
Online Submission ID: 0371

Streaming Meshes
Category: Research

Figure 1: Illustrations of the coherence in the layout of a mesh: On the left the original layout; on the right the layout after reordering the vertex and triangle
arrays using spectral sequencing. The large rendering color-codes triangles based on their position in the array. The layout diagram connects triangles that
share the same vertex with horizontal line segments (green) and vertices referenced by the same triangle with vertical line segments (gray).

Abstract
Recent years have seen an immense increase in the complexity of
geometric data sets. Today’s gigabyte-sized polygon models can
no longer be completely loaded into the main memory of common
desktop PCs. Unfortunately, current mesh formats, which were de-
signed years ago when meshes were orders of magnitudes smaller,
do not account for this. Using such formats to store large meshes is
inefficient and complicates all subsequent processing.

We describe astreamingformat for polygon meshes, which is
simple enough to replace current offline mesh formats and more
suitable for working with large data sets. Furthermore, it is an ideal
input and output format for I/O-efficient out-of-core algorithms that
process meshes in a streaming, possibly pipelined, fashion. This pa-
per chiefly concerns the underlying theory and the practical aspects
of creating and working with this new representation. In particular,
we describe desirable qualities for streaming meshes, methods for
converting meshes from a traditional to a streaming format, and a
novel technique for streaming on-the-fly compression.

The central theme of this paper is the issue of coherent and com-
patible layouts of the mesh vertices and polygons. We present met-
rics and diagrams that characterize the coherence of a mesh layout
and suggest appropriate strategies for improving its “streamability.”
To this end, we outline several out-of-core algorithms for reordering
meshes with poor coherence, and present results for a menagerie of
well known and generally incoherent surface meshes.

1 Introduction
The advances in computer speed and memory size are matched by
the growth of data and model sizes. Modern scientific technologies
enable the creation of digital 3D models of incredible detail and
precision. Recent examples include statues scanned for historical
reconstruction and isosurfaces visualized to understand the results
of scientific simulation. These polygonal data sets easily reach sizes
of several gigabytes, making all sorts of subsequent processing a
difficult task. The sheer amount of data may not only exhaust the
main memory resources of common desktop PCs, but also exceed
the 4 gigabyte address space limit of these 32-bit machines.

In order to process geometric data sets that do not fit in main
memory, one resorts toout-of-corealgorithms. These arrange the
mesh so that it does not need to be kept in memory in its entirety,
and adapt their computations to operate mainly on the loaded parts.
Such algorithms have been studied in several contexts, including
visualization, simplification, and compression. A major problem
for all these algorithms is dealing with the initial format of the input.

Current mesh formats were designed in the early days of mesh
processing when models like the Stanford bunny, with less than
100,000 faces, were considered complex. They use an array of
floats to specify the vertex positions followed by an array of in-
dices into the vertex array to specify the polygons. The order in
which vertices and polygons are arranged in these arrays is left to
the discretion of the person creating the mesh. This was convenient
when meshes were relatively small. In the meantime, however, our
data sets have grown in size by four orders of magnitude. Storing
such large meshes in the same format means that a gigabyte-sized
array of vertex data is indexed by a gigabyte-sized block of triangle
data. This unduly complicates all subsequent processing.

Most processing tasks need todereferencethe input mesh (i.e.
resolve all triangle-to-vertex references). Memory mapping the ver-
tex array and having the operating system swap in the relevant sec-
tions is only practical given a coherentmesh layout. The lack of
coherence in the layout of the Lucy model is illustrated on the left
in Figure 1. Loosely speaking, the farther the green and gray line
segments are from the diagonal, the less coherent the layout is. In
order to operate robustly on large indexed meshes an algorithm ei-
ther needs to be prepared to handle the worst possible inputs or
make assumptions that are bound to fail on some models.

In this paper we propose astreamingformat for large polygon
meshes that solves the problem of dereferencing. In addition, it
enables the design of new I/O-efficient algorithms for out-of-core
stream-processing. The basic idea is to interleave indexed vertices
and triangles and to provide information when vertices are last ref-
erenced. We call such a mesh representation astreaming mesh.

The terms “progressive” and “streaming” are often used synony-
mously in computer graphics. Our streaming meshes are funda-
mentally different from the multi-resolution representations used
for progressive geometry transmission, in which detail is added to a
coarse base mesh stored in-core, possibly until exhausting available
memory [Hoppe 1996]. In our windowed streaming model triangles
and vertices are added to, or removed from, a partial but seamless
reconstruction of the mesh that is kept in a finite, fixed-size memory
buffer—a “sliding window” over the full resolution mesh.

The advantage of a streaming representation for meshes was first
identified by Isenburg and Gumhold [2003], who propose a com-
pressed mesh format that allows streaming decompression. During
compression a set of boundaries sweep once over the entire mesh,
which is accessed through a complex external memory data struc-
ture. During decompression, however, only those boundaries need
to be maintained in memory. Later, Isenburg et al. [2003] showed
that the streaming access provided by the decompressor can be used

1

Online Submission ID: 0371

for I/O-efficient out-of-core simplification. But these works pay lit-
tle attention to what makes good stream orders. In fact, the stream-
ing meshes produced by their out-of-core compressor are not par-
ticularly well-suited for stream-processing.

In this paper we characterize good stream orders and describe
techniques for creating them. Here we provide the theory of stream-
ing meshes and a set of tools that operate on them. Furthermore, we
describe a scheme for streaming compression. In contrast to previ-
ous schemes that dictate the order in which a mesh is compressed,
we encode meshes in their stream order. This allows compression
on-the-flywithout cutting the mesh in pieces, as suggested by Ho et
al. [2001], and without resorting to complex external memory data
structures, as proposed by Isenburg and Gumhold [2003].

2 Previous Work
While models from 3D scanning or iso-surface extraction have be-
come too large to fit in the main memory of commodity PCs, storing
the models on hard disk is always possible. Out-of-core algorithms
are designed to efficiently operate on large data sets that mostly re-
side on disk. To avoid constant reloading of data from slow external
memory, the order in which they access the mesh must be consistent
with the arrangement of the mesh on disk. Currently the main ap-
proaches are: cutting the mesh into pieces, using external memory
data structures, working on dereferenced triangle soup, and oper-
ating on a streaming representation. All these approaches have to
go through great efforts to create their initial on-disk arrangement
when the input mesh comes in a standard indexed format.

Mesh cutting methods partition large meshes into pieces that are
small enough to fit into main memory and then process each piece
separately. This strategy has been successful for distribution [Levoy
et al. 2000], simplification [Hoppe 1998; Bernardini et al. 2002],
and compression [Ho et al. 2001]. The initial cutting step requires
dereferencing, which is expensive for standard indexed input.

Approaches that useexternal memory data structuresalso par-
tition the mesh, but into a much larger number of smaller pieces
often calledclusters. At run-time only a small number of clusters
are kept in memory with the majority residing on disk from where
they are paged in as needed. Cignoni et al. [2003], for example,
use such an external memory mesh to simplify large models using
iterative edge contraction. Similarly, Isenburg and Gumhold [2003]
use an out-of-core mesh to compress large models via region grow-
ing. Building these data structures from a standard indexed mesh
involves additional dereferencing passes over the data.

One approach to overcome the problems associated with indexed
data is to not use indices. Abandoning indexed meshes as in-
put, such techniques work ondereferenced triangle soup, which
streams from disk to memory in increments of single triangles.
Lindstrom [2000] showed how to implement clustering based sim-
plification this way. Although his algorithm does not use indices,
his input meshes usually come in an indexed format. Ironically, in
this case an initial dereferencing step [Chiang and Silva 1997] be-
comes necessary for doing exactly what the algorithm later avoids:
resolving all triangle-to-vertex references. To take full advantage
of this type of processing, the input must already be streamable.

While the entire mesh may not fit in main memory, one can
easily store a working set of several million triangles. Wu and
Kobbelt [2003] simplify large models by streaming coherent trian-
gle soup into a fixed-sized memory buffer, on which they perform
randomized edge collapses. Connectivity between triangles is re-
constructed through geometric hashing on vertex positions. Only
vertices surrounded by a closed ring of triangles are deemed eligi-
ble for simplification. Thus mesh borders cannot be simplified until
the entire mesh has been read, and adjacent vertices and triangles
must remain in the buffer until the end. Their output is therefore
guaranteed to be incoherent. Isenburg et al. [2003] show that their
compressedstreaming representationprovides exactly the infor-

mation that Wu and Kobbelt’s algorithm needs: “finalization” of
vertices. Instead of the algorithm having to guess when a vertex is
final, their compressed format informs when this is indeed the case.

Coherence in reference has also been investigated in the context
of efficient rendering. Modern graphics cards use a vertex cache
to buffer a small number of vertices. In order to make good use of
the cache it is imperative for subsequent triangles to re-reference
the same vertices. Deering [1995] stores triangles together with
explicit instructions that tell the cache which vertices to replace.
Hoppe [1999] produces coherent triangle orderings optimized for a
particular cache size, while Bogomjakov and Gotsman [2001] cre-
ate orderings that work well for all cache sizes.

An on-disk layout that is good for streaming is similar to an in-
memory layout that is good for rendering—at a much larger scale.
But there are differences: For the graphics card cache it is expected
that at least some vertices are loaded multiple times. In our case,
each vertex is loaded only once as main memory can hold all re-
quired vertices for any reasonable traversal. Once a vertex is ex-
pelled from the cache of a graphics card, it makes no difference
how long it takes until it is loaded again. In our case, the duration
between first and last use of a vertex does matter. We seek not just
local but global coherence in the triangle layout. While, as we will
see, a breadth-first traversal produces good stream layouts, it would
constitute a poor rendering sequence.

3 Mesh Layouts
Indexed mesh formats impose no constraints on the order of either
vertices or triangles. The three vertices of a triangle can be located
anywherein the vertex array and need not be close to each other.
And while subsequent triangles may reference vertices at opposite
ends of the array, the first and the last triangle can use the same
vertex. This flexibility was convenient for small meshes, but has
become a major headache with the arrival of gigabyte-sized data
sets. Today’s mesh formats have originated from a smorgasboard
of legacy formats (e.g. PLY, OBJ, IV) that were designed when
polygon models were of the size of the Stanford bunny. This model,
which has helped popularize the PLY format, abuses this flexibility
like no other. Its layout is incoherent in every respect, as illustrated
in the form of alayout diagramin Figure 2a.

A layout diagram intuitively visualizes the coherency in refer-
ence between vertices, which are indexed along the vertical axis,
and triangles, which are indexed along the horizontal axis. Both are
numbered in the order they appear in the file. We draw for each tri-
angle a point (violet) for all its vertices and a vertical line segment
(gray) connecting them. Similarly, we draw for each vertex a hori-
zontal line segment (green) connecting the first and last triangle that
reference it. Intuitively speaking, the closer points and lines group
around the diagonal the more coherent the layout is.

Nowadays the PLY format is used to archive the scanned statues
created by Stanford’s Digital Michelangelo Project [2000]. For the
Atlas statue of 507 million triangles, a six gigabyte array of trian-
gles would reference into a three gigabyte array of vertex positions.
Its layout diagram (see Figure 2b) reveals that vertices are used over
spans of up to 61 million triangles, equaling 700 MB of the trian-
gle array. Since such an indexed mesh can not be dealt with on
commodity PCs, the statue is provided in twelve pieces.

Definitions
The layout of a mesh is the ordering of its verticesand the order-
ing of its triangles. We characterize it with several measures: The
triangle spanof a vertex is the number of triangles between and in-
cluding its first and last use. It corresponds to the green horizontal
segments in a layout diagram. The triangle span of a layout is the
longest triangle span of any vertex. Thevertex spanof a triangle
is the maximal index difference (plus one) of its vertices. It corre-
sponds to the gray vertical segments in a layout diagram. The vertex

Streaming Meshespapers0371 2 of 8 with demo on CD-ROM

Online Submission ID: 0371

Figure 2: Visual illustrations of poor mesh layouts: (a) The bunny and (b)
the 10,000 times more complex Atlas model. Successive triangles are ren-
dered with smoothly changing colors. Layout diagrams intuitively illustrate
incoherence in the meshes. (c) Highlighting triangles with high vertex span
often reveals something about how the mesh was created or modified.

span of a layout is the longest vertex span of any triangle. Antici-
pating sequential access to the triangle array, we define thewidthof
a layout as the maximal number of vertices used at the same time.
It corresponds to the maximal number of horizontal segments cut
by a vertical line. Theskip of a layout is the maximal number of
concurrently skipped vertices. A vertex is skipped when another
vertex with higher index is first referenced before it.

Three layouts for a small mesh are shown in Figure 3. The first
layout has a skip of 2 because vertex #8 is already used by triangle
#3, while vertices #3 and #7 are still unused. Reordering the ver-
tices corresponds to vertically rearranging the green line segments,
as shown in the second layout. This affects skip and vertex span but
not width or triangle span. Reducing those requires reordering the
triangles, as illustrated by the third layout.

Incoherent Layouts
The incoherency in a mesh layout can often be explained by how
the mesh was produced. The horse, for example, is zipped together
from multiple pieces that are the result of scanning from differ-
ent viewpoints. While the zipping algorithm sorted the triangles
spatially along one axis, it simply concatenated the vertex arrays—
thereby creating triangles with high vertex spans along the zips.
The dinosaur has its triangles ordered along one axis and its ver-
tices along another axis. This projects the model along the third
axis into vertex and triangle indices such that they capture a dis-
torted 2D view of the shape. This layout is low in width and span,
but has a high skip. For the most part, the dragon has vertices and
triangles loosely ordered along thez-axis. But there are a few ver-
tices at the very end of the vertex array that are used all across the
triangle array, leading to high vertex span. This is due to a post-
processing operation for topological cleanup of holes in the mesh.

The large Stanford statues were extracted block by block from
a large volumetric representation. The resulting surfaces were then
stitched together on a supercomputer by concatenating triangle and

2 4 9 0 3 1 5 7 6 8 10

0
6

2
1

8
4

5
3

7
9

width = 4

t-span = 7

triangles

ve
rt

ic
es

v-span = 5

triangles

ve
rt

ic
es

0 1 2 3 4 5 6 7 8 9 10

0
1

2
3

4
5

6
7

8
9

width = 7

t-span = 10

v-span = 7

skip = 2

0 1 2 3 4 5 6 7 8 9 10

4
1

2
5

0
6

8
7

3
9

width = 7

t-span = 10

triangles

ve
rt

ic
es

v-span = 8

5

7

9

0

4

3

6

2

8

1

10
4

3 5
2

7
8

9
6 10

a)

b) c)

… and three different layouts for it.

A small example mesh …

Figure 3: Three layouts for a mesh: (a) An incompatible vertex order results
in a skip. (b) Reordering the vertices eliminates the skip but does not affect
width or triangle span. (c) Reordering the triangles also can reduce them.

vertex arrays and identifying vertices between neighboring blocks,
which is evidenced by high vertex spans in Figure 2. For the two
largest statues this incoherence was somewhat reduced when their
“blocky” layouts were multiplexed into several files by spatially
cutting the statues into twelve horizontal slices.

4 Streaming Meshes
A streaming mesh format interleaves the vertices and the triangles
that reference them and provides explicit information about the last
time a vertex is referenced. Such a format can be as simple as the
examples in Figure 4. Despite its simplicity, a streaming mesh for-
mat has tremendous advantages over standard formats. Because
vertices and triangles are read and written together, the problem of
dereferencing does not exist. Furthermore, the ability to encode “fi-
nalization” of vertices enables memory-efficient stream processing.

Envision a scenario where one algorithm extracts an isosurface
and pipes it as a streaming mesh to a simplification process, which
in turn streams the simplified mesh to a compression engine that
encodes it and immediately transmits the resulting bit-stream to a
remote location where triangles are rendered as they decompress.
In fact, we now have all components of this pipeline—and it is the
streaming format that makes it possible to pipe them all together.This refers to

the
“sm viewer”
program that
is included on
the CD-ROM.
Use hot-key ’r’
for full
resolution
out-of-core
rendering.

Simply put, a streaming mesh format makes operating on the
largest of data sets a feasible task. For example, the images in this
paper are renderedout-of-corefrom full resolution input on a laptop
with 512 MB of memory. Read vertices are stored in a hash where
they are looked up by incoming triangles, which are immediately
rendered. The fact that a hash entry can be removed as soon as the
vertex is finalized keeps the memory requirements low.

Finally, a streaming format will make creators of large data sets
aware of the mesh layouts they produce and will encourage them
to take coherency in the output into consideration when they de-
sign large mesh algorithms. Anyone who went through the pain of
stitching together the Atlas statue from the twelve pieces that it is
provided in will appreciate this as an important contribution.

Definitions
A streaming mesh is a logically interleaved sequence of indexed
vertices and trianglesplus information about when vertices arein-
troducedand when they arefinalized. Vertices becomeactivewhen
they are introduced and cease to be active when they are finalized.
We call the evolving set of active vertices thefront Fi , which at time

Streaming Meshespapers0371 3 of 8 with demo on CD-ROM

Online Submission ID: 0371

1
2

3
4

5
1 2 3 4

1
3

4
2
4

5

3

2

1

standard .obj

v 0.3 1.1 0.2
v 0.4 0.4 0.5
v 1.4 0.8 1.2
v 0.9 0.5 0.7
v 1.0 0.1 1.1
f 2 4 1
f 2 5 4
f 3 1 4
f 4 5 3

1
2

3
4

5

1 2 3 4

pre-order

v 0.3 1.1 0.2
v 0.4 0.4 0.5
v 1.4 0.8 1.2
v 0.9 0.5 0.7
f 2 4 1
v 1.0 0.1 1.1
f 4 5 4
f 3 5 4
f 2 1 3

-
-

- - -

1
2

3
4

5

1 2 3 4

post-order

f 2 4 1
f 2 5 4
f 3 1 4
v 0.3 1.1 0.2
v 0.4 0.4 0.5
f 4 5 3
v 1.4 0.8 1.2
v 0.9 0.5 0.7
v 1.0 0.1 1.1

1
2

3
4

5

1 2 3 4

1
3

4
2
3

4

5

1

2 1
2

3
4

5

1 2 3 4

compatibleincompatible postpre

a) b) c)

 d)

Figure 4: Examples of a streaming ASCII format. (a) Standard OBJ format.
(b) Streaming pre-order format: finalization is coded through negative rela-
tive indices, introduction coincides with appearance of vertex in stream. (c)
Streaming post-order format: finalization coincides with appearance of ver-
tex in stream, introduction occurs at first vertex reference. (d) If the vertex
and triangle layouts are compatible, the meshes can be compact.

i partitions the mesh into finalized (i.e. processed) vertices and ver-
tices not yet encountered in the stream. Thefront width (or simply
thewidth) is the maximal size maxi |Fi | of the front, i.e. the maxi-
mal number of concurrently active vertices. The width gives a lower
bound on the memory footprint as any stream process must main-
tain the front, e.g. as a hash. Thefront span(or simply thespan) is
the maximal index difference maxi{maxv∈Fi −minv∈Fi +1} of ver-
tices on the front, and intuitively measures the longest duration a
vertex remains active. Clearlywidth≤ span. Note that at most
log2(span) bits are needed for relative indexing of the vertices.

Because the triangles and their vertices generally appear close
together in the stream, we place no restriction on whether vertices
precede triangles (as would normally be the case in a standard in-
dexed mesh) or follow them. Streaming meshes arepre-order if
each vertex precedes all triangles that reference it, and arepost-
order if each vertex succeeds all triangles that reference it; other-
wise they arein-order. The introduction of a vertex does not nec-
essarily coincide with its appearance in the stream as triangles can
reference and thus introduce vertices before they appear. In this
paper we only consider pre- and post-order meshes.

The latest that a vertex can be introduced is just before the first
triangle that references it. Similarly, the earliest that a vertex can
be finalized is just after the last triangle that references it. We can
keep the front small in a pre-order mesh by delaying the appear-
ance (introduction) of a vertex as much as possible, i.e. such that
each vertex when introduced is referenced by the next triangle in
the stream. Conversely, in a post-order mesh each finalized vertex
should be referenced by the previous triangle. More generally, we
say that a stream isvertex-compactif each vertex is referenced by
the previous or the next triangle in the stream (see Figure 4). Note
that the vertices can always be made compact with respect to the
triangle layout by rearranging them. We should likewise not unnec-
essarily delay a triangle in a pre-order mesh if all its vertices have
appeared, nor should we prematurely specify a triangle in a post-
order mesh before any of its vertices can be finalized. We say that
a stream istriangle-compactif each triangle references the previ-
ous or the next vertex in the stream. (Note that vertex-compactness

does not imply triangle-compactness, and vice versa.) It is always
possible to rearrange the triangles to make them compact with re-
spect to a given vertex layout. Finally, a streaming mesh iscompact
if it is both vertex- and triangle-compact.

Working with Streaming Meshes
Streaming meshes are ideally suited for stream-based processing.
In this model, the mesh streams through an in-corestream buffer,
which is large enough to hold all active mesh elements. For straight-
forward tasks that simply need to dereference the vertices, such as
rendering a flat shaded mesh, a minimal stream buffer is needed.
For more elaborate processing tasks, a larger stream buffer may
hold as many additional mesh elements as there are memory re-
sources. We call the loops of edges that separate already read trian-
gles from those not yet read an inputstream boundary. For appli-
cations that write meshes, there is an equivalent output boundary.

Streaming meshes allow pipelined processing, where multiple
tasks run concurrently on separate pieces of the mesh. One mod-
ule’s output boundary then serves as the down-stream input bound-
ary for another module. Because the mesh is operated on in a single
pass and because all data access is sequential, we can create very
fast out-of-core stream modules with processing speeds around 0.1–
1 million triangles per second. For example, our streaming edge-
collapse implementation simplifies the St. Matthew mesh to less
than one million triangles in one hour using 72 MB of RAM on
a 3.2 GHz PC, compared to 14 hours (plus 8 hours of preprocess-
ing time) on a 0.8 GHz PC for Cignoni et al.’s external memory
method [2003]. And contrary to [Isenburg et al. 2003], who rely
on a particular compressed streaming input constructed in an elab-
orate preprocess, we can directly simplify input from any streaming
source as it arrives (e.g. a mesh generator, a network). Also, stream-
ing mesh formats enable us to design compressors (Section 6) that
are up to 50 times faster than [Isenburg and Gumhold 2003].

While the width of a streaming mesh is a lower bound for the
amount of memory required to process it, some processing tasks
are inherently span-limited. Any process that requires maintaining
the same element order between input and output while accessing
all neighboring elements must buffer on the order of span elements.
Consider, for example, vertex normal computation on a pre-order
mesh that directly pipes through triangles but delays vertices until
their normals have been computed (i.e. the output is post-order).
Because vertex indices can not change, vertices cannot be output
until all vertices with smaller index have. Conversion between pre-
order and post-order as well as on-the-fly vertex compaction are
likewise span-limited. These are common operations on streaming
meshes as algorithms like to consume vertex-compact pre-order in-
put but often produce non-compact post-order output. Hence keep-
ing both width and span low is useful. As such, the compression
order of [Isenburg and Gumhold 2003] and the simplification order
of [Isenburg et al. 2003], are not well-suited for streaming as they
result in near-maximal span. Preferably such processes not only
utilize but also preserve the stream layout they are provided with.

Processing Sequences
Streaming meshes are a lightweight mesh representation and do not
provide information such as manifoldness, valence, incidence, and
other useful topological attributes. Processing sequences [Isenburg
et al. 2003] are a specialization of streaming meshes that provide
such information as well as a mechanism for storing user data on the
stream boundaries (e.g. for mapping between external and in-core
vertex indices). We prefer to view processing sequences as nothing
but a richer interface for accessing streaming meshes. Implement-
ing a processing sequence API only involves bufferingO(width)
mesh elements until they are finalized, at which point complete con-
nectivity information about them is known. As a result we can read
and write simple streaming meshes but retain the option to process
them through the more powerful processing sequence API.

Streaming Meshespapers0371 4 of 8 with demo on CD-ROM

Online Submission ID: 0371

5 Generating Streaming Meshes
Many applications that generate large meshes can easily produce
streaming meshes. They only need to interleave the output of ver-
tices and triangles and provide information when vertices are no
longer referenced. Even if this information is not exact, some
conservative bounds often exist. For example, a marching cubes
iso-surface implementation could output all vertices of one volume
layer, followed by a set of triangles, and then finalize the vertices
before moving on to the next layer. This is the technique we used
to produce the coherent ppm mesh from Table 3. Here, evenim-
plicit finalization in the form of a bound on the maximum number
of vertices per layer would be sufficient to finalize vertices.

In this sense, streaming meshes are often the natural output of
existing applications. Given limited memory resources, it is quite
difficult to produce incoherent meshes as the mesh generating ap-
plication can only hold and work on small pieces of the data at any
time. However, there are a large number of meshes that are stored
in legacy formats. We now outline various out-of-core algorithms
that convert from a standard indexed format to a streaming format.
They may also be used to improve the layout of existing streaming
meshes that either introduce/finalize vertices too early/late or that
have an overly incoherent layout.

5.1 Out-of-Core Mesh Layout
For all of our streaming mesh conversion tools, we rely on a few ba-
sic steps. To create a streaming mesh in pre- or post-order, we need:
a vertex layout, a triangle layout, and finalization information.
Layout In an initial pass over the input mesh we write vertices
and triangles to separate temporary files. We store with each ver-
tex its original index so that after reordering it can be identified by
its triangles. If we do not wish to keep both vertex and triangle
layouts fixed, we specify only one layout explicitly and ensure the
other layout is made compatible. Each explicit layout is specified
as an array of unique sort keys, one for each input vertex or triangle,
which we merge with the input elements into their temporary files
and on which we perform an external sort (on increasing key value)
to bring the elements into their desired order.

For a specified triangle layout, we assign (not necessarily
unique) sort keysk to verticesv based on their new incident trian-
gle indicest: for pre-order meshes we usekv = minv∈t t; for post-
orderkv = maxv∈t t. Conversely, if a vertex layout is specified, we
compute pre-order triangle keyskt = maxv∈t v and post-order keys
kt = maxv∈t v. These keys are, of course, based on the indices in
the reordered mesh. Thus, when an explicit vertex order is specified
we must first dereference triangles and update their vertex indices.
For a conventional indexed mesh, we accomplish this dereferenc-
ing step via external sorts on each vertex field [Chiang and Silva
1997]. If on the other hand the input is already a streaming mesh,
we can accomplish this step much faster by dereferencing the (ac-
tive) vertices, whose keys are maintained in-core, on-the-fly while
the input is first processed. Whether we wish to create a streaming
mesh or simply reorder an indexed mesh, this is yet another benefit
of having streaming input.
Finalization For nonstreaming input we compute implicit final-
ization information by first writing all corners〈v, t〉 to a temporary
file. We sort this file on the vertex fieldv and then compute the
degreed (number of incident triangles) for each vertex, which will
later be used as a reference count. For streaming input we compute
the degrees on-the-fly.
Output Once vertex and triangle files have been laid out, we out-
put a streaming mesh by scanning these files in parallel. For a pre-
order mesh the output is driven by triangles: for each triangle we
read and output vertices one at a time until all three vertices ref-
erenced by the triangle have been output (possibly also outputting
skipped vertices not referenced by this triangle). Conversely, for a
post-order mesh we drive the output by vertices: for each vertex we

tap the triangle file until all incident triangles have been output. We
maintain for each active vertex a degree counter that is decremented
each time the vertex is referenced. Once the counter reaches zero
the vertex is finalized and removed from the front.

Interleaving Indexed Meshes
If the indexed mesh layout is reasonably coherent, we can construct
a streaming mesh simply byinterleavingvertices and triangles, i.e.
without reordering them. As outlined above, we first separate ver-
tices and triangles and compute vertex degrees. Since the mesh ele-
ments are already in their desired order, no further sorting is needed
and we simply interleave them using the output procedure above.
We arbitrarily chose pre-order output for our interleaved meshes.

Compaction
It makes little sense to apply pre-order interleaving to meshes with
high skip, such as the dinosaur or the lucy model. To stream these
meshes we must change at least one of the vertex and triangle lay-
outs. We can always eliminate the skip via pre-ordervertex com-
pactionby fixing the triangles and reordering the vertices using the
pre-order vertex sort keys defined above. Hence during output each
triangle’s vertices have either already been output or appear next in
the vertex file. Post-order vertex compaction is more difficult, and
either requiresO(span) memory or additional external sorts.

If the vertex layout is already coherent but the triangle layout is
not, triangle compactionis worthwhile. For each vertex, in pre-
order triangle compaction we immediately output all triangles that
can be formed with this and previous vertices; in post-order com-
paction we output all triangles formed with this and later vertices.

Spatial and Topological Sorting
Perhaps the simplest method for constructing a streaming mesh is
to order its elements along a spatial direction. We can compute a
sort key for each vertex by projecting its coordinates onto an axis.
To simplify laying out the triangles from nonstreaming input, how-
ever, we prefer unique integer vertex keys, which can be used for
both sorting and indexing. Thus we first sort the geometric keys
and replace them with consecutive integers. Once vertices and tri-
angles have been sorted, we drive the output by triangles (vertices)
to produce a vertex-compact (triangle-compact) mesh. We sorted
the mesh along its maximalx, y, or z extent in our experiments.

An alternative to spatial sorting is topological traversal of the
mesh. In Table 3 we report results for breadth-first vertex sorts and
and depth-first triangle sorts. These meshes were laid out in-core
on a computer with large memory, although techniques based on
external memory data structures, e.g. [Cignoni et al. 2003], or a
variation on the clustering scheme below could also be employed.

Spectral Sequencing
For many meshes, spatial or topological sorting will produce suf-
ficiently coherent layouts. However, if the mesh is “curvy” (like
the dragon), with changing principal direction, or “spongy” (like
the ppm surface), with complex topology and space-filling geome-
try, these strategies produce layouts that are far from optimal. The
traversal shown in Figure 5(d), for example, follows the winding
body of the dragon and achieves a much lower front width. We
here describe a method particularly aimed at generating low-width
streams. Because the stream boundaries have to turn corners to be
as short as possible, and therefore do not advance uniformly, the
span will suffer in favor of the width.

Minimizing front width has received attention in the graph lay-
out [Dı́az et al. 2002] and finite element literature [Scott 1999]. The
front width (also called wavefront) of a compact mesh is equiva-
lent to thevertex separationof its associated graph (1-skeleton).
Minimizing vertex separation is NP-hard [Dı́az et al. 2002], how-
ever good heuristics exist, such asspectral sequencing, which min-
imizes the sum of squared edge lengths in a linear graph arrange-
ment. Spectral sequencing involves finding a particular eigenvector
(theFiedler vector) of the graph’s Laplacian matrix. To solve this

Streaming Meshespapers0371 5 of 8 with demo on CD-ROM

Online Submission ID: 0371

Figure 5: The dragon mesh reordered by (a) a depth-first sort compressor, (b) a breadth-first sort compressor, (c) spatial sort, and (d) spectral sequencing.

mesh name
inter-

leaving
com-

paction
spatial sorting spectral sequencing

ranking total ranking total
buddha 0:05 0:09 0:02 0:13 0:27 0:33
lucy 4:36 5:11 1:03 11:33 3:41 6:59
st. matthew 1:41:29 2:08:36 21:18 4:09:52 45:42 2:31:47

Table 1: Timings (h:m:s) including compressed I/O on a 3.2 GHz PC.

problem efficiently on large meshes, we have adapted the ACE mul-
tiscale method [Koren et al. 2002] to work in an out-of-core setting.

To make the problem more tractable, we presimplify the
mesh using a variation of the streaming edge collapse technique
from [Isenburg et al. 2003], and contract vertices into clusters based
purely on topological criteria aimed at creating uniform and well-
shaped clusters. We then apply ACE to lay out the clusters in-core,
and finally order the mesh cluster by cluster, with no particular ver-
tex order within each cluster. While the intra-cluster order can be
improved, the reduction in width is bounded by the cluster size .

5.2 Results
We have measured the performance of our mesh layout tools on a
3.2 GHz Intel XEON PC running Linux with 2 GB of RAM. Ta-
ble 1 summarizes the performance on a few meshes. Like spatial
sorting, spectral sequencing is broken down into the vertex rank-
ing phase and the reordering phase, with ranking running at up to
140 Ktps for large meshes. Interleaving uses gzipped PLY as in-
put and writes a binary streaming mesh. This is used as input to
compaction, which outputs a compressed streaming mesh for input
to spatial sorting, and so on. Spatial sorting considers the compact
but sometimes high-width input unstreamable, while spectral se-
quencing takes advantage of streaming input during layout; hence
the large speedup in this phase.

We now turn our attention to Table 3, which lists layout and
stream measures for several meshes and layout strategies. We im-
mediately notice from the layout diagrams the poor coherence in
most of the original meshes. Hence interleaving works well only in
a few cases, most notably for the ppm surface. Vertex compaction
works well for the horse and dinosaur, whose triangles are well-
ordered but whose vertex layouts are either poor or incompatible.

Breadth-first traversals naturally minimize the front span since
the “oldest” vertex introduced tends to be finalized first. Thus these
spans, and hence widths, are consistently low. Indeed, even for the
500+ million triangle atlas mesh, we can reference vertices using
only 15-bit relative indices. For such low-span streams, we may opt
to use a circular buffer of sizespaninstead of a hash of sizewidth to
maintain active vertices. Thus using simple and fast sequential I/O
we can very quickly dereference (e.g. for previewing) the 8.5 GB
atlas using no data structures other than a 380 KB fixed-size array.

Depth-first traversals, on the other hand, leave the oldest vertices
hanging and therefore guarantee high-span layouts, as evidenced

in Table 3. Long spans also tend to accumulate into high widths—
especially for high-genus meshes such as the ppm surface. For each
topological handle, the front elements of a traversal eventually split
into two unconnected groups. A depth-first traversal leaves one
group hanging on the stack until reaching it from the other side.
This suggests that standard mesh compression based on depth-first
traversals, as used for example in [Isenburg and Gumhold 2003;
Isenburg et al. 2003], is not well-suited for streaming.

Finally, spectral sequencing tends to yield the lowest width at the
expense of a high span, although with a few notable exceptions. For
large meshes, this is a direct result of coarse granularity clustering,
which leaves the front increasingly ragged as it winds around the
clusters. (We capped the number of clusters at one million for all
meshes.) Instead, for meshes with simple geometry like the large
statues, spatial sorting works sufficiently well.

6 Streaming Compression
Current mesh compression schemes do not preserve the layout of
a mesh. They first construct an explicit representation of the mesh
connectivity, which they then traverse using a deterministic strat-
egy, while encoding only an unlabeled connectivity graph. The
mapping from graph nodes to vertices is established by compress-
ing vertex positions in the order they are encountered. This im-
plicitly assumes that the compressor is free to reorder the mesh, in
which case the particular traversal strategy used dictates its layout.

Although compressing an initially incoherent mesh will usu-
ally improve its layout, traversal heuristics really aim at lowering
the bit-rates, with good output layouts being coincidental and not
part of the design. On the contrary, the classic stack-based ap-
proaches [Touma and Gotsman 1998; Rossignac 1999; Isenburg
and Snoeyink 2000] traverse meshes in depth-first order and thereby
generate triangle orderings of maximal span. The layout artifacts of
such compressors are shown in Figure 5. They also produce order-
ings of unnecessary high width—especially for meshes with many
topological handles. So far no attention has been given to what
these compressors do to the layout of a mesh—maximum compres-
sion and algorithmic elegance have been the sole design criteria.

We depart from the traditional approaches and use a scheme that
encodes the triangles of the mesh in the order they are given to
the compressor. Since our scheme not only encodes the connec-
tivity but also a particular triangle ordering, it can not guarantee
the same compression as traditional schemes. But being able to
compress a meshon-the-flymakes our scheme more usable in a
mesh processing pipeline. The main advantage is the elimination
of the pre-processing step that constructs explicit mesh connectiv-
ity. This is especially beneficial for compressing large meshes. Pre-
vious approaches spend significant amounts of memory, temporary
disk space, CPU time, and file I/O on either cutting the mesh in

Streaming Meshespapers0371 6 of 8 with demo on CD-ROM

Online Submission ID: 0371

mesh ordering
delay = 0 = 250 = 10,000 ooc-compressor [IG2003]

rate timeRAMrate timerate timerateprepr. compr. RAM disk

lucy
vcompact13.6 1 37 12.1 2 8.5 2 1.9 19 5 128 0.9

breadth 3.5 1 1.6 2.6 1 3.4 2 bpv min min MB GB

david1mm
vcompact15.9 2 4.8 4.9 3 3.8 4 1.8 36 14 192 1.7

spectral14.3 2 1.8 6.6 3 5.9 4 bpv min min MB GB
st. vcompact15.6 14 5.2 4.8 20 3.9 28 1.8 7 4 384 11
matthew geometric13.6 15 4.0 6.6 23 5.3 29 bpv hrs hrs MB GB

Table 2: Comparing connectivity rates [bpv], timings [min], and memory
use [MB] of our streaming compressor with [Isenburg and Gumhold, 2003].

smaller pieces [Ho et al. 2001] or constructing external memory
data structures [Isenburg and Gumhold 2003], before the compres-
sion process even starts. Our scheme makes compression nearly
user-transparent and is practically independent of the mesh size.

Compressing in Stream Order
We have designed a new streaming compression scheme that can
encode the triangles of a mesh in whatever order they happen to
be in. It requires no preprocessing and uses only minimal mem-
ory resources if the input mesh is stored in a streaming format or
produced in a streaming fashion. We have implemented astreaming
mesh writerand a correspondingreaderthrough which compressed
meshes can be written and read in increments of single vertices and
triangles. Post-order meshes need to be piped through a “post2pre”
filter because our compressor only writes pre-order meshes.We include a

fully functional
compressor
and
decompressor
on the
CD-ROM that
accompanies
this paper.

In Table 2 we compare our streaming compressor to that of Isen-
burg and Gumhold [2003]. For the “St. Matthew” they spend 7
hours creating an 11 GB data structure on disk before actual com-
pression begins, which takes another 4 hours and uses 384 MB of
RAM on a 2.8 GHz Pentium IV. In contrast, running on a 1.1 GHz
mobile Pentium III we compress this model in 15 minutes using
only 6 MB of RAM and no temporary disk space. While geometry
compression rates (not reported) are similar, their 11 hour/11 GB
effort pays off with superior, state-of-the-art connectivity compres-
sion rates. But so far we have not reordered a single triangle.

When the compressor follows the exact triangle order in which
the mesh is written, it generally needs to store at least log2(width)
bits per triangle. We can significantly improve compression by em-
ploying a smalldelay bufferwithin which the compressor locally
reorders triangles. It greedily brings them into a vertex-connected
order that often allows avoiding those log2(width) bits without af-
fecting the overall stream quality. A delay buffer of 10,000 trian-
gles, for example, gives average connectivity rates of 4 to 5 bits
per vertex [bpv] while slowing compression by a factor of two (not
optimized yet) and increasing the memory footprint by only 5 MB.

To support quantization of floating-point geometry for streaming
meshes whose bounding box is not known in advance, we use a
scheme that quantizes conservatively using a bounding box that isWe have

included this
tech report as
additional
review material
in print and on
the CD-ROM.

learned as the mesh streams by. Our streaming mesh writer also
supports lossless floating-point compression when quantization—
for whatever reason—is not an option. A detailed description of
our streaming compressor can be found in [Anonymous 2005].

7 Conclusion
We have identified a major headache in large mesh processing—
poor mesh layouts—and suggested how to avoid this pain—keeping
the mesh in a streamable layout. We have both established a the-
oretical framework that characterizes the quality of a layout and
presented out-of-core tools for improving poor layouts. Coherent
mesh layouts can be streamed by interleaving vertices and triangles
in their original order and adding finalization information. Incom-
patible vertex and triangle layouts can can be made streamable by
compacting(reordering) one of the layouts. Layouts high in width
and in span require reordering both triangles and vertices.

We should point out that streaming formats are no universal so-
lution for all out-of-core processing purposes. But they are much

better than the only current alternative, standard indexed formats.
Documenting coherency in the file format makes processing large
meshes considerably more efficient. It solves the main problem
of dereferencing that complicates most out-of-core mesh applica-
tions, such as rendering an initial image to get an idea of what data
one is dealing with; counting the number of holes, non-manifolds,
and components; computing shared normals, the total surface area,
or curvature information; segmenting, simplifying, or compress-
ing the mesh; or constructing hierarchical mesh structures. Stream-
ing meshes are not tied to a particular format. One may even read
streaming meshes from standard formats such as PLY or OBJ given
that the mesh layout is low in span and compatible by buffering
O(span) vertices and finalizing them conservatively.

We described a novel streaming compression algorithm that en-
codes a mesh triangle by triangle, optionally reordering them only
locally for better compression. While we do not achieve state-of-
the-art connectivity compression, the sacrifice in bit-rate is well
spent. We can now compress streaming meshes of unlimited size
on-the-fly, which makes compression a more useful tool for mesh
processing. Contrast this with prior schemes that first spend hours
constructing external data structures that use gigabytes of auxiliary
disk space—even if the mesh already has a nice layout. We also
point out that traditional, stack-based compressors systematically
create meshes of maximal span and become inefficient for high-
genus models where the stack can grow very deep. Instead, tradi-
tional, non-streaming compressors should traverse meshes breadth-
first and give vertices a similar “lifetime” on the front.

In the future we would like to investigate concurrent streaming at
multiple resolutions, multiplexing of streaming meshes for parallel
processing, and extensions to volume meshes. We also envision
that some sort of ‘space finalization’ would be useful for algorithms
that require a spatially—as opposed to a strictly topologically—
coherent traversal, such as vertex clustering algorithms.

References
ANONYMOUS. 2005. Streaming compression of triangle meshes. tech report.
BERNARDINI, F., MARTIN , I., M ITTLEMAN , J., RUSHMEIER, H., AND TAUBIN , G.

2002. Building a digital model of Michelangelo’s Florentine Pieta.IEEE Computer
Graphics and Applications 22, 1, 59–67.

BOGOMJAKOV, A., AND GOTSMAN, C. 2001. Universal rendering sequences for
transparent vertex caching of progressive meshes. InGrap. Interface’01, 81–90.

CHIANG , Y.-J., AND SILVA , C. T. 1997. I/O optimal isosurface extraction. InVisu-
alization’97 Proceedings, 293–300.

CIGNONI, P., MONTANI , C., ROCCHINI, C., AND SCOPIGNO, R. 2003. External
memory management and simplification of huge meshes.IEEE Transactions on
Visualization and Computer Graphics. To appear.

DEERING, M. 1995. Geometry compression. InSIGGRAPH 95, 13–20.
D ÍAZ , J., PETIT, J.,AND SERNA, M. 2002. A survey of graph layout problems.ACM

Computing Surveys 34, 3, 313–356.
HO, J., LEE, K., AND KRIEGMAN, D. 2001. Compressing large polygonal models.

In Visualization’01 Proceedings, 357–362.
HOPPE, H. 1996. Progressive meshes. InSIGGRAPH’96 Proceedings, 99–108.
HOPPE, H. 1998. Smooth view-dependent level-of-detail control and its application

to terrain rendering. InVisualization’98 Proceedings, 35–42.
HOPPE, H. 1999. Optimization of mesh locality for transparent vertex caching. In

SIGGRAPH 99 Proceedings, 269–276.
ISENBURG, M., AND GUMHOLD , S. 2003. Out-of-core compression for gigantic

polygon meshes. InSIGGRAPH 2003 Proceedings, 935–942.
ISENBURG, M., AND SNOEYINK , J. 2000. Face Fixer: Compressing polygon meshes

with properties. InSIGGRAPH’00 Proceedings, 263–270.
ISENBURG, M., L INDSTROM, P., GUMHOLD , S., AND SNOEYINK , J. 2003. Large

mesh simplification using processing sequences. InVisualization’03, 465–472.
KOREN, Y., CARMEL , L., AND HAREL, D. 2002. ACE: A fast multiscale eigenvector

computation for drawing huge graphs. InIEEE Info. Visualization, 137–144.
LEVOY, M., PULLI , K., CURLESS, B., RUSINKIEWICZ, S., KOLLER, D., PEREIRA,

L., GINZTON, M., ANDERSON, S., DAVIS , J., GINSBERG, J., SHADE, J., AND
FULK , D. 2000. The Digital Michelangelo Project. InSIGGRAPH 2000, 131–144.

L INDSTROM, P. 2000. Out-of-core simplification of large polygonal models. In
SIGGRAPH 2000 Proceedings, 259–262.

ROSSIGNAC, J. 1999. Edgebreaker: Connectivity compression for triangle meshes.
IEEE Transactions on Visualization and Computer Graphics 5, 1, 47–61.

SCOTT, J. A. 1999. Ordering elements for a frontal solver.Communications in
Numerical Methods in Engineering 15, 309–323.

TOUMA , C., AND GOTSMAN, C. 1998. Triangle mesh compression. InGraphics
Interface’98 Proceedings, 26–34.

WU, J., AND KOBBELT, L. 2003. A stream algorithm for the decimation of massive
meshes. InGraphics Interface’03 Proceedings, 185–192.

Streaming Meshespapers0371 7 of 8 with demo on CD-ROM

Online Submission ID: 0371

mesh description original triangle order spectral sequencing
spa-
tial
sort

breadth
first
sort

depth
first
sort

inter-
leaved

v-com-
pactedname

layout diagram snapshots snapshots
genus width

comp. skip width width width width width width
vertices v-span span span span span span span
triangles t-span

bunny
0 9,133
1 34,569 34,813 9,133 228 413 334 405

35,947 35,742 34,834 34,549 785 1,502 354 21,704
69,451 69,181

horse
0 550
1 40,646 40,653 550 303 419 443 440

48,485 48,471 48,485 3,167 3,286 2,563 466 47,446
96,966 6,204

dinosaur
0 496
1 55,196 55,331 496 241 568 357 409

56,194 4,353 55,680 1,083 1,382 1,825 383 51,315
112,384 2,017

armadillo
0 51,951
1 171K 172K 51,951 638 1,042 1,115 1,457

172,974 172K 172K 172K 4,405 3,796 1,199 171K
345,944 345K

dragon
46 4,586

151 434K 434K 4,586 668 1,274 1,680 8,583
437,645 434K 434K 54,825 11,617 9,243 2,015 435K
871,414 109K

buddha
104 5,037

1 94,080 98,121 5,037 883 1,556 1,975 14,639
543,65224,889 111K 102K 6,993 12,682 2,335 543K

1,087,716 205K
thai statue

3 53,416
1 0 53,416 53,416 3,761 6,003 7,051 35,461

4,999,996 4.70M 4.70M 4.70M 150K 43,970 7,897 4.99M
10,000,0009.41M

lucy
0 255K

18 11.5M 11.6M 255K 5,841 4,985 5,904 12,904
14,027,87213.5M 13.5M 13.5M 200K 20,362 6,547 12.4M
28,055,74226.8M

david1mm

137 26,383
2,322 1,568 26,405 26,383 7,862 8,919 8,282 35,770

28,184,52615.8M 15.8M 15.8M 752K 36,421 8,971 28.1M
56,230,34331.5M

st. matthew
483 31,931

2,897 2,121 31,932 31,931 33,029 33,207 23,602 110K
186,836,66529.1M 29.1M 29.1M 3.85M 157K 25,554 185M
372,767,44558.3M
ppm

167,636 311K
167,584 306K 616K 311K 56,179 114K 99,410 3.07M

234,901,044 617K 617K 462K 27.0M 290K 112K 206M
469,381,488 924K
atlas

5,496 28,701
38 139 28,705 28,701 45,998 22,638 29,923 246K

254,837,02730.6M 30.6M 30.6M 28.5M 64,354 32,156 254M
507,512,68261.2M

Table 3: Layout and stream measures for the meshes used in our experiments. We report the vertex width and triangle span of the original triangle order, as
well as the vertex skip and vertex span of the original vertex order (which can be quite incoherent). For the original triangle order, we report the front width and
span of streaming meshes created through interleaving and vertex compaction, and include snapshots of these meshes. The rightmost four columns highlight
the improvements of vertex-compact streams obtained by reordering both triangles and vertices using spectral sequencing, spatial sorting along the axis of
maximum extent, breadth-first vertex sorting, and depth-first triangle sorting. We also list the genus and component, vertex, and triangle counts for each mesh.

Streaming Meshespapers0371 8 of 8 with demo on CD-ROM

