Finding shortest paths on large meshes

Vishal Verma

December 17, 2008

Abstract

Finding shortest paths and distances on a mesh is
a well studied problem. Algorithms for solving this
problem have mainly concentrated on optimizing the
time requirement. However for large meshes of the
kind we encounter in GIS, the major bottleneck is the
memory requirement. This report evaluates different
algorithms for computing shortest paths on triangu-
lated manifolds. We adapt these algorithms to work
for large meshes, i.e meshes that cannot fit into mem-
ory. For the “single source, all destinations” prob-
lem we use the Dijkstra’s [1], fast marching [2] and
MMP [3] algorithms. For “single source, single desti-
nation” we use A-star heuristics [4] with the Dijkstra
and MMP algorithms.

1 Introduction

In this report we evaluate several methods for com-
puting shortest paths and adapt them for large
meshes. Given a source vertex on the mesh, these
methods compute a distance function on the vertices
of the mesh (as in Dijkstra’s method and fast march-
ing method) or on all points on the edges of the mesh
(as in the MMP algorithm). This distance function
can be later used to trace back the shortest path (or
an approximation to it) to the source. The major is-
sue in implementing these algorithms is that for large
meshes the memory requirement is very high. Given
a mesh with n vertices, the memory requirement for
computing distances on this mesh using Dijkstra’s
method or fast marching method [2] is O(n), while for
MMP algorithm [3] it is ©(n®/2). For large meshes,
this amount of memory is not available and straight-
forward implementation of these methods will result
in many cache misses at run time.

Unlike Delaunay triangulation or smoothing, the
shortest path problem is not a local problem. In
a smoothing algorithm or Delaunay triangulation it
is sufficient to keep only a small neighborhood of

a vertex/triangle in memory to process that ver-
tex/triangle. This is not the case for shortest path
algorithms. For example, the shortest paths through
a triangle may change if a ridge is added to the mesh
someplace very far from this triangle. Due to the non-
local nature of this problem, reducing the memory
requirements for shortest algorithms is more difficult
than for problems that are inherently local.

The rest of this report is divided into three sec-
tions. In section 2 we discuss the streaming frame-
work we use to process large meshes. Section 3 looks
at three different methods for solving “single source,
all destination” shortest path problems. In this sec-
tion we also describe how to adapt these algorithms
to the streaming framework. In section 4 we look
at A-star shortest path search algorithm of solving
the “single source, single destination” shortest path
problem. We also propose a scheme which allows us
to use A-star heuristics with the MMP algorithm. In
section 5 we look at two reordering schemes, which
help reduce the memory requirements of the various
shortest path algorithms.

2 Streaming Mesh Representa-
tion

A mesh in the streaming format is a sequence of
points, triangles and “finalize vertex” tags. The se-
quence maintains two invariants:

1. A point appears in the sequence before any tri-
angle that uses is it a vertex

2. After a “finalize vertex” tag has been read from
the stream, no triangles read from the stream
will contain that vertex.

In this format we can begin processing a part of the
mesh before reading in the whole mesh. The stream-
ing format works very well for local computations,
where we start processing points and faces as soon as

they are read from the stream and can finish process-
ing them, output the results and remove them from
memory as soon as we read the finalize tag for that
vertex.

Shortest path algorithms are inherently non-local
operations, but Dijkstra-style shortest path algo-
rithms have certain properties which make them
suited for the streaming framework. In this report we
will be considering only Dijkstra-style shortest path
algorithms.

3 Single source, all destinations
shortest path algorithms

Dijkstra’s algorithm forms the base of many “single
source, all destinations” shortest paths algorithms.
The three algorithms we have implemented for this
problem: Dijkstra, fast marching and MMP, use a
Dijkstra-style mesh traversal. Below we present the
general structure of a Dijkstra-style mesh traversal
algorithm. The primary data structure used in this
method is a priority queue, Q, containing vertices
that are sorted on their distance values.
procedure Generic_Dijkstra

Initialize distance value of all vertices to oo
Set the distance value of source to 0
Mark all vertices except source as “unseen”
Insert the source vertex into Q
while Q is not empty do
v = Q.pop()
mark v as “done”
for all neighbors u of v do
if u is not marked “done” then
update the distance value of u for the path
through v
11: if uis “unseen” then
12: insert u in Q
13: end if
14: end if
15: end for
16: end while

—
e

At a given time during the algorithm we have three
types of vertices(regions). See figure 1.

1. The inner white region is the set if vertices which
have been marked “done”. The distances to
these vertices from the source have been com-
puted and will not change through the remainder
of the algorithm.

2. The set of vertices in) forms the grey “frontier”.

Figure 1: Three different regions during a Dijkstra
like mesh traversal

Some distance values to these vertices from the
source have been computed. But these values
may decrease in the course of the algorithm.

3. The black outer region is the set of vertices
marked “unseen”. These vertices have not been
visited by the algorithm.

To adapt such an algorithm to the streaming for-
mat we make use of the following observations:

1. The “frontier” should be in memory.

2. Those “unseen” vertices which are not neighbors
of a frontier vertex need not be kept in memory

3. Those “done” vertices that are not needed for
the update step of the algorithm can be ejected
from memory.

4. We would like the “done” vertices to appear in
stream before the “frontier” vertices, which in
turn should occur before the “unseen” vertices.

Thus, ideally at any point in the algorithm, we
would like to keep only the frontier and its imme-
diate neighborhood in memory. To achieve this, we
reorder the mesh in a spiral sequence (in terms of the
x,y coordinates of the vertices) around the source.
See figure 2(b). The vertices are colored in the order
they are read from the stream. Vertices appearing
earlier in the stream have a darker color, while those
appearing later have lighter color.

In the average case, the size of the frontier region
is O(y/n), where n is the number of vertices in the
mesh. Thus, with a good reordering scheme we can
expect the memory requirement to fall to ©(y/n).

In the following sections we discuss implementation
of three different Dijkstra-based algorithms with an

(a) Mesh with source at the (b) Mesh reordered around
lower left corner source

Figure 2: Reordering of a streamed mesh

aim to reduce their memory requirement using the
above ideas.

3.1 Dijkstra’s Method

The standard Dijkstra’s algorithm finds shortest
paths over the edges of the mesh. In this algorithm
the update step 7 of Generic_Dijkstra does not use
any of the “done” vertices. Thus we can discard a
vertex from memory as soon as it is marked “done”.
We modify the standard Dijkstra’s method to take
advantage of the above observation.

procedure Dijkstra(streamed_mesh, source)

: reorder streamed_mesh

—_

2: read from streamed_mesh until source vertex is
read
3: source.dist=0
4: insert source into Q
5: while Q is not empty do
6: v=Q.top()
7. if v has been finalized then
8: Q.pop()
9: mark v as “done”
10: for all neighbors u of v do
11: if u is not marked “done” then
12: update the distance value of u for the
path through v
13: if u not in Q then
14: insert u in Q
15: end if
16: end if
17: end for
18: output necessary information for v and then
discard v from memory
19: else
20: read from streamed_mesh
21: end if

22: end while

g

0
A 2 B

Figure 3: Computing approximate shortest distance
to C, using shortest distance values for A and B

Results

We ran the above algorithm on a mesh with five mil-
lion triangles. On the reordered mesh (figure 2(b))
the algorithm took 35 Mb of memory and 93 seconds
to run, while on the unordered mesh (figure 2(a)) it
took 321 Mb of memory and 95 seconds to run. We
can see that reordering does help in saving memory.

3.2 Fast marching

Fast marching is an algorithm for tracking the move-
ment of a growing wavefront on a mesh (based on
FEikonal equations). The method computes the ap-
proximate time when a wave that starts at the source
hits a vertex of the mesh. Computing geodesic dis-
tances on a mesh is a particular case of this prob-
lem in which the wavefront advances at a unit speed.
This algorithm can also be used to compute weighted
shortest paths. Below is a brief explanation of the al-
gorithm; for details refer to [2].

Fast marching differs from Dijkstra’s algorithm in
its update step. Let B be the vertex being popped
from the queue containing the “frontier” and let C'
be any neighbor of B which has not been marked
“done”. Let A be a common neighbor of B and C.
These three vertices form a triangle ABC'; see figure
3.

Let the current distances of A, B and C be T4, Tp
and T¢. If vertex A is not marked “done”, then we
compute the candidate distance at C' by

dc =Tp + |BC|

otherwise, we assume that the gradient, g, of the dis-
tance function is constant over the triangle ABC. We

compute
0 Tp —Ta
= I S _—
arccos AB]

We use the direction of the gradient to compute to
compute candidate distance to C.

de =Ta + |AC|cos(LA — 0)

If C' is unseen or d¢ is less than T¢, we set T =
do. If C is unseen we push it into the frontier queue.

Note that for the update step we need to keep in
memory those “done” vertices which are neighbors
of vertices in the frontier. Thus a vertex can be
discarded from memory only if all its neighbors are
marked “done”. The streaming version of the fast
marching algorithm that accommodates the above
observation is as follows.

procedure Fast_-Marching(streamed_mesh, sourcef

: reorder streamed_mesh

—_

2: read from streamed_mesh until source vertex is
read
3: source.dist=0
4: insert source into Q
5: while Q is not empty do
6: v=Q.top()
7: if v has been finalized then
8: Q.pop()
9: mark v as “done”
10: for all neighbors u of v do
11: if u is not marked “done” then
12: update the distance value of u for the
path through common triangles of u and
v
13: if u is “unseen” then
14: insert u in Q
15: end if
16: end if
17: end for
18: for all neighbors u of v do
19: if all neighbors of u are marked “done”
then
20: output necessary information for u and
discard u from memory
21: end if
22: end for
23: else
24: read from streamed_mesh
25: end if

26: end while

Results

We ran the above algorithm on the reordered mesh
(figure 2(b)). It took 15 Mb of memory and 100 sec-
onds to run. The same algorithm when run on the
unordered mesh (figure 2(a)) took 173 Mb of memory
and 101 seconds to run. Again we see that reordering
helps us reduce the memory requirement.

3.3 MMP algorithm

The MMP algorithm computes exact geodesic dis-
tances on a triangulated manifold. Unlike Dijkstra’s
method, these distances correspond to shortest paths
that can pass through the interior of triangles. Con-
sider a shortest path on the manifold, which passes
through a sequence of faces. If we unfold this se-
quence of faces onto a plane, this shortest path will
correspond to a straight line. In general, the shortest
aths do not pass through vertices. The exceptions
o this are saddle points and corner vertices. These
shortest paths can be visualized as rays originating
at the source and satisfying the following properties:

1. When passing through the interior of a triangle,
the ray is a straight line.

2. When crossing an edge from one triangle to an-
other, the ray bends in such a way that on un-
folding the two adjacent triangles onto a plane,
the ray corresponds to a straight line.

3. Mitchell [3] prove that geodesics can pass
through vertices only where the total angle is
greater or equal to 2w, i.e. at saddle points.
If the mesh has corners (some non-manifold
meshes), shortest paths can pass through corner
vertices as well. At vertices where the total angle
is greater than 27, many straight directions are
possible for an incoming ray. See figure 4. Thus,
these vertices act like sources from which a set
of rays originate, although only in a small range
of directions. Corner vertices also show a similar
property. Such a vertex is called a pseudosource.
We discuss them later in this section.

The key idea of MMP is to track a set of shortest
paths together in a data structure called window. A
window stores the distance function on an interval
of an edge of the mesh. The MMP algorithm parti-
tions edges into intervals such that the shortest path
to each point in the interval passes through the same
sequence of triangles and pseudosources. Let w be a
window and s’ be the closest pseudosource to w in

Figure 4: Shortest paths through a saddle point

the sequence of triangles and pseudosources, which
the window w corresponds to. We assume that we
know the distance to s’ from the source. Thus, to
compute the distance from source to w, we need to
only compute the distance from s’ to w. Consider the
sequence of triangles after s’ in the sequence of trian-
gles and pseudosources corresponding to w. On un-
folding this sequence of triangles, the shortest paths
from s’ to points in w appear as straight lines from
the s’ to points in w. See figure 5. To keep track of
these shortest paths, we just need to keep track of the
position of the pseudosource in this unfolding. This is
done by storing the distance values at the endpoints
of w in the corresponding window.

To retrieve the distance values for points in w, win-
dow w contains the following information:

e The end points of the interval it corresponds to.
e The distance value of these end points from s’

e The distance of s’ from the source. If there is no
pseudosource in the path, this value is 0. We call
this distance the source distance of the window.

e A boolean that signifies which side of the edge
does s’ lie on.

3.3.1 Window propagation

Window propagation is a step by which the distance
function of a window is used to create potential win-
dows on the edges of the adjacent face. See figure 7.
To propagate a window, we use the distance values
at the end point and the boolean flag stored in this
window to compute the location of the pseudosource
in this unfolding. The intervals of these potential

source

s’
W
Figure 5: Shortest paths to w through pseudosource
S/
s s
% by]

(a) Two overlapping windows (b) Partitioning them into two
disjoint windows

Figure 6: Handling window overlap

windows may overlap with those of other windows
on that edge. The points in these intervals of over-
lap have two sets of paths from the source; we need
to choose the shortest path among these two sets for
each point in the interval of overlap. We do so by sub-
dividing the interval of overlap into sub-intervals such
that shortest paths to all points in a subinterval be-
long to the same of set of shortest paths. Figure 6(a)
shows two overlapping windows whose intervals are
repartitioned such that the new windows (as shown
in figure 6(b)) are disjoint and each point in the new
windows has a distance value which is the minimum
of the distance value at that point as computed from
the two original windows in figure 6(a).

3.3.2 Propagating vertices

In addition to windows, the distance value at some
vertices also must be propagated to create potential
windows on the adjacent edges. We call these critical
vertices. There are three types of such vertices:

Figure 7: Two different cases in window propagation

e Source: The distance value at source is prop-
agated in all directions, as shortest paths from
the source to points on adjacent edges are just
straight lines. To propagate the distance value
at source we create windows on the edges ad-
jacent to the source. These windows span the
whole interval of the edge. The source distance
of such windows is 0.

e Saddle points: Saddle points have a total angle
greater than 360°. In figure 4, S is the shortest
path to the saddle point p. The region between
the outgoing rays at 180° and —180° angle from
S cannot be reached by window propagation. So,
we propagate the distance value at the saddle
point vertex to the adjacent edges in this region.
The source distance for such windows is the dis-
tance of p from the source.

e Corner vertices: In figure 8, S is the shortest
path to the corner vertex p. We can see that the
region beyond the outgoing ray at 180° from S
will not be reached by window propagation. So,
we propagate the distance value at the corner
vertex to the adjacent edges in this region. The
source distance of such windows is the distance
of p from the source.

In figure 5 w can be imagined to be a potential win-
dow created by propagating the critical vertex s'.
The distance of the endpoints of this window from
s’ is just their Euclidean distance from s’.

The overlap of these potential windows with exist-
ing windows is handled as in the previous section.

3.3.3 The algorithm

The overall algorithm propagates the windows and
critical vertices across the mesh in a Dijkstra-like
fashion. It uses a priority queue to store windows

Figure 8: Shortest paths through a corner vertex

and critical vertices that lie in the “frontier” region
and haven’t been propagated yet. We call this queue
the frontier queue. At the beginning of the algorithm
the source is pushed into the queue.

The iterative step pops the top element of the fron-
tier queue and propagates it to create potential win-
dows. These potential windows are added to the cor-
responding edges to create new windows, which are
pushed into the frontier queue. If the new windows
are incident on a critical vertex, and the critical ver-
tex is already present in the queue, it is updated with
the new distance function. If the critical vertex is not
in the queue, then it is pushed into the queue. If an
existing window is modified due to its overlap with
the potential window, then the queue is updated ac-
cordingly. This step is repeated until the queue is
empty.

Note that a window popped off the frontier queue
can be modified or deleted later by a potential win-
dow.

The final distance function obtained at the end of
the algorithm is independent (except for small nu-
merical inaccuracies) of the ordering of the queue.
However the choice of this ordering function affects
the time taken to compute the distance function over
the whole mesh. For better performance we use the
minimum value of the distance function over the win-
dow as the sorting criteria. For critical vertices, this
value is the distance of the critical vertex from the
source.

3.4 Adapting MMP
streaming setting

algorithm to

As in any Dijkstra based method that has an outward
moving frontier region, to adapt the MMP algorithm
to streaming setting, we first reorder the mesh in a
spiral fashion around the source. The update step in
MMP algorithm, however, is very different from that
in Dijkstra’s method or fast marching in the following
respects:

e Reordering: The stream is reordered in a spiral
fashion around the source vertex.

e Propagation: A window can be propagated
only if the neighboring triangle is in memory.
If a window is at the top of the frontier queue
and the window’s neighboring triangle is not in
memory and the window does not lie on a corner
edge, we read from the stream until we get the
neighboring triangle or the edge turns out to be
a corner edge. Then we propagate the window.
For testing if an edge is a corner edge or not, we
need to check if it has two adjacent triangles in
the mesh or not. If one of the neighboring trian-
gles of the edge is not in memory even after one
of its neighboring vertices have been finalized,
we know that the edge is a corner edge.

A critical vertex can be propagated only when
all of its neighboring triangles are in memory i.e.
when the vertex has been finalized. If a critical
vertex is at the top of the frontier queue and has
not been finalized, we read from the stream until
the vertex is finalized and then propagate it.

e Updating existing windows: As we have al-
ready seen, a window that has been popped off
the frontier queue can be later modified by po-
tential windows created by propagating windows
occurring later in the queue. So we cannot dis-
card a window from memory as soon as it is
popped off the frontier queue. Let wg be a
window which has been popped off the frontier
queue, wi be a window which is at the top of the
frontier queue at some time after the wy has been
popped off. Let w. be a potential window cre-
ated by propagating wi. We know that the min-
imum of the distance function on w; and thus
that of w,. is not less than that of wg. However
it is possible that there is a point on which both
w,. and wy are incident and the distance value at
this point from w, is lesser than that from wy.

If we keep wp in memory until the maximum
distance value on wy is less than the minimum
distance value on w; such a situation would not
arise. So we discard a window from memory only
if the maximum distance value on this window
is less than the minimum distance value of the
top element of the frontier queue. To implement
this efficiently, we use another priority queue,
called “inner frontier queue”. This queue con-
tains windows and is sorted on the maximum
distance value on the window. A window which
has been popped off the frontier queue is pushed
into the inner frontier queue. At each iterative
step of the algorithm, we pop off from inner fron-
tier queue those windows on which the maximum
distance has fallen below the minimum distance
on the top element of the frontier queue. Once
a window has been popped off the inner frontier
queue, we delete it and check whether there are
any windows left on the two neighboring trian-
gles. If any of these triangles have no windows
left, we delete those triangles and check if the
finalized vertices of these triangles have any tri-
angles left in memory. If not we delete these
finalized vertices.

4 A-star: Single source, single
destination shortest path al-
gorithms

A-star is a widely used algorithm for computing
shortest paths from a given source to a given destina-
tion. The A-star mesh traversal is similar to Dijkstra
mesh traversal in that it uses a growing frontier to
visit the mesh. However, the frontier in A-star is
biased by a heuristic function to grow towards the
destination. Thus in this case the frontier is ellip-
tical in shape, compared to the circular frontier for
Dijkstra-based algorithms.

Let s be the given source vertex and ¢ be the given
destination vertex and d(u,v) be the distance from
a vertex u to a vertex v as computed by Dijkstra’s
method . Let h be an A-star heuristic distance func-
tion defined on all the vertices of the mesh. The func-
tion h must satisfy

=
S
|
=
<
A

d(u,v) (1)
(2)

for all vertices u, v in the mesh

Figure 9: Streamed mesh reordered in an elliptical
spiral around the source and target

We want h(u) to be an approximation of d(u,t)
that satisfies the above two properties.

4.1 Adding A-star heuristic to Dijk-
stra’s algorithm

Given an A-star heuristic function h, the A-star
method is the same as Dijkstra’s method except that
the priority queue is ordered on d(s,u) + h(u) for a
vertex u, instead of d(s,w). The algorithm is termi-
nated when the destination ¢ is popped off the queue.

We assume that an edge-length in our mesh is
given by the Euclidean length of the edge. For such
meshes, we use Euclidean distance from destination
t as our A-star heuristic distance function for Dijk-
stra’s method. Let ||-|| represent Euclidean distance.
Then,

[lu =] = [lv =] < [fu = v]| < d(u, v)
by the triangle inequality. And,
[t =l =0

Thus Euclidean distance from ¢ satisfies the proper-
ties 1 and 2 required of an A-star heuristic for Dijk-
stra’s method.

We have seen that the frontier is elliptical for A-
star based shortest path algorithms. Thus to adapt
A-star based algorithms to streaming framework we
reorder the stream into an elliptical spiral around the
source and target vertex. See figure 9.

Results

On the reordered mesh (figure 9) the above algorithm
took 206 Mb of memory and 13 seconds to run, while

on the unordered mesh (figure 2(a)) it took 340 Mb
of memory and 15 seconds to run.

4.2 Adding A-star heuristic to the
MMP algorithm

The MMP algorithm computes a distance function
that is defined on all points on all edges of the mesh.
Using arguments similar to those for the Dijkstra’s
algorithm in the previous subsection, it can be seen
that Euclidean distance to the destination ¢ satis-
fies the properties required of an A-star heuristic for
MMP method. Let h(p) be the euclidean distance of
the point p on an edge of the mesh from the destina-
tion ¢, and d(s,p) be the distance from source s to p
computed by the MMP algorithm.

We define two functions on the set of windows. For
a window, w,

hmaz (’LU) = max d(S,p) + maxh(Q)
pew geEw
and
hamin(w) = min d(s, p) + min h(q)
pEW qEw
Here p and q are points in the interval correspond-
ing to w.
The function A, is also extended to the set of
critical vertices. Let v be a critical vertex, then

Romin(v) = d(s,v) + h(v)

Let w be any window in the frontier queue and
a critical vertex in this queue. The following changes
are made to the MMP algorithm to add A-star heuris-
tic to it:

e The frontier queue for an unbiased MMP algo-
rithm is ordered on minye,, d(s, p) for windows
and d(s,u) for critical vertices. For the A-star
version we order this queue on hy,in(e), where e
is a window or a critical vertex.

e The inner frontier queue for an unbiased MMP
algorithm is ordered on max,e,, d(s,p). For the
A-star version we order it on hyqq (w).

e The top of the inner frontier queue, wq, is
popped off from the queue if and only if
hmaz(wo) < himin(€), where e is the top element
of the frontier queue. wq is then discarded from
memory. The triangle and vertex deletion step
is the same as in unbiased MMP algorithm.

e We terminate the algorithm when d(s,t) is less
than or equal to the minimum value of distance
function on the top element of the frontier queue.

The termination condition given above ensures that
the path from the source to the destination is indeed
the shortest path. Note that ideally, we would like to
use the following definitions for hA.,q, and hpn

Bomaz(w) = r}gleaqﬁc(d(svp) + h(p))

Romin(w) = min(d(s, p) + h(p))

pew

for a window w.

However, this function is much more difficult to
compute than the one we have used, which serves as
a close approximation.

Results

On the reordered mesh (figure 9) the A-star version
of MMP algorithm took 470 Mb of memory and 120
seconds to run, while on the unordered mesh (figure
2(a)) it took 1 Gb of memory and 168 seconds to
run.

5 Reordering

We have seen that reordering the mesh stream re-
duces the memory required for running shortest paths
algorithms on the mesh. We use two different schemes
for reordering. In the first one we project all points
onto the x-y plane and then use the distance between
the projected points and the projected source for re-
ordering. The second scheme uses distance computed
from Dijkstra’s method for reordering.

5.1 Reordering by projecting points
onto the x-y plane

In this scheme we project all the points in the stream
onto the x-y plane and then compute the distance be-
tween the projected points and the projected source.
We then bin all the points according to these dis-
tances. These bins are then concatenated in increas-
ing order of distance from the projected source. We
use this reordering scheme for input to Dijkstra’s and
fast marching method. We use this scheme as it re-
quires a very small amount of knowledge for comput-
ing the distances between the points in the stream
and the source, and thus requires a very small amount
of memory.

For Dijkstra’s method with A-star algorithm we
bin the points in the order of the sum of the distances
of the corresponding projected points from the pro-
jected source and the projected target.

5.2 Dijkstra-based Reordering

This reordering scheme is used for MMP method
which has a much higher memory requirement than
dijkstra’s or fast marching method. Since the stream-
ing version of MMP method has a very high mem-
ory requirement as well, we need a more sophisti-
cated reordering scheme than the previous one for
MMP method. We use dijkstra based reordering for
this purpose. Given a mesh stream, we run the al-
gorithm described in 3.1 on it. A vertex is out-
put to the reordered stream, when it is popped of
the priority queue. A triangle, all of whose vertices
have been popped of the queue is output to the re-
ordered stream. A vertex which has been popped off
the queue and all of whose neighbors have also been
popped off is finalized in the reordered stream. It
can be seen that the reordered stream satisfies the
two properties described in 2.

The reordering scheme for the MMP algorithm
with A-star heuristic is very similar to the above re-
ordering scheme. The two key differences are:

e Dijkstra’s algorithm with A-star heuristic is run
on the input stream.

e We reorder only that part of the mesh through
which the shortest path between the source and
the target can pass. Given an upperbound on
the distance between the source and target and a
lower bound for distance between any two points
on the mesh we can compute if the shortest path
can pass through a point or not. If the shortest
path passes through a given point, then the sum
of the lowerbound of the distance of that point
from the source and lowerbound of the distance
of that point to the target will be smaller than
the upperbound of the distance from the source
to the target. The Dijkstra distance between
source and target is computed during the course
of the Dijkstra’s method with A-star heuristic.
Euclidean distance is used as a lowerbound to
distance between two points.

6 Future Work

Of the three algorithms we have discussed in this re-
port, only two compute distances corresponding to
shortest paths that can pass through the interior of
triangles, namely the fast marching and MMP algo-
rithms. The MMP algorithm computes exact dis-
tances, which can be used to trace back the shortest
paths very easily. But it doesn’t provide the flexi-
bility to compute exact weighted shortest paths, as
shortest paths in MMP are restricted to travel in
a straight line. However we can use it to compute
approximate shortest paths by allowing the shortest
paths to bend when they cross an edge. The bending
in this case is similar to the bending of a light ray
due to refraction i.e. when the light ray crosses the
boundary between two mediums of different optical
density.

Fast Marching returns an approximate distance
function and we have not yet found a stable way to
compute shortest paths using this distance function.
However, fast marching gives us a lot of flexibility
since each triangle can have a different weight. But
even with the flexibility of fast marching we cannot
construct weights that penalize a path going uphill
more than a path going down hill.

Notice that we have to do two passes through the
mesh stream, once for reordering and once for short-
est path computations. Ideally, we would prefer to
eliminate the reordering pass since it does not fit well
with the streaming ideology of reading a stream of
points and processing them simultaneously. We have
seen that the Dijkstra-based shortest path algorithms
expect the vertices to appear in the stream in a par-
ticular kind of structure. Due to the non-local na-
ture of the problem, it seems difficult for us to avoid
the reordering step for a stream which does not have
a structure favorable to shortest path computations.
Say we have read a part of the stream and made
some shortest path computations on the basis of that.
These computations could easily become useless if a
ridge near the source appears later in the stream.

For single source, single destination shortest path
problems we have been experimenting with algo-
rithms which use a lower bound (for distance between
points on the mesh) and a suitable upper bound (for
distance between source and target) to keep in mem-
ory only those parts of the mesh through which the
shortest path can pass. Once we have read this part
of the mesh into memory we can run standard short-
est path algorithms on it. For the part of mesh kept
in memory to be small, we need good upper and

10

lower bounds. Without any previous knowledge of
the mesh, efficiently computing such bounds would
require reordering the stream. Currently we have
been using Euclidean distance as a lower bound, as it
does not need shortest path computations. However
finding such an upper bound is still an issue.

References

[1] E. W. Dijkstra, “A note on two problems in con-
nexion with graphs.,” Numerische Mathematik,
vol. 1, pp. 269-271, 1959.

R. Kimmel and J. Sethian, “Computing geodesic
paths on manifolds,” Proc. of National Academy
of Sci., vol. 95, no. 15, pp. 8431-8435, 1998.

J. Mitchell, D. Mount, and C. Papadimitriou,
“The discrete geodesic problem,” SIAM Journal
of Computing, vol. 16, no. 4, pp. 647-668, 1987.

I. Pohl, “Bi-directional search,” Machine Intelli-
gence, vol. 6, pp. 127-140, 1971.

