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Construction of compactly supported affine frames in L2(IR
d)

Amos Ron & Zuowei Shen

1. Wavelet frames: what and why?

Since the publication, less than ten years ago, of Mallat’s paper on Multiresoltion Analysis
[Ma], and Daubechies’ paper on the construction of smooth compactly supported refinable functions
[D], wavelets had gained enormous popularity in mathematics and in the application domains. It
is sufficient to note that there are currently more than 10,000 subscribers to the monthly Wavelet
Digest. At the same time, the construction of concrete wavelet systems that are be useful for
applications still remains a challenge. Specifically, simple and feasible constructions of orthonormal
and bi-orthogonal systems of wavelets with small support, high smoothness and many symmetries
is hard in more than one dimension (both tensor product methods, or the methods suggested in
[RiS] and [JRS] yields wavelets with relatively large supports.

In a series of recent articles [RS1-7] and [GR], a theory that changes the previous state-of-
the-art had been developed. That theory makes wavelet constructions simple and feasible, and it
is the intent of the present article to provide a brief glance into it, with an emphasis on particular
examples of univariate and multivariate constructs.

We want to start with somewhat philosophical discussion: anyone who is familiar with wavelets
knows that the simplest wavelet system is the Haar family. The Haar function is piecewise-constant,
has a very small support, and the algorithms based on it are fast and simple. Had the Haar wavelet
been found satisfactory, other wavelet constructions, together with the MRA framework, would have
been superfluous. However, the frequency localization (read: the smoothness) of this wavelet is so
bad, that improvements had been sought for at the outset. It is reasonable to argue that if piecewise-
constants are rejected, then continuous piecewise-linears are next in line: this is exactly the line of
development in spline theory. Indeed, even before MRA was introduced, Battle [B], and Lemarié
[L], constructed (independently) a piecewise-linear continuous spline with orthonormal dilated shifts
(and knots at the half-integers only). Alas, that spline is of global support, and even its exponential
decay at ∞ did not attract the masses, who deserted it in favor of Daubechies’ refinable functions
and their bi-orthogonal off-springs (cf. [CDF]). The simplest function in Daubechies’ family [D] of
refinable functions (i.e., that with support [0, 3]) is not piecewise-linear, but is related to piecewise-
linears in some weak sense (its shifts reproduce all linear polynomials, just as the the shifts of the
piecewise-linear hat function do); in any event, the question whether the corresponding wavelet is
a ‘natural’ or ‘unnatural’ replacement for the Haar wavelet was not on the agenda anymore; rather,
this wavelet is considered next in line the Haar’s because it is the continuous orthonormal wavelet
with shortest support.

Before we get to the main point of the present discussion, we need to introduce the notion of
a tight frame. For that, we recall that, given any orthonormal system X for L2(IR

d), we have

f =
∑

x∈X
〈f, x〉x, all f ∈ L2(IR

d).

More concretely, the above identity states that we may use the same system X during the decom-
position process f 7→ {〈f, x〉}, and during the reconstruction process c 7→ ∑

x∈X c(x)x (here, c is a
any sequence defined on, and labeled by the elements of X). However, the property just expressed
does not characterize orthonormality:

Definition: tight frames. A system X ⊂ L2(IR
d) is called a tight frame if the equality

f =
∑

x∈X
〈f, x〉x, all f ∈ L2(IR

d)
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holds.

While piecewise-linear compactly supported orthonormal wavelet system (generated by a single
mother wavelet) does not exist, the elements depicted in Figure 1 were shown in [RS3] to generate
a tight frame (using dyadic dilations and integer translations) and may be viewed as a natural
extension of the Haar wavelet. More importantly, it is the first in line in a wealth of constructions
of affine (tight) frames. Examples of this class are given in §2 (univariate), and in §3 (multivariate).
A glimpse into the theory that leads to such and other constructs is the goal of §4.

Figure 1. The generators of the piecewise-linear tight frame

We have explained so far what tight frames are. We ‘almost’ explained why they are needed:
the main reason is that it is significantly simpler to construct tight wavelet frames (or, more,
generally, bi-frames, a notion that is defined in §2) as compared to orthonormal wavelets systems
or bi-orthogonal ones. This is largely due to the fact that the latter constructions require refinable
functions with properties similar those desired of the sought-for wavelets: e.g., a refinable function
with orthonormal shifts is required for the construction of an orthonormal wavelet system. In
contrast, compactly supported tight wavelet frames can be derived from any refinable function,
including splines in one dimension and box splines in higher dimensions. We do not even need to
assume that the shifts of the refinable function form a Riesz basis! Of course, one should still keep
in mind that tight frames are do not form an orthonormal system (they can be essentially regarded
as ‘redundant orthonormal systems’), and for certain applications (primarily data compression) the
oversampling that is inherent in frames may be undesired. At the same time, other applications,
such as noise reduction and/or feature detection may find the redundancy of frames a plus, and
some other applications may find that a neutral feature.
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2. Examples of univariate tight frames

As we said in the previous section, it is possible, at least in theory, to derive wavelet frames
from any refinable function. We have defined in the previous section the notion of a tight frame,
and explained that they should be considered as ‘redundant orthonormal bases’. In a similar way,
we define now the notion of bi-frames, which are the redundant analog of bi-orthogonal Riesz bases.

Definition 2.1. Let X be a countable collection of functions in L2. Let R : X → L2 be some“biframes

map. We call the pair (X,RX) bi-frames if the following two conditions are satified:
(1) The identity

∑
x∈X〈f,Rx〉x = f , holds for every f ∈ L2, and

(2) There exists a constant C <∞, such that for every f ∈ L2, the inequality
∑

x∈X

|〈f, x〉|2 +
∑

x∈X

|〈f,Rx〉|2 ≤ C‖f‖L2

is valid.

In the above definition, the second property (which implies that X and RX are Bessel systems)
is technical and mild. (Recall that a collection of functions X in L2 is a Bessel system if there
exists a constant C < ∞ such that, for every f ∈ L2, the inequality

∑
x∈X |〈f, x〉|2 ≤ C‖f‖L2

holds.) The major property in the definition of bi-frames is the first one, (1). That property tells
us that we may use the system RX for decomposition and then use the dual system X during the
reconstruction.

We now provide various examples of univariate tight and bi- wavelet frames. All the constructs
in the examples are derived from a Multiresolution Analysis. We recall in that context that a
function φ ∈ L2 is called a (dyadic) refinable function or a scaling function or a father
wavelet if there exists a mask aφ : ZZ → C such that

(2.2) φ = 2
∑

α∈ZZ

aφ(α)φ(2 · −α).
“defrefin

Sometimes, it is easier to express aφ in terms of its symbol

τφ(ω) :=
∑

α∈ZZ

aφ(α) exp (−iαω).

In the examples we discuss, the mask aφ is finite (which implies that φ is compactly supported),
hence τφ is a trignometric polynomial. The refinement equation (2.2) can be written in Fourier
domain as

φ̂(2·) = τφφ̂.

For notational convenience, when sequentially listing the entries of a sequence a : ZZ → C, we
put in boldface the entry a(0), thus

a = (. . . , 0, 1, 2,3, 4, 0, . . .)

means that a(0) = 3, a(1) = 4, a(−1) = 2, a(−2) = 1, and all other entries are 0.
In fact, in all our examples, the refinable function is chosen to be the B-spline of order k, with

k varying from one example to another. Recall that the B-spline is a Ck−2 piecewise-polynomial of
local degree k− 1, which is supported in an interval of length k (that we choose to be [−k/2, k/2],
at least for even k) and has its knots at the integers only. The Fourier transform of that B-spline
if given by

φ̂(ω) =

(
sin(ω/2)

ω/2

)k
.
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The B-spline is dyadically refinable with mask

τφ(ω) = cosk(ω/2).

Example 2.3. (Piecewise-linear tight frame) We choose φ to be the B-spline of order 2, i.e., the“exone

hat function. The generators of the tight frame are drawn in Figure 1. The refinement mask is

aφ = (. . . , 0,
1

4
,
1

2
,
1

4
, 0, . . .).

The two wavelet masks are

aψ1
= (. . . ,−

√
2

4
,0,

√
2

4
, 0, . . .),

and

aψ2
= (. . . ,−1

4
,
1

2
,−1

4
, 0, . . .),

This example is the simplest in a general construction of tight spline wavelet frames that
was described in [RS3]. In that construction, the number of wavelets is k (with k the order of
the B-spline which is used as a refinable function). The details of the piecewise-cubic case are as
follows.

Example 2.4. (Piecewise-cubic tight frame) We choose φ to be the B-spline of order 4. The“extwo

generators of the tight frame are shown in Figure 2. The refinement mask is

aφ = (. . . , 0,
1

16
,
1

4
,
3

8
,
1

4
,

1

16
, 0, . . .).

The four wavelets have masks as follows:
aψ1

= ( . . . , 0, − 1
8 , − 1

4 , 0, 1
4 ,

1
8 , 0, . . . )

aψ2
= ( . . . , 0, 1

16 , 0, −1

8
, 0, 1

16 , 0, . . . ) ∗
√

6

aψ3
= ( . . . , 0, − 1

8 ,
1
4 , 0, − 1

4 ,
1
8 , 0, . . . )

aψ4
= ( . . . , 0, 1

16 , − 1
4 ,

3

8
, − 1

4 ,
1
16 , 0, . . . )

It is also possible to construct bi-frames where the two frames involved are derived from B-
splines of different orders. In the next example, we derive the frame X from cubic splines, while
its dual is derived from piecewise-linear splines.

Example 2.5. (Bi-frames: cubics and linears mixed.) We choose one refinable function to be the“exthree

B-spline of order 4 (whose mask is already listed in Example 2.4), and the other B-spline to be of
order 2, (i.e., it is the hat function of Example 2.3). There are two sets of mother wavelets now:
those that generate the wavelet system X, and those that generate the dual wavelet system RX.
The piecwise-linear wavelet (that can be used, say, during the decomposition step) are depicted
in Figure 3. They are supported on the intervals [.5, 3.5], [.5, 3], [1, 3.5] respectively. Note that,
essentially, there are only two mother wavelets: the left-most one (together with its integer shifts)
and the middle one (together with its half integer shifts). The masks of these three elements
(ordered from left to right) are:

( . . . , 0, 1, −4, 6, −4, 1, 0, . . . ) ∗ 1
16

√
2

( . . . , 0, 0, −1, −1, 1, 1, 0, . . . ) ∗
√

3
8

( . . . , 0, −1, −1, 1, 1, 0, 0, . . . ) ∗
√

3
8

4
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Figure 2. The four piecewise-cubic wavelets

The masks of the cubic dual frame are (in the same order)

( . . . , 0, 1√
8
, − 1√

2
, 1√

8
, 0, . . . )

( . . . , 0, − 1
2 ,

1
2 , 0, 0, . . . ) ∗

√
3

4

( . . . , 0, 0, − 1
2 ,

1
2 , 0, . . . ) ∗

√
3

4

Note that in the last example two mother wavelets are used for creating the system (one is
shifted along integer translations, while the other ones along the denser half-integer translations).
Examples of that sort are the rule rather than the exception. For example, it is possible to derive
from the B-spline of order k a tight compactly supported spline frame with similalrly two generators
(however, the wavelets, in general, of those constructions are not symmetric.)

3. Examples of multivariate wavelet frames

Our examples of univariate wavelet frames in the previous section were derived from the mul-
tiresolution analysis whose ‘father wavelet’ is the B-spline. This ensured us, e.g., that the wavelets
are smooth piecewise-polynomials. An attempt to extend this approach to the multivariate setup
requires a multivariate analog of B-splines, i.e., smooth compactly supported refinable piecewise-
polynomials. Fortunately, such functions exist and are known as ‘box splines’. However, in contrast
with the univariate cardinal B-splines that have only one ‘degree of freedom’, i.e., their order, a
d-variate box spline is determined by a set of directions. Here, a direction is a non-zero vector in
ZZd. We stress that the ‘sets’ of directions below are not actually sets but multisets, i.e., a direction
may appear several times in it. We do assume (without further notice) that each direction set to
be considered spans the entire IRd space.
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Figure 3. The generators of the piecewise-linear frame of Example 2.5

Figure 4. The generators of the piecewise-cubic frame of Example 2.5

Definition 3.1. Let Ξ ⊂ ZZd be a direction set. The box spline φ := φΞ is the function whose“defbox

Fourier transform is

φ̂(ω) =
∏

ξ∈Ξ

1 − e−iξ·ω

iξ · ω .

The box spline φ is a piecewise-polynomial of local degree n := #Ξ−d (i.e., each of the polynomial
pieces is of degree ≤ n). It lies in Ck\Ck+1, with

k := max{#Y : Y ⊂ Ξ, span(Ξ\Y ) = IRd}.

Its support is the convex polyhedron

[0, 1]ΞΞ := {
∑

ξ∈Ξ

tξξ : t ∈ [0, 1]Ξ}.

6
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Much of the basic theory of box splines can be found in the book [BHR].
We will be interested primarily in the 4-direction bivariate box splines. These box splines

correspond to a direction set Ξ which consists of the four vectors

(ξ1, ξ2, ξ3, ξ4) :=

(
1 0 1 −1
0 1 1 1

)
,

each appearing with a certain multiplicity. We set m = (m1,m2,m3,m4) ∈ ZZ4
+ for the vector of

multiplicities (i.e., ξ1 = (1 0)′ appears in Ξ m1 times, etc.) The support of the 4-direction box
spline is an octagon, four of its vertices are (0, 0), (m1, 0), (m1+m3,m3), (m1+m3,m2+m3), (m1+
m3 −m4,m2 +m3 +m4). Four direction box splines possess a wealth of symmmetries; nonetheless,
prior to [RS3,5], there were hardly any wavelet constructions based on such splines. The reason
for that is that the shifts (i.e., integer translates) of the 4-direction box spline are always linearly
dependent (unless m3m4 = 0, but then the box spline is not truly 4-directional); indeed, we always
have that

(3.2)
∑

α∈ZZ2

(−1)α1+α2φ(· − α) = 0,
“temp

for every 4-direction box spline; the major previous algorithms for deriving wavelets from multires-
olution all required, at a minimum, that the shifts of the underlying refinable function form a Riesz
basis or a frame for V0 (the latter being the closed shift invariant space generated by the shifts of
φ). However, the dependence relation (3.2) implies that the shifts of φ form neither a Riesz basis
nor a frame for V0. (The reader is warned that the last statement is more subtle than it may look
like: first, the shifts of φ ∈ L2 can form a Riesz basis while being linearly dependent. However,in
such a case, the coefficient sequence of each dependence relation is unbounded. Second, the elements
of a frame can certainly be, and usually are, linearly dependent. However, a frame which consists
of the shifts of a single compactly supported function is necessarily a Riesz basis, cf. [RS1]).

The box spline φ is dyadically refinable with mask whose symbol is

4∏

j=1

e−imjξj ·ω/2 cosmj (ξj · ω/2).

Moreover, if we restrict our attention to 4-direction box splines whose multiplicities satisfym1 = m3,
m2 = m4, then those box splines are also refinable with respect to the dilation matrix

(3.3) s =

(
1 1
1 −1

)
,

“ttmat

and the symbol τ in this case is simpler:

τ(ω) = e−i(m1,m2)·ω/2 cosm1(ω1/2) cosm2(ω2/2).

Warning: the above τ is also the symbol of the tensor product B-spline. This of course is possible:
it is the symbol of the 4-direction box spline, when we use the above dilation matrix, and it is the
symbol of the tensor B-spline when we use the more standard dyadic dilation (another way to view
that: the 4-direction box spline is the convolution product of the tensor B-spline with its s-dilate).
This coincidence enables us to convert standard construction techniques of tensor-product wavelets
to the 4-direction box spline setup.

7
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In what follows we discuss masks of bivariate refinable functions and masks of the corresponding
wavelets. Until further notice, the dilation matrix is always assumed to be

(
1 1
1 −1

)
.

We adopt the following convention concerning the mask discussed: given a finitely supported
sequence on ZZ2, we simply display its non-zero values against the background of a (-n invisible)
integer mesh. We mark with boldface the location of the origin, which is always displayed (even
when its value is 0). For example, the notation

4
0 −1

stands for a sequence that takes the value 4 at (0, 1), the value −1 at (1, 0), and the value 0
anywhere else (on ZZ2).

Example 3.4. Let φ be the 4-direction box spline whose multiplicity vector is (1, 1, 1, 1). This“exfour

box spline is known in the finite element literature as the Powell-Zwart element, and its graph is
drawn in Figure 5.
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0.4
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Figure 5. The Powell-Zwart element

The Powell-Zwart element is refinable with mask

a =
.25 .25
.25 .25

.

It is a C1 piecewise-quadratic spline, and its support is the smallest octagon with integer vertices
(those vertices are (.5, 1.5)+(±1.5,±.5) and (.5, 1.5)+(±.5,±1.5). A tight frame that is generated
by three wavelets can be derived from the multiresolution of the Powell-Zwart element. The three
wavelet masks are

−.25 −.25
.25 .25

,
.25 −.25
.25 −.25

,
−.25 .25
.25 −.25

.

8



hk(.tex) (as of ???) TEX’ed at 11:11 on 14 November 2001

Note that these masks are identical to those used in the construction of the bivariate dyadic or-
thonormal Haar system. That latter system is derived from the multiresolution analysis of the
support function χ of the unit square, and our refinable function here is indeed related to χ: the
Powell-Zwart element is the convolution product of χ and χ(t1 + t2, t1 − t2). The graphs of the
three wavelets are drawn in Figures 6-8. All the wavelets have the same octagonal support as that
of the Powell-Zwart element.
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Figure 6. The first wavelet in Example 3.4
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Figure 7. The second wavelet in Example 3.4
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Figure 8. The third wavelet in Example 3.4

Since the dilation matrix s has determinant −2, one expects to use a single wavelet in the
construction of irredundant wavelet systems (that are based on s). Since we used in Example 3.4
three mother wavelets, it seems reasonable to assert that the system there has ‘a 3-fold rate of
oversampling’. It is possible to modify the construction and to obtain a tight frame generated by
two compactly supported wavelets. We refer to [RS5] for the details of that modified construction,
but, for the reader convenience, list in the next example the corresponding masks.

Example 3.5. (C1 piecewise-quadratic compactly supported tight frame generated by two wavelets)“exfive

In this case the refinable function is slightly changed, and the refinement mask becomes:

.25
.25 .25
.25

.

The masks of the two wavelets are

−.5
.5 −.5
.5 , 1 .

−1

Note that the second wavelet has a smaller support than the first. Indeed, while in the previous
example the each of the three mother wavelets is supported in a domain of area 7, the two wavelets
here are supported in domains of areas 10 and 7 respectively.

Algorithms for constructing compactly supported tight spline frames from box splines of higher
smoothness are detailed in [RS5]. These algorithms work, essentially, with any box spline (though
they may require to modify somewhat the magnitude of the directions that define the box spline
as was actually done in the last example). However, in all these algorithms the number of wavelets
that are used increases with the increase of the smoothness of the box spline (the determining factor
is the degree of the mask, viewed as a trigonometric polynomial, and that degree must increase
together with the smoothness). In what follows, we describe a general algorithm that applies to
4-direction box splines whose multiplicity vector is of the form (m1,m2,m1,m2). Recall that that
box spline is refinable with respect to the dilation matrix s of (3.3), and its mask, on the Fourier
domain is

(3.6) τ(ω) = e−i(m1,m1)·ω/2 cosm1(ω1/2) cosm2(ω2/2).“maskPZ

10
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The algorithm can be extended to more general box splines (provided that those box splines are
also refinable with respect a dilation matrix whose determinant is ±2) and is new, i.e., appears
here for the first time. In contrast with the previous constructions, it yields bi-frames rather than
tight frames. On the other hand, the number of mother wavelets is 3 regardless of the values of
m1,m2, in other wrods, regardless of the smoothness of the resulting wavelet system. We describe
below the algorithm in general terms, and then provide the details of one of its special cases.

Algorithm: 4-directional compactly supported bi-frames of arbitrary smoothness gen-
erated by three mother wavelets. We need here two refinable functions, and assume both
of them to be 4-direction box splines which are refinable with respect to the dilation matrix s,
hence with mask of the form (3.6). We set φ for one of these functions, and φd for the other, set
also τ and τd for their masks, and denote their multiplicity vectors by m = (m1,m2,m1,m2) and
n = (n1, n2, n1, n2), respectively. We assume that all the entries of r := (m + n)/2 are (positive)
integers; we also assume that r1 + r2 is even, since that assumption simplifies somewhat the pre-
sentation. Under these mere assumptions, we derive two wavelet systems that form a bi-frame in
the following way. We first expand the expression

(3.7) 1 = (cos2(ω1/2) + sin2(ω1/2))r1(cos2(ω2/2) + sin2(ω2/2))r2 ,“temp

and group the various summands into four groups. The first two groups are the singletons R1(ω) :=
cosr1(ω1/2) cosr2(ω2/2), and R2(ω) := sinr1(ω1/2) sinr2(ω2/2). Since R2 = R1(· + (π, π)), it is
possible then to divide the other terms into two groups, R3 and R4, such that R4 = R3(·+ (π, π)).
This can be done in many different ways, and the only condition we need is that R3 is divisible by
cos2(ω1/2) sin2(ω2/2) (something that can be achieved by, e.g., putting all terms that are divisible
by cosr1(ω1/2) into R3 and all terms that are divisible by cosr2(ω2/2) into R4). Observing that
R1 = ττd, we factor R3 into τ1τ

d
1 in a way that both τ1 and τd1 are divisible by sin(ω2/2). We then

define two wavelet systems, each consists of three mother wavelets. In the first system, the three
wavelets masks are

(t1(ω) := exp(ω1)τd(ω + (π, π)), t2(ω) := τ1(ω), t3(ω) := exp(ω1)τd1 (ω + (π, π))),

and in the second system the wavelet masks are

(td1(ω) := exp(ω1)τ(ω + (π, π)), td2(ω) := τd1 (ω), td3(ω) := exp(ω1)τ1(ω + (π, π))).

Since tjtdj = Rj+1, j = 1, 2, 3, we conclude that ττ d +
∑3

j=1 tjt
d
j = 1. At the same time, we

have that t2t2(· + (π, π)) + t3t3(· + (π, π)) = 0, and also ττ(· + (π, π)) + t1t1(· + (π, π)) = 0, and
we thus conclude that the wavelets are constructed according to the mixed extension principle (see
Theorem 4.9). Moreover, each of the mother wavelet in either system has a sin-factor in its mask,
hence has a zero mean-value, which, together with its compact support assumption, implies that
the wavelet system is Bessel. Altogether, the two wavelet systems generated as above are bi-frames.

Example 3.8. We let φ and φd be, both, the 4-direction box splines with multiplicity (2, 2, 2, 2);“general

the refinement masks (up to an exponential factor) are then τ(ω) = τ d(ω) = cos2(ω1/2) cos2(ω2/2).
Also, r = (2, 2, 2, 2), and the expression in (3.7) is

(cos2(ω1/2) + sin2(ω1/2))2(cos2(ω2/2) + sin2(ω2/2))2.

After defining R1(ω) = cos4(ω1/2) cos4(ω2/2), and R2(ω) = sin4(ω1/2) sin4(ω2/2), we are left with
seven additional terms that should be split between R3 and R4. One possiblity is to define, with
bj := cos2(ωj/2), j = 1, 2,

R3(ω) := b1(1 − b2)(b1(1 + b2) + 2(1 − b2)),

11
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and hence
R4(ω) := b2(1 − b1)(b2(1 + b1) + 2(1 − b1)).

There are then many ways to construct the wavelets. For example, we can define the generators of
the first system to be

t1(ω) = exp(ω1/2) sin2(ω1/2) sin2(ω2/2), t2(ω) = exp(−ω1/2) cos(ω1/2) sin(ω2/2),

t3(ω) = exp(ω1/2) sin(ω1/2) cos(ω2)(sin(ω1/2)(1 + sin(ω2/2) + 2 cos(ω2/2)),

and, correspondingly,

td1(ω) = exp(ω1/2) sin2(ω1/2) sin2(ω2/2), td3(ω) = exp(ω1) sin(ω1/2) cos(ω2/2),

td2(ω) = exp(−ω1/2) cos(ω1/2) sin(ω2/2)(cos(ω1/2)(1 + cos(ω2/2) + 2 sin(ω2/2)).

4. The theory of affine frames

In this section, we review the theory that led to the constructions detailed in the previous
sections, and explained the basic principles behind the actual constructions.

The analysis of wavelet frames in [RS3] and [RS4] is based on the theory of shift-invariant
systems that was developed in Approximation Theory (box splines, [BHR], form a special case of
shift-invariant systems). A system X ⊂ L2 is shift-invariant if there exists F ⊂ X such that

X = (f(· + α) : f ∈ F, α ∈ ZZd).

A systematic study of the “frame properties” of a shift-invariant X can be found in [RS1], and
the results there were subsequently applied in [RS2] to Gabor systems (which, indeed, are shift-
invariant). Wavelet systems, on the other hand, are not shift-invariant (the negative dilation levels
are invariant under translations that become sparser as the dilation level decreases). The main
effort of [RS3] was devoted, indeed, to circumventing that obstacle, i.e., finding a way to apply the
“shift-invariant methods” of [RS1] to the ‘almost shift-invariant’ wavelet systems.

This was achieved in [RS3] and [RS4] with the aid of the new notion of quasi-affine system,
that we describe here (for the dyadic dilation case only; the development in [RS3] and [RS4] is
valid with respect to general dilation matrices with integer entries). Let the affine system X be a
wavelet system generated by a finite number of mother wavelets Ψ ⊂ L2(IR

d). The affine system
X is the disjoint union of DkE(Ψ) where E(Ψ) = ∪ψ∈ΨE(ψ) with E(ψ) := {ψ(· − α) : α ∈ ZZd},
the shift invariant set generated by ψ, and D is the dyadic dilation operator D : f 7→ 2d/2 f(2·).
That is

X =
⋃

k∈ZZ

DkE(Ψ).

The quasi-affine system associated with X (denoted by Xq) is, roughly speaking, the smallest
shift-invariant set containing X. It is obtained from X by replacing, for each k < 0, the set of the
functions 2kd/2ψ(2k · +j), ψ ∈ Ψ, j ∈ ZZd that appears in X, by the larger shift-invariant set of
functions

2kdψ(2k · +j), ψ ∈ Ψ, k < 0, j ∈ 2−kZZd.

Note that, while the affine system is dilation-invariant, the quasi-affine Xq is shift-invariant, but is
not dilation invariant.

While the “basis properties” of X (such as the Riesz basis property) are not preserved when
passing to Xq, the “frame properties” of X are preserved. The following result is a special case of
Theorem 5.5 of [RS3].

12
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Theorem 4.1. An affine system X is a frame for L2(IR
d) if and only if its quasi-affine counterpart“thmone

Xq is one. Furthermore, the two systems have the same frame bounds. In particular, the affine
frame X is tight if and only if the corresponding quasi-affine system Xq is tight frame.

The theorem allows one to analyse the ‘frame properties’ of the affine X via a study of its
quasi-affine counterpart. The latter is more mathematically accessible, by virtue of its shift-
invariance. Specifically, [RS3] employs the so-called “dual Gramian” analysis of [RS1] (which
is a ‘shift-invariance method’) to this end. The result is a complete characterization of all wavelet
frames that we now describe.

The characterization is in terms of certain bi-infinite matrices, dubbed ‘fibers’. The matrices
and their entries are best desrcribed in terms of the following affine product:

Ψ[ω, ω′] :=
∑

ψ∈Ψ

∞∑

k=κ(ω−ω′)

ψ̂(2kω)ψ̂(2kω′), ω, ω′ ∈ IRd,

where κ is the dyadic valuation:

κ : IR → ZZ : ω 7→ inf{k ∈ ZZ : 2kω ∈ 2πZZd}.

(Thus, κ(0) = −∞, and κ(ω) = ∞ unless ω is 2π-dyadic.) Our convention is that Ψ[ω, ω′] := ∞
unless we have absolute convergence in the corresponding sum. We assume here that

(4.2) |ψ̂(ω)| = O(|ω|−1/2−δ), near ∞, for some δ > 0,“decaycond

for every wavelet ψ ∈ Ψ. This smoothness assumption on Ψ is mild, still the actual assumption in
[RS3,4] is even milder (multivariate Haar wavelets do not satisfy the smoothness assumption here,
but do satisfy the milder assumption of [RS3,4]). Theorem 4.1 is originally proved in [RS3] under
this latter smoothness assumption; the subsequent proof in [CSS] avoids that assumption.

The fibers (i.e., matrices) in the ‘dual Gramian fiberization’ are indexed by ω ∈ IRd. Each

fiber is a non-negative definite self-adjoint matrix G̃(ω) whose rows and columns are indexed by
2πZZd, and whose (α, β)-entry is

G̃(ω)(α, β) = Ψ[ω + α, ω + β].

The matrix G̃(ω) is interpreted then as an endomorphism of `2(2πZZd) with norm denoted by G∗(ω)

and inverse norm G∗−(ω). It is understood that G∗(ω) := ∞ whenever G̃(ω) does not represent a
bounded operator, and a similar remark applies to G∗−(ω). Theorem 4.1 together with the general
‘shift-invariance tools’ of [RS1] lead to the following characterization of wavelet frames.

Theorem 4.3. Let X be an affine system generated by the ‘mother wavelets’ Ψ. Let G∗ and G∗−
“thmtwo

be the dual Gramian norm functions defined as above. Then X is a frame for L2(IR
d) if and only

if G∗,G∗− ∈ L∞. Furthermore, the frame bounds of X are ‖G∗‖L∞
and 1/‖G∗−‖L∞

.

The theorem sheds new light on various previous studies of wavelet frames. For example,
the estimates for the frames bounds of a wavelet frame (cf., e.g., [D1]) can be reviewed as an

attempt to estimate the norm and/or inverse norm of a matrix (viz., G̃(ω)) in terms of its entries.
‘Oversampling principles’ (that extend that original work of Chui and Shi, cf. e.g., [CS]) are derived
from the fact that the fibers of of the oversampled systems are submatrices of the fibers of the
original system.

The above theorem leads to the following characterization of tight wavelet frames (cf. Corollary
5.7 of [RS3]. Part (a) of that result was independently established in [H]):

13



hk(.tex) (as of ???) TEX’ed at 11:11 on 14 November 2001

Corollary 4.4.“thmthree

(a) An affine system X generated by Ψ is a tight frame for L2(IR
d) with frame bound C if and

only if

(4.5) Ψ[ω, ω] = C,“one

and

(4.6) Ψ[ω, ω + 2π + 4πj] = 0,“two

for a.e. ω ∈ IR and j ∈ ZZd.

(b) An affine system X is an orthonormal basis of L2(IR
d) if only if (4.6) holds, (4.5) holds with

C = 1, and Ψ lies on the unit sphere of L2.

We now show how the above theory leads to concerte algorithms for constructing wavelet
frames. Assume that φ is a compactly supported refinable function with φ̂(0) = 1 (and satisfies
(decaycond)). Note that, in contrast with most of the wavelet literature, we are not making a-
priori any assumption on the shifts of the refinable function: these shifts may not be orthonormal,
nor they need to form a Riesz basis, nor even a frame. (Furtheremore, we actually need only the

condition φ̂(0) = 1; the other assumptions are made here for convenience.)

We denote by

V0

the closed linear span of the shifts of φ and by

Vj

the 2j-dilate of V0. The assumption that φ is refinable is defined here to merely mean that
V0 ⊂ V1. We remark in passing that (cf. §4 of [BDR2]) ∩j∈ZZVj = 0 and that ∪j∈ZZVj is dense in

L2(IR
d) (the latter follows from the compact support assumption on φ, while the former holds for

any refinable function, compactly supported or not); however, we will need these two properties for
the subsequent development.

In classical MRA constructions of orthogonal wavelets, prewavelets, biorthogonal wavelets, and
frames, one starts with one or two refinable function(s) φ (and φd) that has certain properties (e.g.,
the shifts of φ are orthonormal, or form a Riesz basis; the shifts of φd are bi-orthogonal to those
of φ, etc.) Then, one carefully selects set of mother wavelets Ψ from the space V1 in a way maked
the space W0 which is spanned by E(Ψ) complementary (in some suitable sense) to V0 in V1; for
example, W0 may be the orthogonal complement of V0 in V1. The cardinality of the wavelet set Ψ
is always 2d − 1.

In these classical constructions, we encounter difficulties in one (or both ) of the following
two major steps: (i) finding refinable functions with desired properties (the main difficulty being
the deduction of the properties of φ from its refinement mask), and (ii) constructioning of the
corresponding wavlet masks when the masks of the refinable functions are given.

Our MRA constructions in [RS3-5] deviates from this classical approach in the following way:
while still selecting the mother wavelets Ψ from V1, we allow the cardinality of the mother wavelet
set Ψ to exceed the traditional number 2d−1. We use this acquired degrees of freedom to construct
affine frames with desired properties without requiring the underlying scaling function(s) to satisfy
any substantial property. The examples in the previous sections demonstrate this point.

14
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All the construction of the wavelet systems in this paper are based on two closely related
algorithms for the derivation of wavelet frames from MRA. The first is the (rectangular) unitary
extension principle, [RS3], which is used in the construction of tight wavelet frames, and the other
is the mixed extension principle, [RS4], which is used in the construction of wavelet bi-frames. The
unitary extension principle (Theorem 4.8 below) is derived in[RS3] as follows: assuming that φ is
refinable and that Ψ is any finite subset of V1, one rewrites first the conditions in Corollary 4.4
in terms of the various masks and the scaling function φ only. This leads, [RS3] to a complete
characterization of all tight wavelet frames which can be constructed from any MRA, in terms
of of the underlying masks only. The following algorithm then follows easily from that general
characterization. In its statement, we define the maks τψ of ψ ∈ Ψ′ := φ ∪ Ψ as the 2π-periodic
function in the relation

ψ̂(2·) = τψφ̂.

We then construct a rectangular matrix ∆ whose rows are indexed by Ψ′, whose columns are
indexed by Z := {0, π}d:

(4.7) ∆ := (Eντψ)ψ∈Ψ′,ν∈Z .“maskmat

Theorem 4.8 (the unitary extension principle). Let φ a refinable function corresponding“thmfour

to MRA (Vj)j and Ψ be a finite subset of V1. Let ∆ be the matrix (4.7) that corresponds to
Ψ′ := Ψ ∪ φ, and X the affine systems generated by Ψ. If ∆∗∆ = I, a.e., then X is a fundamental
tight frame.

In [RS4], the above algorithm algorithm was extended to include bi-frames.

Theorem 4.9 (the mixed extension principle). Let φ and φd be two refinable functions“multidual

corresponding to MRAs (Vj)j and (V dj )j , respectively. Let Ψ be a finite subset of V1, and let

R : Ψ → V d1 be some map. Let ∆ be the matrix (4.7) that corresponds to Ψ′ := Ψ ∪ φ, and let
∆d be the matrix of (4.7) that corresponds to Ψ′ := RΨ ∪ φd. Finally, let X and RX be the affine
systems generated by Ψ and RΨ, respectively. If
(a) X and RX are Bessel, and
(b) ∆∗∆d = I, a.e.,
then X and RX are frames for L2 that are dual one to the other.
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