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Abstract

Subdivision templates of numerical values are replaced by templates of matrices in this

paper to allow the introduction of shape control parameters for the feasibility of achieving

desirable geometric shapes at those points on the subdivision surfaces that correspond to

the control vertices that are extraordinary vertices. Based on templates for regular vertices

derived from matrix-valued subdivisions, the notion of characteristic maps introduced by

Reif and the corresponding results of Reif and Prautzsch are extended from (scalar) surface

subdivisions to matrix-valued subdivisions. The issue of effective choices of the shape

control parameters, along with examples on C2 surfaces, will also be discussed in this

paper.

Keywords: Matrix-valued surface subdivision, surface shape control, extraordinary vertex, charac-

teristic map, Ck-continuity

1 Introduction

To design, generate, and display surfaces in the three-dimensional space efficiently, subdivision

schemes are formulated in terms of certain templates (coefficient stencils) of numerical values

that are used as weights for taking weighted averages of certain given “old” vertices (or more

precisely, points in the three-dimensional space) to generate “new” vertices, and perhaps to

move the positions of the old vertices as well; and thereby, yielding a higher resolution of a

discrete approximation of the target (subdivision) surface for each application (to be called

iteration) of the templates. These points, regardless of being the old or new ones, are called

vertices, since a “connectivity rule” must be followed to identify triangles or non-planar quadri-

laterals, with these points as vertices, in order to be able to apply the templates properly. The
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Figure 1: Subdivision templates of the Loop scheme for regular vertices (for moving the old vertices

and generating a new vertex corresponding to an edge point, respectively)
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Figure 2: Subdivision templates of the Catmull-Clark scheme for regular vertices (for moving the old

vertices, generating a new vertex corresponding to a face point, and generating a new vertex corre-

sponding to an edge point, respectively)

initial vertices are called “control vertices” and the initial mesh of triangles, or of (non-planar)

quadrilaterals, is called a “control net”.

In surface subdivisions, all vertices, perhaps with the exception of only a few, are “regular

vertices”. For a triangular mesh, a vertex is called regular, if it has valence equal to 6, meaning

that it is connected to precisely 6 adjacent vertices. For a quadrilateral mesh, the valence of

a regular vertex is 4. On the other hand, subdivision templates are displayed in the two-

dimensional space, along with certain triangles or quadrilaterals of regular shapes, in the

so-called “parametric domain”. Hence, the parametric representation of a triangular mesh,

with regular vertices only, is a three-directional mesh; while that of a quadrilateral mesh, with

regular vertices only, is a two-directional mesh, such as a rectangular grid. (See Fig. 1 for a

typical example of templates along with the parametric domain for regular vertices of some

triangular mesh, and Fig. 2 for an analogous example for a rectangular mesh.) Vertices that

are not regular are called extraordinary vertices in the literature. In selecting a control net

to generate some closed surface that is not topologically equivalent to a torus, extraordinary

vertices are unavoidable; but fortunately, the number of them remains the same as that of the

(initial) extraordinary control vertices, independent of the number of iterations being taken.

Hence, extraordinary vertices are isolated in the iterative process of surface subdivision, and

can be treated by applying certain specially designed local averaging rules that depend on the

valences.

Templates for regular vertices are derived from the refinement equation (or two-scale rela-
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tion) of some bivariate refinable function (or scaling function), with a finite refinement sequence

(or two-scale coefficient sequence), to be called a “subdivision mask”. For example, in the re-

finement equation

φ(x) =
∑

k

pkφ(Ax − k), x ∈ IR2, (1.1)

the function φ is a refinable function with (finite) subdivision mask {pk} and dilation matrix A.

It is clear that the subdivision mask sums to |det(A)| and that selection of the dilation matrix

A necessarily depends on the connectivity rule, which is commonly called “topological rule” in

the literature. The most commonly used topological rule is the “1-to-4 split” rule, that dictates

the split of each triangle or rectangle in the parametric domain into four sub-triangles or sub-

rectangles by connecting the mid-points of the edges, and thereby, introducing new vertices in

the three-dimensional space, when the templates are applied to take weighted averages. Most

of the well-known surface subdivision schemes such as the Catmull-Clark [2], Loop [23], and

Butterfly [12] schemes engage the 1-to-4 split topological rule. For the 1-to-4 split rule, the

dilation matrix to be selected is simply 2I2, both for the triangular and rectangular meshes.

Other topological rules of interest include the
√

3 [21, 22, 19, 26, 20, 8] and the 4-to-8 split

[36, 37] rules, with dilation matrices given, for example, by

A1 =

[

2 −1

1 −2

]

, A2 =

[

1 1

1 −1

]

, (1.2)

respectively. We remark that these matrices are certainly not unique, and that while the 1-to-4

split rule applies to both triangular and quadrilateral meshes, the
√

3 rule applies only to the

triangular mesh and the 4-to-8 rule to the rectangular mesh.

For a control net with control vertices v0
k, that are all regular, the refinement equation (1.1)

immediately yields the “local averaging rule”

vm+1
j =

∑

k

vmk pj−Ak, m = 0, 1, · · · , (1.3)

where for each m = 1, 2, · · ·, vmk denote the set of vertices obtained after m iterations; and for

sufficiently large values of m, these vertices provide an accurate discrete approximation of the

target subdivision surface, which is precisely given by the series representation

f(x) =
∑

k

v0
kφ(x − k), x ∈ IR2, (1.4)

with the control vertices v0
k as coefficients. Also, the subdivision templates for rendering this

surface can be easily formulated by applying (1.3). Hence, the order of smoothness of the

target surface is determined by that of the refinable function φ. If this refinable function is

not a compactly supported piecewise polynomial with prescribed smoothness joining property

(called a bivariate spline), the order of smoothness of φ can be analyzed by applying the theory

of shift-invariant spaces [3, 10, 14, 18, 16, 25].
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On the other hand, since custom-designed local weighted averaging rules are required to

take care of the (isolated) extraordinary vertices, the order of smoothness at those points on

the target surface that correspond to the extraordinary vertices no longer follows from that

of φ. The study of the order of smoothness and the development of algorithms to achieve the

desired order of smoothness at such points on the subdivision surfaces constitute the most fun-

damental research problem on the subject of surface subdivisions. Among the many attempts

to the study of the order of smoothness, Doo and Sabin [11] considered necessary conditions on

the subdivision matrices, Ball and Storry [1] studied the continuity of moving tangent planes,

and Reif [32] introduced the notion of “characteristic maps”, formulating a C1 continuity con-

dition in terms of the regularity and injectivity of the characteristic maps and eigenvalues of

the “subdivision matrices”. The C1-continuity result was applied to analyze several interesting

schemes in [33, 27, 28, 13, 39, 35]. Moreover, in the papers of Prautzsch [29] and of Zorin [40],

the result of Reif [32] was extended to orders of smoothness higher than 1. Unfortunately,

although C2 smoothness at those points on a subdivision surface that correspond to extraor-

dinary vertices are achievable by applying such schemes as those introduced by Prautzsch and

Umlauf [30, 31], the geometry at these points is highly undesirable, being practically flat.

The C2 problem, with “pleasing” geometric shapes at those points on a subdivision sur-

face that correspond to extraordinary vertices, remains an important open problem in this

research area, though methods for treating a single extraordinary vertex are somewhat suc-

cessful [41, 6, 7]. Many attempts, including non-stationary subdivision schemes (see a remark

in [38, Ch.8]), have been considered but failed. With the exception of [6, 7], the subdivision

templates based on regular vertices for both stationary and non-stationary schemes in these

studies result in templates of numerical values. In our recent work [8, 9, 6, 7], we introduced

subdivision templates of matrices to gain certain desirable properties, such as shape control

parameters, smaller template size, and Hermite interpolation. The objective of the present

paper is to extend the current approach, particularly that of Reif [32] and of Prautzsch [29]

from subdivision templates of numerical values to templates of matrices, thereby supplying a

breath of fresh air to the research progress of the above-mentioned C2 problem for extraordi-

nary vertices. With the flexibility provided by the shape control parameters, we have sufficient

evidence to be optimistic that this matrix extension is somewhat promising.

This paper is organized as follows. Recall that for control vertices v0
k that are regular, the

subdivision surface generated by any surface subdivision scheme, with subdivision templates

of numerical values derived from (1.1), is precisely the surface with series representation given

by (1.4). However, when templates of matrices are used, since the control vertices are enriched

with shape control parameters as well, we need to understand what subdivision surfaces are

to be generated. The answer to this question, along with a bivariate C2 cubic spline example

and certain necessary preliminary results on matrix-valued subdivisions, will be discussed in

Section 2. Extension of Reif’s characteristic map, and the corresponding generalization of
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the results of Reif [32] and Prautzsch [29] on Ck-continuity of the subdivision surfaces near

the extraordinary vertices, from (scalar) subdivisions to vector subdivisions, will be studied

in Section 3. Two examples, based on the refinable bivariate C2 cubic splines introduced in

Section 2, will be given in Section 4 to illustrate an effective application of this matrix-valued

subdivision theorem. In Section 5, we demonstrate the feasibility of some dramatic change in

geometric shapes by adjusting the shape control parameters, and discuss the issue of certain

probable choices of these parameters to achieve subdivision surfaces with desirable geometric

shapes.

2 Vector subdivisions

Analogous to (scalar) subdivision schemes as discussed in the previous section, a matrix-valued

subdivision scheme for regular vertices is also derived from some refinement equation

Φ(x) =
∑

k∈ZZ2

PkΦ(Ax − k), x ∈ IR2, (2.1)

but with matrix-valued refinement mask {Pk} for a suitable dilation matrix A, where Φ =

[φ0, · · · , φr−1]
T is called a refinable (or scaling) function vector. For the refinable function

vector to be useful for surface subdivisions in our discussion, its components φk, k = 0, · · · , r−1,

must be in C2, have compact support, its refinement mask is finite, and satisfy the condition

of “generalized partition of unity”:

∑

k∈ZZ2

wΦ(x− k) ≡ 1, x ∈ IR2, (2.2)

for some constant r-vector w = [w0, · · · , wr−1]. By changing the order of the φks and multi-

plying them with some constant, if necessary, we may, and will, assume that

w0 = 1. (2.3)

Corresponding to the refinement equation (2.1), the local averaging rule, from which the sub-

division template (of matrices) follows immediately, is given by

vm+1
k =

∑

j

vmj Pk−Aj, m = 0, 1, · · · , (2.4)

where

vmj := [vmj , s
m
j,1 · · · , smj,r−1] (2.5)

are “row-vectors” (and more precisely, 3 × r matrices) with r components of points vmj , s
m
j,`,

` = 1, · · · , r − 1, in IR3. We will call the initial row vectors v0
j , “control vectors”, their first

components v0
j , “control vertices”, and the other components s0j,1, · · · , s0j,r−1, “shape control

parameters”. Of course, the assumption (2.3) is essential for the first components to be called
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control vertices as in the scalar subdivision consideration. In the vector setting, for sufficiently

large values of m, the vertices vmj provide an accurate discrete approximation of the target

subdivision surface, which is precisely given by the series representation

F (x) =
∑

k

v0
j φ0(x − j) +

∑

k

(

s0j,1φ1(x − j) + · · · + s0j,r−1φr−1(x − j)

)

(2.6)

with the control vectors v0
j = [v0

j , s
0
j,1, · · · , s0j,r−1] as coefficients.

2.1 Subdivision Surfaces

In this subsection, we show that under certain appropriate conditions, the sequence of piecewise

linear surfaces with vertices vmj generated by control vectors v0
j converges to the limit surface

F (x) given in (2.6). Our discussion follows from the relation between the subdivision algorithm

and the cascade algorithm (see also the discussion in [25]). For simplicity, we only consider

the dilation matrix A = 2I2.

Let Φ = [φ0, · · · , φr−1]
T be a compactly supported refinable function vector in L2(IR2)r

with dilation A = 2I2, and P = {Pk} be the corresponding subdivision mask with Pk = 0,k /∈
[−N,N ]2 for some N ∈ IN. Suppose Φ satisfies (2.2) for some constant vector w with the first

component w0 = 1.

Let CP be the cascade algorithm operator from L2(IR2)r to L2(IR2)r defined by

CPΦ0(x) =
∑

k

PkΦ0(2x − k),

where Φ0 is a compactly supported function vector in L2(IR2)r. Then {CmP Φ0}m∈ZZ+
is called

a cascade algorithm sequence. To describe the convergence of this sequence, we consider

TP := [BAk−j]k,j∈[−N,N ]2 , (2.7)

where

Bj =
1

4

∑

k

Pk−j ⊗ Pk,

and ⊗ denotes the Kronecker product of A and B, namely A⊗B = [aijB].

Proposition 1 Suppose that the subdivision mask P = {Pk} in (2.1) satisfies the property

that 1 is a simple eigenvalue of TP and all other eigenvalue of TP lie in the open unit disk

|z| < 1. Also, assume that

∑

k

wP2k =
∑

k

wP2k+(1,0) =
∑

k

wP2k+(0,1) =
∑

k

wP2k+(1,1) = w, (2.8)

where w satisfies (2.3). Let vmj be the vectors defined by (2.4) with (initial) control vectors

v0
k,k ∈ ZZ2. Then the sequence of piecewise linear surfaces with vertices vmj converges (in the

L2-norm) to the limit surface F (x) in (2.6).
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Proof. For a compactly supported function vector Φ0 in L2(IR2)r, it is easy to verify that

∑

j

v1
j Φ0(2x − j) =

∑

k

v0
k(CPΦ0)(x − k),

and more general,

∑

j

vmj Φ0(2
mx − j) =

∑

k

v0
k(CmP Φ0)(x − k), m = 1, 2, · · · . (2.9)

Let h(x) be the two dimensional “hat” function with
∑

k h(x − k) = 1. By choosing

Φ0(x) = h(x)[1, 0, · · · , 0]T , (2.10)

the left-hand side of (2.9) becomes
∑

j v
m
j h(2

mx− j), which is the piecewise linear surface with

vertices at vmj . On the other hand, for Φ0 given in (2.10), we have

∑

k

wΦ0(x − k) =
∑

k

w[1, 0, · · · , 0]h(x − k) = w0

∑

k

h(x − k) = 1.

This property of Φ0, together with the assumptions in Proposition 1, implies that CmP Φ0 → Φ

in the L2(IR2)r-norm as m → ∞ (see [34], and for the convergence of vector subdivisions in

general, see [17, 24, 4]). Therefore, the right-hand side of (2.9) converges in the L2-norm to
∑

k v0
kΦ(x − k), which is the surface F (x) given in (2.6). �

One may wonder what the limit surface would be if we use other components smj,`, ` =

1, · · · , r − 1, of vmj as the vertices. For this more general consideration, we may consider a

linear combination of the components of vmj as the vertices. Let C0 = [c0, c1, · · · , cr−1]
T be a

nonzero constant vector, and consider the sequence of piecewise linear surfaces with vertices

vmj C0, j ∈ ZZ2, m = 0, 1, · · ·. Let Φ1(x) := h(x)C0. Then
∑

j v
m
j Φ1(2

mx − j) represents the

piecewise linear surface with vertices vmj C0, j ∈ ZZ2. Again, we have (2.9), with Φ0 replaced by

Φ1. Observe that for this particular function vector Φ1 = h(x)C0,

∑

k

wΦ1(x − k) =
∑

k

wC0h(x − k) = wC0

∑

k

h(x − k) = wC0.

Under the assumptions in Proposition 1, we see that CmP Φ1 → (wC0)Φ in the L2(IR2)r-norm

as m → ∞. Thus the sequence of piecewise linear surfaces with vertices vmj C0 converges (in

L2-norm) to the limit surface (wC0)F (x), where F (x) is given in (2.6).

In particular, if wC0 = 0, then the (limiting) subdivision surface is degenerate (i.e. equal

to 0). If the unit coordinate vectors ei := [0, · · · , 0, 1, 0, · · · , 0], i = 0, · · · , r−1, are used for C0,

meaning that the (i+ 1)th components of vmj ,m = 1, 2, · · ·, are used as the vertices, then the

subdivision surfaces are wiF (x), respectively. Hence, if wi = 0, then we have the degenerate

subdivision surface.
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2.2 Bivariate spline example

In our recent work [8, 9], we have constructed refinable function vectors Φ with each component

being a bivariate spline function (with small support) on the 6-directional mesh 43. More

precisely, 43 is obtained by triangulation of the x-y plane IR2 with the grid lines x = i, y =

j, x− y = k, x+ y = `, x+ 2y = m, and 2x+ y = n, where i, j, k, `,m, n ∈ ZZ (see a truncated

portion shown on the left of Fig. 3). We remark that the reason for the choice of 43 here, as

opposed to 43
− = {(x, y) : (x,−y) ∈ 43} in [8, 9], is to use the same domain of the characteristic

map as that considered in [35]. For integers d and r, with 0 ≤ r < d, let Srd(43) denote the

collection of all (real-valued) functions in Cr(IR2) whose restrictions on each triangle of the

triangulation 43 are bivariate polynomials of total degree ≤ d. Each function φ in Srd(43) is

called a bivariate Cr-spline of degree d on 43. (See, for example, [5] for a general discussion.)
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Figure 3: Six directional mesh 43 (on left), support and Bézier-nets of φb
1

(on right)

In [8, 9], we have introduced refinable function vectors for the spaces S1
2(43), S2

3(43) and

S2
4(43). In particular, the refinable function vectors for S1

2(43) and S2
4(43) have the Hermite

interpolating properties of order 1 and 2, respectively (see [8] and [9] for the corresponding

templates for Hermite interpolating matrix-valued subdivision schemes).

In [8], we have also constructed a basis function φb1 ∈ S2
3(43) with (minimum) support

shown on the right of Fig. 3, where its nonzero Bézier coefficients are displayed. It is shown in

[8] that with A1 in (1.2) and

φb2(x) := φb1((A
−1
1 )Tx),

the function vector [φb1, φ
b
2] is refinable with the dilation matrix 2I2, and its subdivision (or

refinement) masks may be considered as an extension of the Loop scheme (where the mask of
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the quartic box spline B222 on the three-directional mesh is used). In this paper, for the sake

of better graphic display, we consider, instead, the refinable function vector

Φb := [φb2,
1

4
φb1 −

1

4
φb2]

T (2.11)

and its corresponding subdivision mask {Pk} with dilation matrix 2I2. The nonzero matrices

Pk are given by

P0,0 =
1

8

[

6 4
1
2 −2

]

,

P1,0 = P−1,0 = P0,1 = P0,−1 = P1,1 = P−1,−1 = B,

P2,1 = P−2,−1 = P1,2 = P−1,−2 = P1,−1 = P−1,1 = C,

P2,0 = P−2,0 = P0,2 = P0,−2 = P2,2 = P−2,−2 = D,

where

B =
1

24

[

11 8

−2 1

]

, C =
1

24

[

4 4

−1 −1

]

, D =
1

24

[

1 4

−1
4 −1

]

. (2.12)

The templates of the local averaging rule based on this subdivision mask for regular vertices

are shown in Fig. 4. For convenience, we refer to this matrix-valued subdivision scheme as the

S2
3 -subdivision.

P0,0

D D

DD

DD

B B

C

C

Figure 4: Templates for the local averaging rule of the S2

3
-subdivision

3 Analysis of C
k-continuity for matrix-valued templates

First we briefly summarize Reif’s C1-continuity and Prautzsch’s Ck-continuity for (scalar)

subdivision near the extraordinary vertices. Here and in the following, a Ck surface is meant

to be a Ck-manifold.

When a “generalized” B-spline subdivision is used to generate subdivision surfaces [32, 28],

the standard spline subdivision is used for refinement for the regular vertices, whereas special

averaging rules are used for the vertices near the extraordinary vertices (that is, valance K 6= 6
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0
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1
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K−1

xm
K−1

E

Figure 5: Layers x
j
m

for triangular nets and K 6= 4 for quadrilateral nets). Since the subdivision masks considered

here are of finite size and the extraordinary vertices are isolated in the iteration process of

surface subdivisions, we will analyze meshes with a single extraordinary vertex. The spline

surfaces Dm corresponding to the regular vertices after m steps of subdivision iterations form

an ascending nested sequence

D0 ⊂ D1 ⊂ D2 ⊂ · · ·

that converges to the limit surface,

C = clos(∪
m∈ZZ+

Dm).

With the prolongation of Dm defined by

xm := clos(Dm+1\Dm),

the limit surface becomes

C = D0 ∪ (∪
m∈ZZ+

xm).

The sets xm are ring-shaped surface layers which can be parameterized conveniently over a

common domain Ω × ZZK , ZZK := ZZ mod K, consisting of K copies of the compact set Ω,

where Ω is either

Ω4 = {(u, v)|u, v ≥ 0, 1 ≤ u+ v ≤ 2}

for triangular nets or

Ω|−−−−| = {(u, v)|0 ≤ u, v ≤ 2}\{(u, v)|0 ≤ u, v < 1}

for the quadrilateral nets (see e.g., [35]). See Fig. 5 for the surface layers xjm for the triangular

nets, and see Fig. 6 for the domains Ω4,Ω|−−−−|.
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e1

Figure 6: The domains Ω4 (on left) and Ω|−−
−−

| (on right)

Each surface layer xm can be parameterized in terms of vertices B`
m ∈ IR3 and piecewise

polynomial functions N `(u, v, j) according to

xm : Ω × ZZK 3 (u, v, j) → xm(u, v, j) =
L
∑

`=0

B`
mN

`(u, v, j),

where L is a positive integer and N `(u, v, j) are spline functions that possess the property of

partition of unity:
L
∑

`=0

N `(u, v, j) ≡ 1, (u, v) ∈ Ω, j ∈ ZZK .

For simplicity, we will use xjm(u, v) to denote xm(u, v, j). Also, set

N(u, v, j) := [N0(u, v, j), N1(u, v, j), · · · , NL(u, v, j)]T , Bm := [B0
m, B

1
m, · · · , BL

m]. (3.1)

Then we can write

xjm(u, v) = xm(u, v, j) = BmN(u, v, j).

The subdivision scheme is determined by the so-called subdivision matrix S, where

Bm+1 = BmS.

To explain Reif’s result in [32], let the eigenvalues of S be λ0, λ1, · · ·, arranged in non-

increasing order of the absolute values |λi|. A sufficient condition for the convergence of

subdivision is that λ0 = 1 and |λ1| < 1. Reif [32] assumes that λ1 = λ2, λ1 has the geometric

multiplicity 2, and considers the (left) row eigenvectors u1 = [u1
0, · · · , u1

L], u2 = [u2
0, · · · , u2

L]

associated with λ1 and λ2, respectively. Define the function vector

m(u, v, j) := [u1N(u, v, j),u2N(u, v, j)] : Ω × ZZK → IR2.

Here, m(u, v, j) is called the characteristic map of S. In [32], Reif proved that if

|λ3| < |λ1|, (3.2)
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and that the characteristic map m(u, v, j) is regular and without self-intersections (where

regularity means that the Jacobian of m(u, v, j) with respect to u, v does not vanish in Ω),

then the subdivision surface near the limit point corresponidng to the extraordinary vertices

is a C1 surface for almost all choices of control nets.

To explain Prautzsch’s result in [29] on Ck-continuity for some k ∈ IN, denote (x, y) :=

m(u, v, j), j ∈ ZZK . Here, for simplicity, we assume that the algebraic multiplicity and geomet-

ric multiplicity of possible eigenvalues λi having the form λi = λα1

1 λα2

2 with α1 + α2 ≤ k, are

the same. For 0 ≤ ` ≤ k, consider

S` := span{xβ1yβ2 : β1 + β2 = `, β1, β2 ∈ ZZ+}. (3.3)

In [29], Prautzsch proved that the subdivision surface is in Ck near the limit point correspond-

ing to the extraordinary vertex for almost all choices of (initial) control nets provided that the

characteristic map m(u, v, j) is regular and without self-intersections, and that the eigenvalue

λi of S satisfies either |λi| < |λ1|k or that λi has the form λi = λα1

1 λα2

2 with α1 + α2 ≤ k,

and uiN ∈ Sα1+α2
, where ui is a left eigenvector associated with λi and N is the spline vector

defined by (3.1).

For the vector setting, starting from some initial control vectors v0
j := [v0

j , s
0
j,1, · · · , s0j,r−1]

(where we mention again that each v0
j is a 3 × r matrix), we have surface layers xjm from the

regular parts of the spline surfaces. The surface layers xjm can be parameterized as

xm : Ω × ZZK 3 (u, v, j) → xm(u, v, j) =
L
∑

`=0

vm` N`(u, v, j), (3.4)

where in this case, vm` are 3 × r matrices

vm` = [vm` , s
m
`,1, · · · , sm`,r−1],

and

N`(u, v, j) = [N `
1(u, v, j), N

`
2(u, v, j), · · · , N `

r (u, v, j)]
T

are spline column vectors of length r which satisfy

L
∑

`=0

wN`(u, v, j) ≡ 1, (u, v) ∈ Ω, j ∈ ZZK , (3.5)

where w is the vector in (2.2). These spline vectors should be smooth enough, namely, they

are at least C1 when we discuss C1-continuity, and they are at least Ck when we discuss

Ck-continuity. Set

Vm := [vm0 ,v
m
1 , · · · ,vmL ],

and note that Vm is a row vector of length r(L+ 1). Then we have the subdivision matrix S

determined by

Vm+1 = Vm S.

12



In this case, S is an n(L + 1) × n(L + 1) matrix, or (L + 1) × (L + 1) block matrix of r × r

matrix blocks.

It follows from (2.2) that if S is the subdivision matrix for regular vertices, then

U0 := [w,w, · · · ,w] (3.6)

is a left eigenvector of S associated with the eigenvalue 1, where again, w is the vector in

(2.2). For extraordinary vertices, by an appropriate choice of the local averaging rule near

the extraordinary vertex, we see that U0 is still a left eigenvector of S associated with the

eigenvalue 1. Again, let the eigenvalues of S be λ0, λ1, · · ·, arranged in non-increasing order

of their absolute values |λi|. We first have the following theorem about the convergence of the

subdivision algorithm. We will say the subdivision algorithm converges if there is a unique

point p0 such that for any (u, v) ∈ Ω, j ∈ ZZK , {xjm} defined by (3.4) satisfies

lim
m→∞

xjm(u, v) = p0. (3.7)

Theorem 1 The subdivision algorithm described above converges, provided that λ0 = 1 and

|λ1| < 1.

Proof. Let U0 be a left eigenvector of S associated with λ0 = 1 given by (3.6). Let U be

an invertible matrix such that USU−1 is the Jordan normal form of the subdivision matrix

S. Let Ui denote the rows of U. Then U0 is a row of U (up to a constant). Assume that

U1 = U0. For the control vector V0 := [v0
0,v

0
1, · · ·v0

L], write

V0 =

(L+1)r
∑

i=1

pi−1Ui = p0U
0 +

(L+1)r
∑

i=2

pi−1Ui,

where pi are 3 × 1 vectors, points in IR3. Let vm` , 0 ≤ ` ≤ L, be the vectors of mth iterations.

Then we have

[vm0 ,v
m
1 , · · · ,vmL ] = Vm = V0Sm = p0U

0Sm +

(L+1)r
∑

i=2

pi−1U
iSm = p0U

0 + o(1). (3.8)

(The reader is referred to Lemma 3.1 in [32] for the discussion about the last equality.) There-

fore, we have

xjm(u, v) =
L
∑

`=0

vm` N`(u, v, j) =
L
∑

`=0

(

p0w + o(1)

)

N`(u, v, j)

= p0

L
∑

`=0

wN`(u, v, j) + o(1) = p0 + o(1),

where the last equation follows from the property of partition of unity (3.5). Hence, we have

limm→∞ xjm(u, v) = p0 since the error term o(1) converges uniformly to 0 for (u, v) ∈ Ω. ♦

13



Suppose λ1 = λ2, and the geometric multiplicity of λ1 is 2. Let U1,U2 be left eigenvectors

associated with λ1, λ2, respectively. Note that U1,U2 are r(L+ 1)-vectors, namely,

U1 = [u1
1, u

1
2, · · · , u1

r(L+1)], U2 = [u2
1, u

2
2, · · · , u2

r(L+1)].

Write

U1 =: [u1
0, · · · ,u1

L], U2 =: [u2
0, · · · ,u2

L],

where

u1
` := [u1

`r+1, u
1
`r+2, · · · , u1

(`+1)r], u2
` := [u2

`r+1, u
2
`r+2, · · · , u2

(`+1)r], ` = 0, 1, · · · , L.

Then we define the characteristic map of S by the function vector:

M(u, v, j) :=

[

L
∑

`=0

u1
`N

`(u, v, j),
L
∑

`=0

u2
`N

`(u, v, j)

]

: Ω × ZZK → IR2. (3.9)

By setting

N(u, v, j) := [N0(u, v, j)T , N1(u, v, j)T , · · · , NL(u, v, j)T ]T , (3.10)

the characteristic map can be written as

M(u, v, j) := [U1N(u, v, j),U2N(u, v, j)] : Ω × ZZK → IR2. (3.11)

We say that M is regular if its jacobian

4M (u, v, j) := det(
∂M(u, v, j)

∂(u, v)
) 6= 0,

for all (u, v) ∈ Ω, j ∈ ZZK . We also say that M is injective if M(u, v, j) 6= M(u′, v′, j′) for any

(u, v, j) 6= (u′, v′, j′), (u, v), (u′, v′) ∈ Ω, j, j′ ∈ ZZK .

We have the following two theorems.

Theorem 2 Suppose λ0 = 1, and λ1 = λ2 is a real eigenvalue with algebraic and geometric

multiplicity 2. If 1 > |λ1| > |λ3| and the characteristic map defined in (3.9) is regular, then the

subdivision surface is tangent-plane continuous (i.e., has continuous turning normal vectors)

for almost all choices of (initial) control vectors.

Let k ∈ IN. Assume that the characteristic map M defined in (3.9) is regular and injective.

For those eigenvalues λi that could possibly be written in the form of λi = λα1

1 λα2

2 , 2 ≤
α1 + α2 ≤ k, let Sα1+α2

be the set defined by (3.3) but with (x, y) := M in the vector-valued

setting. Here, we consider the case that the algebraic multiplicity and geometric multiplicity

of the eigenvalues λi that have the form λi = λα1

1 λα2

2 , α1 + α2 ≤ k, are the same.
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Theorem 3 Let k ∈ IN. Suppose that λ0 = 1, and λ1 = λ2 is a real eigenvalue with algebraic

and geometric multiplicities equal to 2. Then the subdivision surface is a Ck-manifold near the

limit point p0 defined in (3.7) for almost all choices of (initial) control vectors, provided that

the characteristic map defined in (3.9) is regular and injective, and that any eigenvalue λi of

S, i ≥ 3, satisfies one of the following two conditions:

(i) |λi| < |λ1|k.

(ii) λi has the form λi = λα1

1 λα2

2 , α1 + α2 ≤ k, λi has the same algebraic and geometric

multiplicities, such that WiN ∈ Sα1+α2
, where Wi is a left eigenvector associated with

λi and N is the spline vector defined by (3.10).

In particular, we have the following.

Corollary 1 Let k ∈ IN. Suppose λ0 = 1, and λ1 = λ2 is a real eigenvalue with algebraic

and geometric multiplicity 2, such that the characteristic map defined in (3.9) is regular and

injective. Then the subdivision surface is a Ck-manifold near the limit point p0 defined by (3.7)

for almost all choices of (initial) control vectors, provided that

|λ3| < |λ1|k. (3.12)

The proofs of Theorem 2 and Theorem 3 are straightforward extensions of the proofs in

[32] and in [29], respectively. For completeness, we give the following outlines.

Outline of Proof for Theorem 2. For an initial control vector V0 = [v0
0,v

0
1, · · · ,v0

L],

we have (by the similar discussion to that in (3.8)),

Vm = [vm0 ,v
m
1 , · · · ,vmL ] = [v0

0,v
0
1, · · · ,v0

L]Sm = p0U
0 + λm1 (p1U

1 + p2U
2) + o(λm1 ).

Thus

xjm(u, v) = VmN(u, v, j) = p0 + λm1 (p1U
1 + p2U

2)N(u, v, j) + o(λm1 ),

and

∂
∂u

xjm(u, v) = λm1 (p1U
1 + p2U

2) ∂
∂u

N(u, v, j) + o(λm1 ),

∂
∂v

xjm(u, v) = λm1 (p1U
1 + p2U

2) ∂
∂v

N(u, v, j) + o(λm1 ).

Therefore, the cross product of ∂
∂u

xjm and ∂
∂v

xjm is given by

∂

∂u
xjm × ∂

∂v
xjm = λ2m

1 det(

[

U1 ∂
∂u

N U2 ∂
∂u

N

U1 ∂
∂v

N U2 ∂
∂v

N

]

) (p1 × p3) + o(λ2m
1 )

= λ2m
1

(

4M (u, v, j) (p1 × p3) + o(1)

)

.
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By assumption, 4M (u, v, j) is nonzero. In addition, since the cross product of p1 and p2 is

a nonzero vector for almost every choice of the control vectors V0, the normalized normal

vectors nm(u, v, j) can be formulated as

nm(u, v, j) =
∂
∂u

xjm × ∂
∂v

xjm

‖ ∂
∂u

x
j
m × ∂

∂v
x
j
m‖

=
p1 × p3

‖p1 × p3‖
+

o(1)

|4M (u, v, j)| ‖p1 × p3‖
,

with the limit p1×p3
‖p1×p3‖

, where the error term converges uniformly to zero and 4M (u, v, j) is

uniformly bounded from below by some positive constant. The reader is referred to Lemma

3.4 in [32] for the proof of the lower uniform boundedness of 4M (u, v, j)). ♦

Outline of Proof for Theorem 3. Since the characteristic map is regular and injective,

the ranges of F jm(u, v) := [U1,U2]SmN(u, v, j) = λm1 M(u, v, j), (u, v) ∈ Ω, are essentially

disjoint (by following the discussion in [38, p.163] for the scalar setting). Thus the totality of

the ranges of F jm forms a parameterization of some deleted neighborhood W of the origin O.

As in (3.7), let p0 denote the limit corresponding to the extraordinary vertex, where xjm are

the surface layers. Following [29], we parameterize the subdivision surface C by R : W∪{O} →
IR3 defined piece by piece as

R(ξ, η) =

{

xjm(u, v), if (ξ, η) = F jm(u, v) = λm1 M(u, v, j),

p0, if (ξ, η) = (0, 0).

We must show that the each coordinate R(ξ, η) of R(ξ, η) is k-times continuously differentiable.

Let U be an invertible matrix for which USU−1 is the Jordan normal form of the sub-

division matrix S. Let {Ui} denote the rows of U. Denote by I the index set for which Ui,

i ∈ I, are left eigenvectors corresponding to eigenvalues λ of S with |λ| ≥ |λ1|k. Thus each

coordinate x0 of x0 := x
j
0 can be written as

x0 =
∑

i∈I

ai + b,

where ai = piUiN corresponds to a λi = λα1

1 λα2

2 with α1 + α2 ≤ k, and b ∈span{UiN : i /∈ I}.
Following [29], we need only consider each term ai and b in the above formulation of x0

separately.

When x0 = ai for some i ∈ I, by assumption (ii), ai =
∑

β1+β2=α1+α2
cβ1,β2

xβ1yβ2 for some

constants cβ1,β2
. Thus

xm = piUiS
mN = λmi (piUiN) (3.13)

= λmi x0 = (λ1λ1)
(α1+α2)m

∑

β1+β2=α1+α2

cβ1,β2
xβ1yβ2 (3.14)

=
∑

β1+β2=α1+α2

cβ1,β2
(λm1 x)

β1(λm1 y)
β2 . (3.15)

Therefore, in this case R(ξ, η) =
∑

β1+β2=α1+α2
cβ1,β2

ξβ1ηβ2 is a polynomial.
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When x0 = b, we have xm = o(|λ1|km) due to the assumption (i). This, together with the

fact that M−1 is k-differentiable, leads to

‖ ∂α+β

∂ξα∂ηβ
(xm ◦M−1)‖ = o(|λ1|km).

Using F−1
m (ξ, η) = M−1(λ−m1 ξ, λ−m1 η), we obtain, for α+ β ≤ k,

‖ ∂α+β

∂ξα∂ηβ
R(ξ, η)‖ = o(|λ1|−(α+β)m|λ1|km) (3.16)

= o(|λ1|(k−α−β)m) = o(‖(ξ, η)‖(k−α−β)m). (3.17)

Thus all derivatives ∂α+β

∂ξα∂ηβR(ξ, η) up to the total order k converge to 0 as (ξ, η) converges

“uniformly” to the origin. Therefore, R(ξ, η) is Ck-continuous. ♦

From the above discussion, we see that under the conditions stated in Corollary 1, the

derivatives of total order `, 2 ≤ ` ≤ k, of the components of the subdivision surface are equal

to zero.

Remark 1. When the refinable function vector Φ is not a spline vector, the characteristic

map is defined as the function M(u, v, j) : Ω×ZZK → IR2 by applying the local averaging rules

for the regular vertices to the control vectors

[

u1
i

u2
i

]

∈ IR2×r,

where [· · · ,u1
i , · · ·] and [· · · ,u2

i , · · ·] are left eigenvectors associated with λ1 and λ2, respectively.

The reader is referred to [38, Ch.8] for a precise definition of the characteristic map for the

non-spline subdivisions in the scalar setting. In the vector setting, the definition of character-

istic map is similar, simply by replacing the control vertices in IR2 (from the left eigenvectors

associated with the eigenvalues λ1 and λ2) by the control vectors u1
i ,u

2
i . With this character-

istic map for matrix-valued subdivisions, the above results (Theorems 2, 3 and Corollary 1)

remain valid for the non-spline considerations.

4 Examples

In this section, we use the S2
3 -subdivision as an example to illustrate the theorems developed

in Section 3. First we recall that the S2
3 -subdivision already generates C2 spline surfaces in

the absence of extraordinary vertices. We therefore need to use special local averaging rules

for the extraordinary vertices, so that the modified scheme generates at least C1 surfaces in

general. Let us consider the local averaging rule for the extraordinary vertices having valence

K 6= 6 as shown in Fig. 7, for some constant aK and 2 × 2 matrix Q0,K , which depend on the
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Figure 7: Local averaging rule for the extraordinary vertices for the S2

3
-subdivision
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Figure 8: Bézier coefficients of 4ϕ2 (on left) and 4ϕ3 (on right)

valence K, where D is the matrix given in (2.12). Here we just consider the cases valences

K = 3 and K = 4.

For the regularity and injectivity of the characteristic mapM(u, v, j) for the S2
3 -subdivision,

by the symmetry of the subdivision schemes, we need only discuss those of M(u, v, 0) =:

[ψ1(u, v), ψ2(u, v)], which is further reduced to discussion of the positiveness of ∂ψ1

∂v
and ∂ψ2

∂v

since ψ1(u, v) = ψ1(v, u), ψ2(u, v) = −ψ2(v, u) (see [28, 35] for the detail discussions). We

use the partial derivatives
∂φb

1

∂v
,
∂φb

2

∂v
to evaluate ∂ψ1

∂v
and ∂ψ2

∂v
. For this purpose, we have the

relations

∂φb1
∂v

(u, v) = −6ϕ2(u, v) − 12ϕ3(u, v),
∂φb2
∂v

(u, v) = 6ϕ3((A
−1
1 )T (u, v)T ), (4.1)

where ϕ2, ϕ3 are splines in S1
2(43) considered in [8], whose Bézier coefficients are displayed in

Fig. 8.
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Figure 9: Labels of vertices near an extraordinary vertex: labels for old vertices (on left); labels for

new vertices (on right)
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Figure 10: ψi(u, v), i = 1, 2, for (u, v) ∈ Ω4 are determined by these vectors ui` for the valence=K

case
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Figure 11: Bézier coefficients of ∂ψ1

∂v
(on left) and ∂ψ2

∂v
(on right) when K = 4

For valance K = 4, we choose

a4 =
1

4
(9 − 8x4), Q0,4 =

[

x4
1
2

23
32 − 3

4x4 x4 − 5
8

]

, (4.2)

where x4 ∈ IR. The non-zero eigenvalues (algebraic multiplicities of eigenvalues being ac-

counted individually) of the corresponding subdivision matrix S are

1, 3/8, 3/8, x4 − 1/2, x4 − 1/2, 1/8, 1/8, 1/8, 1/8, 1/8, 1/8, 1/8, 1/8, 1/8.

The left eigenvectors associated with the eigenvalues 3/8, 3/8 are independent of x4. With the

labelling of the indices in [39] (refer to Fig. 9 for K = 3), a left eigenvectors associated with

3/8 are

u1
0 = [0, 0], u1

1 = u1
2 = [9, 9], u1

3 = u1
4 = −9[1, 1], u1

5 = u1
6 = [95/4, 23],

u1
7 = u1

8 = −[95/4, 23], u1
9 = 27[1, 1], u1

10 = [0, 0], u1
11 = −27[1, 1],

u1
12 = [0, 0], u1

13 = u1
14 = −u1

15 = −u1
16 = [503/12, 125/3], u1

17 = 47[1, 1], u1
18 = 14[1, 1],

u1
19 = −47[1, 1], u1

20 = −14[1, 1], u1
21 = 47[1, 1], u1

22 = −14[1, 1], u1
23 = −47[1, 1], u1

24 = 14[1, 1];

u2
0 = [0, 0], u2

1 = −9[1, 1], u2
2 = u2

3 = [9, 9], u2
4 = −9[1, 1], u2

5 = −u2
6 = −u2

7 = u2
8 = −[95/4, 23],

u2
9 = [0, 0], u2

10 = 27[1, 1], u2
11 = [0, 0], u2

12 = −27[1, 1],

u2
13 = −u2

14 = −u2
15 = u2

16 = [−503/12,−125/3], u2
17 = −14[1, 1], u2

18 = 47[1, 1],

u2
19 = 14[1, 1], u2

20 = −47[1, 1], u2
21 = 14[1, 1], u2

22 = 47[1, 1], u2
23 = −14[1, 1], u2

24 = −47[1, 1].
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Figure 12: Initial closed surface (octahedron, one left), the finer surface (in middle) after one iteration

with the shape control parameters s0j,1 = [0, 0, 0]T , 0 ≤ j ≤ 7, and the limit surface (on right), by the

S2

3
-subdivision with x4 = 9/16

The particular vectors ui` that determine ∂ψ1

∂v
(u, v), ∂ψ2

∂v
(u, v), (u, v) ∈ Ω4 are shown in

Fig. 10. Based on these vectors and (4.1), we can calculate ∂ψ1

∂v
, ∂ψ2

∂v
with Bézier coeffi-

cients shown in Fig. 11. Since all the Bézier coefficients are positive, we see that ∂ψ1

∂v
(u, v) >

0, ∂ψ2

∂v
(u, v) > 0 for (u, v) on Ω4. Thus, since

4M (u, v, 0) =

∣

∣

∣

∣

∣

∂ψ1

∂u
(u, v) ∂ψ1

∂v
(u, v)

∂ψ2

∂u
(u, v) ∂ψ2

∂v
(u, v)

∣

∣

∣

∣

∣

=

∣

∣

∣

∣

∣

∂ψ1

∂v
(v, u) ∂ψ1

∂v
(u, v)

−∂ψ2

∂v
(v, u) ∂ψ2

∂v
(u, v)

∣

∣

∣

∣

∣

=
∂ψ1

∂v
(v, u)

∂ψ2

∂v
(u, v) +

∂ψ1

∂v
(u, v)

∂ψ2

∂v
(v, u) > 0, (u, v) ∈ Ω4,

the characteristic map M(u, v, 0) is regular, and it follows that M(u, v, 0) is also injective by

following the discussions in [28, 35]. So by Corollary 1, for |x4 − 1/2| < 3/8, the limit surface

is C1. By Corollary 1, for |x4 − 1/2| < (3/8)2 = 9/64, the limit surface is C2. For example,

let us choose x4 = 1/2 + 1/16 = 9/16.

Let 40 be the octahedron with vertices

v0
0 = [0, 0, 1]T , v0

1 = [1, 0, 0]T , v0
2 = [0, 1, 0]T ,

v0
3 = [−1, 0, 0]T , v0

4 = [0,−1, 0]T , v0
5 = [0, 0,−1]T ,

as shown on the left of Fig. 12. If we choose the shape control parameters s0j,1 = [0, 0, 0]T , 0 ≤
j ≤ 5, we have v1

j , j = 0, 1, · · · , 17, by the one subdivision iteration, as shown in the middle of

Fig. 12. The (limit) subdivision surface is displayed on the left of Fig. 12.

Zoom-in views near an extraordinary vertex E for 4, 5, and 8 iteration steps, respectively,

are shown in Fig. 13. Here we choose the shape control parameters s0j,1 = [0, 0, 0] for each j =

0, 1, · · · , 5. It is clear that the S2
3 -subdivision scheme assures C2-smoothness everywhere, with

the possible exception of the extraordinary vertices. In Fig. 13, observe that the smoothness

near the extraordinary vertex E is even more visually pleasing than the C2-smoothness of the

remaining zoom-in surface, which confirms the result on C2-continuity of Corollary 1.
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x   E x   E x   E 

Figure 13: From the left to the right, finer surfaces after iteration steps =4, 5, 8, with octahedron as

the initial control mesh, by S2

3
-subdivision with x4 = 9/16

Here, we mention that Prautzsch and Umlauf [30, 31] modified the Catmull-Clark scheme

and the Loop scheme near extraordinary vertices by keeping the left eigenvectors of the sub-

division matrices S, but replacing the eigenvalues such that the resulting subdivision matrices

S̃ satisfy the C2-continuity condition, but encountered the problem that not all of the weights

are positive and that the templates for the local averaging rules are not as local as those for

the Catmull-Clark scheme and the Loop scheme.

For valance K = 3, we choose

a3 =
1

3
(9 − 8x3), Q0,3 =

[

x3
1
2

23
32 − 3

4x3 x3 − 5
8

]

, (4.3)

where x3 ∈ IR. The non-zero eigenvalues of the corresponding subdivision matrix S are

1, 1/4, 1/4, x3 − 1/2, x3 − 1/2, 1/8, 1/8, 1/8, 1/8, 1/8, 1/8.

The left eigenvectors associated with eigenvalues 1/4, 1/4 are independent of x3. With the

labelling of the indices used in [39] again as in shown in Fig. 9, the left eigenvectors associated

with 1/4 are

u1
0 = [0, 0], u1

1 = 2[1, 1], u1
2 = 2[1, 1], u1

3 = −4[1, 1], u1
4 = 8[1, 1], u1

5 = 8[1, 1], u1
6 = −16[1, 1],

u1
7 = 12[1, 1], u1

8 = −6[1, 1], u1
9 = −6[1, 1], u1

10 = 18[1, 1], u1
11 = 18[1, 1], u1

12 = −36[1, 1],

u1
13 = 26[1, 1], u1

14 = −4[1, 1], u1
15 = −22[1, 1], u1

16 = 26[1, 1], u1
17 = −22[1, 1], u1

18 = −4[1, 1];

u2
0 = [0, 0], u2

1 = −2[1, 1], u2
2 = 2[1, 1], u2

3 = [0, 0], u2
4 = −8[1, 1], u2

5 = 8[1, 1], u2
6 = [0, 0],

u2
7 = [0, 0], u2

8 = 6[1, 1], u2
9 = −6[1, 1], u2

10 = −18[1, 1], u2
11 = 18[1, 1], u2

12 = [0, 0],

u2
13 = −6[1, 1], u2

14 = 16[1, 1], u2
15 = −10[1, 1], u2

16 = 6[1, 1], u2
17 = 10[1, 1], u2

18 = −16[1, 1].
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Figure 14: Bézier coefficients of ∂ψ1

∂v
(on left) and ∂ψ2

∂v
(on right) when K = 3

Figure 15: Initial closed surface (tetrahedron, on left), the finer surface (in middle) after one iteration

with the shape control parameters s0j,1 = [0, 0, 0]T , 0 ≤ j ≤ 3, the limit surface (on right), by the

S2

3
-subdivision
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Figure 16: S2

3
-subdivision surfaces with the same control vertices but with different shape control

parameters s0
0,1 = [0, 0, 0]T (on left), s0

0,1 = [0, 0, 1]T (in middle) and with s0
0,1 = [0, 0, −1]T (on

right)

Based on these vectors and (4.1), we can calculate ∂ψ1

∂v
, ∂ψ2

∂v
with Bézier coefficients shown in

Fig. 14. Since all Bézier coefficients are positive (except zeros on one boundary of Ω4), we have

that ∂ψ1

∂v
(u, v) > 0, ∂ψ2

∂v
(u, v) > 0 for (u, v) on Ω4 (except ∂ψ2

∂v
(u, v) = 0 for v = 0, 1 ≤ u ≤ 2).

Thus the characteristic map is regular and injective. So by Theorem 3, for |x3−1/2| < 1/4, the

limit surface is C1. Notice that the eigenvalue 1
8 of S has multiplicity 6. Hence it is impossible

to choose x3 such that the condition |λ3| < |λ1|2 = (1
4)2 for C2 smoothness in Corollary 1 is

fulfilled. In the following we choose x3 = 1/2 + 1/16 = 9/16.

Let 41 be the tetrahedron with vertices

v0
0 = [0, 0, 1]T , v0

1 = [1, 0, 0]T , v0
2 = [−1

2
,

√
3

2
, 0]T , v0

3 = [−1

2
,−

√
3

2
, 0]T ,

as shown on the left of Fig. 15. If we choose

s0j,1 = [0, 0, 0]T , 0 ≤ j ≤ 3,

we have v1
j , j = 0, 1, · · · , 10, by one subdivision iteration step as shown in the middle of Fig. 15.

The limit surface is displayed on the left of Fig. 15.

5 Shape control of subdivision surfaces

In this section, we first demonstrate that variation of the shape control parameters can change

the shape of subdivision surfaces dramatically. We then give a preliminary result concerning

the choices of the shape control parameters.

5.1 Shape control of surfaces

Let us again consider the octahedron 40. With x4 = 9/16, if we set the shape control

parameters s0j,1 to be [0, 0, 0]T for all 0 ≤ j ≤ 5, then we have the subdivision surface shown
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Figure 17: S2

3
-subdivision surfaces with the same control vertices but with different shape control

parameters s0
0,1 = [0, 0, 0]T (on left), s0

0,1 = [0, 0, 1]T (in middle) and with s0
0,1 = [0, 0, −1]T (on

right)

in the first figure (from the left) in Fig. 16. However, by choosing only one shape control

parameter s00,1 to be [0, 0, 1]T and [0, 0, −1]T , we have the second and third subdivision

surfaces shown in Fig. 16, respectively.

Similarly, for the tetrahedron 41, with x3 = 9/16, if we choose the shape control parameter

s0j,1 = [0, 0, 0]T , for all 0 ≤ j ≤ 5, the subdivision surface is shown in the first picture from

the left. By replacing only one shape control parameter s00,1 by [0, 0, 1]T and [0, 0, −1]T , we

have the subdivision surfaces shown in the second and third pictures in Fig. 17, respectively.

An advantage of this S2
3 -subdivision scheme is that surface shapes can be re-designed easily

by adjusting the shape control parameters.

5.2 Choices of shape control parameters

In this subsection we give a preliminary result on the choices of the shape control parameters

s0j,` =: [xj,`, yj,`, zj,`]
T , ` = 1, · · · , r − 1. We derive that the shape control parameters should

be related to the vectors for the sum rule order of the subdivision mask. In the following, for

the simplicity of our presentation, we just consider the case A = 2I2, though our result is valid

for the general dilation matrix A.

Suppose Φ = [φ0, · · · , φr−1]
T is a compactly supported refinable function vector on IR2

satisfying the refinement equation (2.1) for some finite sequence {Pk} of r × r matrices with

A = 2I2. Let

P (ω) :=
1

4

∑

k∈ZZ2

Pke
−ikω

be the two-scale symbol of Φ. Then P is said to possess the property of the sum rule of order
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m, if there exist 1 × r vectors wα, |α| < m with w0 6= [0, 0, · · · , 0] such that for all |β| < m,

∑

0≤γ≤β

(

β

γ

)

(2i)|γ−β|wγD
β−γP (η0) =

{

2−|β|wβ, when η0 = (0, 0)

0, when η0 = (π, 0), (0, π), (π, π).
(5.1)

Here for multi-indices γ = (γ1, γ2), β = (β1, β2) ∈ ZZ2
+, the standard notations |γ| = γ1 +

γ2,
(β
γ

)

=
(β1

γ1

)(β2

γ2

)

, Dγ = ∂γ1+γ2

∂xγ1∂yγ2
are used. It follows from (5.1) that

xα =
∑

k

{
∑

β≤α

(

α

β

)

kα−βwβ}Φ(x − k), x ∈ IR2, |α| < m; (5.2)

and hence, that P satisfies the sum rule of order m implies that all polynomials of total degree

m− 1 can be reproduced locally by integer translates of Φ (see the survey paper [15] and the

references therein). In particular, if the two-scale symbol P of Φ satisfies the sum rule of order

(at least) 1, meaning that there exists w0 6= 0 such that

w0P (0, 0) = w0, w0P (π, 0) = w0P (0, π) = w0P (π, π) = 0, (5.3)

then Φ satisfies (2.2) with w = w0. Furthermore, if P satisfies the sum rule of order at least 2

with w0,w(1,0),w(0,1), w0 = 1, say, then under the assumption Φ(x, y) = Φ(y, x), the vectors

w(1,0) = [w(1,0),0, · · · , w(1,0),r−1] and w(0,1) = [w(0,1),0, · · · , w(0,1),r−1] in (5.1) or (5.2) can be

chosen to satisfy

w(1,0) = w(0,1). (5.4)

In the following discussion, we assume that (5.4) holds.

Let the control vertices in IR3 be given by

v0
j = [j1, j2, zj]

T , j = (j1, j2) ∈ ZZ2,

for some zj ∈ IR. In the following, we will show that the shape control parameters s0j,1, · · · , s0j,r−1

(with the first two components to be labelled by x0
j,1, · · · , x0

j,r−1 and y0
j,1, · · · , y0

j,r−1, respectively)

can be chosen such that the subdivision surface is

∑

k

v0
j φ0(x − j) +

∑

k

(

s0j,1φ1(x − j) + · · · + s0j,r−1φr−1(x − j)

)

=:
∑

j

v0
j Φ(x − j) = [x, y, z(x, y)]T ,

for some function z(x, y). In particular,

∑

j

[j1, xj,1, · · · , xj,r−1]Φ(x − j) = x,
∑

j

[j2, yj,1, · · · , yj,r−1]Φ(x − j) = y. (5.5)

For this purpose, since the property of the sum rule of order 2 implies the preservation of linear

polynomials, we observe that

∑

j

(w(1,0) + j1w0)Φ(x − j) = x,
∑

j

(w(1,0) + j2w0)Φ(x − j) = y. (5.6)
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Therefore, by equalities (5.5) and (5.6), we may choose xj,1, · · · , xj,r−1 and yj,1, · · · , yj,r−1 to

satisfy

[j1, xj,1, · · · , xj,r−1] = w(1,0) + j1w0, [j2, yj,1, · · · , yj,r−1] = w(0,1) + j2w0 = w(1,0) + j2w0,

or

[xj,1, · · · , xj,r−1] = [w(1,0),1, · · · , w(1,0),r−1] + j1[w0,1, · · · , w0,r−1],

[yj,1, · · · , yj,r−1] = [w(1,0),1, · · · , w(1,0),r−1] + j2[w0,1, · · · , w0,r−1].

Based on the above observation, for control vertices v0
j =: [xj, yj, zj]

T in general, it is per-

haps advisable, at least for an initial attempt, to select shape control parameters s0j,` =

[xj,`, yj,`, zj,`]
T with

[xj,1, · · · , xj,r−1] = [w(1,0),1, · · · , w(1,0),r−1] + xj[w0,1, · · · , w0,r−1],

[yj,1, · · · , yj,r−1] = [w(1,0),1, · · · , w(1,0),r−1] + yj[w0,1, · · · , w0,r−1],

[zj,1, · · · , zj,r−1] = [w(1,0),1, · · · , w(1,0),r−1] + zj[w0,1, · · · , w0,r−1].

The problem on how to choose the shape control parameters “optimally” deserves further

investigations.

Remark 2. Let U be a nonsingular 2 × 2 constant matrix. Since UΦb is also refinable

with the refinement mask {UPkU
−1}, one could use {UPkU

−1} for the local averaging rules.

More precisely, for local averaging rules, one could use the templates in Fig. 4 and Fig. 7

with B,C,D, P0,0 and Q0,K replaced by UBU−1, UCU−1, UDU−1, UP0,0U
−1 and UQ0,KU

−1,

respectively. The characteristic map is still regular and injective. The subdivision surface is

also in C1 for K = 3, and C1 or C2 for K = 4, with the same choices of x3, x4. However, the

shape of the subdivision surfaces could be different. The problem on an “optimal” choice of U

deserves further investigations. The choice of

U =

[

2
3

2
3

2
3 t

2
3 t+ 1

]

,

where t is a non-zero real number, is of particular insterest to us since for this choice of U ,

w0 = [1, 0] is the vector for which (5.3) holds when P is replaced by the two-scale symbol

corresponding to the mask {UPkU
−1}.
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