part of the linear
system Z~x = 0. Since the matrix of this subsystem is invertible, every
solution of Z~x = 0 must have v1,0 = · · · = v1,s+N−1 = 0. Consequently,
both solutions α and β in (38) must have zeros in rows i where 1 ≤
i ≤ s + N , and this gives the first part of (ii). The second part of (ii)
follows in an analogous way by inspecting the coefficients of zj in (31) for
max(NB +N, `+N∆) + 1 ≤ j ≤ 2N .

Similarly, for part (iii), we inspect the coefficient of zN+NB in (31).
If we have `+N∆ < NB +N , then the coefficient of zj , j = NB +N , in
(31) vanishes if and only if

bNB
u1,N −

N∑

k=NB

aj−kv1,k = 0. (39)

By part (ii), this can be simplified to bNB
u1,N − aNv1,NB

= 0. Conse-
quently, the solution β in (38) with u1,N = 0 and u2,N = −1 must have
v1,NB

= hNB+1 = 0. We have thus shown (iii).

Parts (ii) and (iii) of the Lemma 8 are essential for the proof of The-
orem 4. Before we enter the proof, we specify the following consequence
of the lemma.

Lemma 9. Let the assumptions of Lemma 8 be satisfied. Assume that
B ∈ L[−N : N − 1] and d ∈ L[0 : 2N − µ], where µ ∈ {1, 2}. Then there
exists a nontrivial solution (u1, u2, v1, v2) of equations (31)–(33), such that

u1 ∈ L[0 : N ], u2 ∈ L[0 : N − 1],

v1 ∈ L[0 : N − 1], v2 ∈ L[0 : N − µ].

Proof: The assumptions on B and d imply that NB < NA = N and
` + N∆ − N ≤ N − µ, where µ ∈ {1, 2}. This gives max(NB , ` + N∆ −
N)+2 ≤ N +1 in part (ii) of Lemma 8. It follows that gN+1 = hN+1 = 0.
If µ = 2 and NB ≤ N − 2, another application of (ii) gives gN = hN = 0.
If µ = 2 and NB = N − 1, however, then Lemma 8(iii) implies that
hN = 0. The parameters u1,N = 1 and u2,N = 0 in (37) define the solution
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(u1, u2, v1, v2) with coefficients v1,N = −gN+1 = 0 and v2,N = hN+1 = 0.
This is the assertion of Lemma 9 for µ = 1. In the case where µ = 2
we obtain that v2,N−1 = hN = 0, which again proves the assertion of the
lemma.

Finally, we are in a position to give the proof of Theorem 4.

Proof of Theorem 4: We have mentioned before that (15) cannot hold if
q1 and q2 have degree less than NX . Therefore, let us turn to the existence
of Laurent polynomials q1 and q2 with the degree constraints deg q1 = NX

and deg q2 ≤ NX − µ. We first deal with the case where X and Y have
no common symmetric zeros.

Let A, B, C be the Laurent polynomials in (21) and r be chosen as in
Lemma 6. Then we obtain the matrix (27), where the Laurent polynomials

Ã, B̃ have no common zeros and NÃ = max(NA, NB ,MB , NC). Recall
from (26) and (27) that if NX is even, we have

NÃ = NA = NX/2 > NC , MB̃ ≤ NX/2, NB̃ ≤ NX/2− 1.

If NX is odd, we obtain

NÃ =MB̃ =MB = (NX + 1)/2, NA, NB̃ , NC ≤ (NX − 1)/2.

In both cases we conclude that MB̃ ≤ NÃ and NB̃ , NC < NÃ. Further-
more, we have

N∆ ≤ NX − µ ≤ 2NÃ − `− µ,

where we let ` = 0, if NX is even, and ` = 1, if NX is odd.
Let N = NÃ as in Lemma 8. The determinant ∆ in (18) remains

unchanged by the transformation (27). We choose d in (34), such that
d(z)d(1/z) = ∆(z) and d ∈ L[` : ` + N∆], with ` ∈ {0, 1} from above.
Then the result of Lemma 9 assures, that there exists a nontrivial solution
(ũ1, ũ2, ṽ1, ṽ2) of equations (31)–(33), where

ũ1 ∈ L[0 : N ], ũ2 ∈ L[0 : N − 1],

ṽ1 ∈ L[0 : N − 1], ṽ2 ∈ L[0 : N − µ].
(40)

A nontrivial solution of (31)–(33), where the original Laurent polynomials
A and B in (21) are inserted, is obtained by

(u1, u2, v1, v2) = (ũ1 − rṽ1, ũ2 − rṽ2, ṽ1, ṽ2). (41)

If NX is even, (40) and (41) combined with N = NX/2 lead to

u1 ∈ L[0 : NX

2 ], u2 ∈ L[0 : NX−2
2 ],

v1 ∈ L[0 : NX−2
2 ], v2 ∈ L[0 : NX−2µ

2 ].
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The corresponding Laurent polynomials q1 and q2 in (22) satisfy

q1 ∈ L[2`1 − ν : 2`1 − ν +NX ], q2 ∈ L[2`2 − ν : 2`2 − ν +NX − µ].

This shows the existence result of the theorem, if NX is even. If NX is odd,
the choice of ` = 1 in (34) has the effect that the homogeneous equations

b̃−N ũi,0 − ã−N ṽi,0 = 0, i = 1, 2, (42)

follow from (31) (for i = 1) and (32) (for i = 2). Here, b̃−N , ã−N denote

the coefficients of the monomial z−N in the Laurent polynomials B̃ and Ã.
The definition of Ã and B̃ in (27) combined with N =MB > NA, NB , NC

give b̃−N = b−N and ã−N = rb−N . Therefore, the solutions of (42) satisfy
ũi,0 − rṽi,0 = 0, i = 1, 2. This, together with (40), (41), leads to

u1 ∈ L[1 : NX+1
2 ], u2 ∈ L[1 : NX−1

2 ],

v1 ∈ L[0 : NX−1
2 ], v2 ∈ L[0 : NX+1−2µ

2 ].

Inserting these polynomials into (22) gives

q1 ∈ L[2`1 − ν + 1 : 2`1 − ν +NX + 1],

q2 ∈ L[2`2 − ν + 1 : 2`2 − ν +NX + 1− µ].

This completes the proof of the theorem under the additional constraint
that X and Y have no common symmetric zeros.

If X and Y have a common symmetric zero z0 ∈ C \ {0}, then
1/z0 must also be a common symmetric zero, since X(z) = X(1/z) and
Y (−z) = Y (1/z) hold by (17). Moreover, z0 and 1/z0 are common
symmetric zeros as well, since X and Y have real coefficients. Let zk,
1 ≤ k ≤ 2κ, denote all common symmetric zeros of X and Y . Since the
matrix in (15) is positive semi-definite on T, each zero zk ∈ T must have
even multiplicity. We can therefore order the zeros such that zkzk+κ = 1,
1 ≤ k ≤ κ, and

∏κ
k=1(z − zk) is a polynomial with real coefficients. The

division of X and Y by all factors (z − zk)(1/z − zk), 1 ≤ k ≤ κ, leads to

new Laurent polynomials X̃, Ỹ that have real coefficients and the same
form (17) as X and Y , where NX̃ = NX − κ. The parameter N∆ of the
determinant is reduced by 2κ. Therefore, the parameter µ in the theorem
remains 2 or increases from 1 to 2. An application of the result proved
so far leads to Laurent polynomials q̃i, i = 1, 2, that satisfy (15) (with X̃

and Ỹ instead of X and Y ) and have deg q̃1 = NX̃ , deg q̃2 =≤ NX̃ − 2.
Multiplication by all factors (z − zk), 1 ≤ k ≤ κ, gives Laurent polynomi-
als q1, q2 with real coefficients that satisfy the assertion of the theorem.

We summarize the computational method for finding the minimum
degree solutions q1, q2 of (15), whose degree does not exceed NX , in the
following algorithm.
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Algorithm. Assume that X and Y are given as in (16)–(17), and that
X and Y have no common symmetric roots. Then minimum degree solu-
tions of (15) whose degree does not exceed NX are found by the following
procedure:
1) Let N denote the largest integer less than or equal to (NX + 1)/2.
Choose ν as in (20) and compute the Laurent polynomials A, B, C
in (21).

2) Choose r ∈ IR such that the assumptions of Lemma 8 for the modified

Laurent polynomials Ã, B̃, C are satisfied. Almost every r ∈ IR is
suitable.

3) For each choice of d in (34), where d ∈ L[0 : 2N ] and d(z)d(1/z) =
∆(z):
3a) Compute the matrix Z in the matrix representation of equation

(31), using the vector ~x in (35) as unknowns. (Columns of Z

repeat the coefficient sequences of −Ã, B̃, and the reverse co-
efficient sequence of −d, each padded with zeros on top and/or
bottom.)

3b) Find the reduced row echelon form of Z.
3c) Among all nontrivial choices of parameters ũ1,N , ũ2,N for the

computation of ~x and ~y in (37), find those for which the pair

q1(z) = z−ν(ũ1(z
2) + (z − r)ṽ1(z

2)),

q2(z) = z−ν(ũ2(z
2) + (z − r)ṽ2(z

2))

has minimum degree.
4) Multiply the minimum degree solution(s) (q1, q2) found in step 3 by
a positive constant so as to satisfy q21(1) + q22(1) = X(1).

The result is a pair (q1, q2) with deg q1 = NX , deg q2 ≤ NX − µ, where
µ = min(2, NX −N∆).

If X and Y have common symmetric zeros, the conclusions (ii) and
(iii) of Theorem 7 may fail. Part (i) of that theorem remains valid, how-
ever. This implies the necessity of equations (31)–(33). N is chosen to be
the maximum of NA,MB , NB , NC . Therefore, in the absence of conclu-
sion (ii) of the theorem, the combined system (Z~x = 0, Z~y = 0) should
be solved. Nontrivial solutions exist by Theorem 4. They must be cross-
checked, however, with (28), since the conclusion (iii) of Theorem 7 may
fail as well. This search would produce the minimum degree solutions
(q1, q2) of (15). On the other hand, it may be much simpler to work with

the reduced Laurent polynomials X̃, Ỹ , which are X and Y , respectively,
divided by linear factors that contain symmetric zeros as in parts of the
proof of Theorem 4. This will produce solutions (q1, q2) of (15), where q1
and q2 have as common zeros half of the common symmetric zeros of X
and Y . (The other half appears in q1(1/z) and q2(1/z) in (15).) Their
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degrees satisfy the inequalities in Theorem 4. It is not clear, however, that
the minimum degree solution (q1, q2) of (15) can be obtained in this way.

The following example serves as an illustration of our algorithm.

Example 1. Find Laurent polynomials (q1, q2) of minimum degree such
that (15) holds, where

X(z)=5(z6+z−6)+14(z5+z−5)+26(z4+z−4)+28(z3+z−3)+49(z2+z−2)+74(z+z−1)+122,

Y (z)=5(z6+z−6)+6(z5+z−5)+10(z4+z−4)+14(z3+z−3)+45(z2+z−2)+16(z+z−1)+40.

Neither X nor Y have symmetric zeros in C. Therefore, the algorithm
can be started with NX = 6, N = 3 and ν = 0 in (20). The polyphase
decomposition reveals

A(z) = 5(z3 + z−3) + 18(z2 + z−2) + 47(z + z−1) + 81,

C(z) = 8(z2 + z−2) + 2(z + z−1) + 41,

B(z) = 4z−3 + 7z−2 + 29z−1 + 45 + 21z + 10z2

and
∆(z) = 325− 150(z + z−1), N∆ = 1.

Hence, we obtain µ = 2 in Theorem 4 and know that solutions (q1, q2)
exist with deg q1 = 6 and deg q2 ≤ 4. Step 2 of the algorithm can be
skipped (r = 0 is suitable in Lemma 6). Since ∆ has two roots z1 = 3/2,
z2 = 2/3, there are 12 choices for d ∈ L[0 : 6] in step 3 of the algorithm.
They are given by

d(z) = z`(15z − 10), d(z) = z`(10z − 15), 0 ≤ ` ≤ 5.

We demonstrate step 3 of the algorithm for d(z) = 15z − 10. Equation
(31) leads to a linear system of 10 equations for 12 unknowns

~x = (v1,0, . . . , v1,3, u1,0, u2,0, . . . , u1,3, u2,3)
t.

The last two columns of the reduced row-echelon form of Z are
(
−4 1 −2 0 −5 −5 −3 −4 −1 −2
2 4 0 0 5 −5 4 3 2 −1

)t

.

The patterns described in Lemma 8 can be recognized. The choice u1,N =
1, u2,N = 0 leads to minimum degree solutions

q1(z) = (5 + 3z2 + z4 + z6) + z(4− z2 + 2z4),

q2(z) = (5 + 4z2 + 2z4) + z(2 + 4z2).

Since q21(1)+q
2
2(1) = 514 = X(1), q1 and q2 possess the correct normaliza-

tion. We verified that the other cases do not lead to solutions with smaller
degree.
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