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Quasi- interpolation is very useful in the study of the approximation theory

and its applications, since the method can yield solutions directly and does not

require solving any linear system of equations. However, quasi- interpolation is

usually discussed only for gridded data in the literature. In this paper we shall

introduce a generalized Strang- Fix condition, which is related to non- stationary

quasi- interpolation. Based on the discussion of the generalized Strang- Fix

condition we shall generalize our quasi- interpolation scheme for multivariate

scattered data, too.
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1. INTRODUCTION

Quasi- interpolation in its standard form takes values f(jh), j ∈ ZZd

of a d- variate function f on a grid with spacing h and a set of given basis
functions Φj,h(x) to construct an approximant of f via linear combination

∑
f(jh)Φj,h(x) ∼ f(x). (1.1)

1Supported by NSFC No. 19971017 and NOYG No. 10125102.
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The advantage of quasi- interpolation is that one can evaluate the approxi-
mant directly, and does not require solving any linear systems of equations.
The earliest case of quasi- interpolation is perhaps Bernstein’s approxima-
tion, which uses the Bernstein polynomials

Bn
j (x) = (n

j )xj(1− x)n−j

to build a quasi- interpolant of an univariate function f on [0, 1] via

n∑

j=0

f(
j

n
)Bn

j (x), x ∈ [0, 1].

This is a basic scheme in Approximation Theory and Functional Analy-
sis, but in addition it is widely used in Computer Aided Geometric Design
under the names of Bezièr and de Casteljau. Another well- known quasi-
interpolation scheme is formed by the reconstruction of bandlimited func-
tions via the Whittaker- Shannon sampling series. Finally, there is the
well- known B- spline series, which is included in any computer software
for representation of curves and surfaces. We refer to [1, 2, 3, 4, 7, 8, 9,
10, 12, 13, 15, 17, 27] and the references therein for more details of quasi-
interpolation and related topics.

We will begin our study with Schoenberg’s model [17]
∑

f(jh)Φ(
x

h
− j) ∼ f(x), x ∈ IRd (1.2)

which is a simplified form of (1.1) where the functions Φj,h(x) are scaled
shifts of a single kernel function Φ on IRd. Usually, this kernel is assumed to
be continuous, even, and Fourier- transformable with a real- valued Fourier
transform. This model is used, for instance, with the Shannon sampling
theorem and the B- spline series.

Thanks to Strang and Fix [22], the convergence order result

‖
∑

f(jh)Φ(
x

h
− j)− f(x)‖∞ ≤ O(h)l (1.3)

for h → 0 holds for any sufficiently smooth function f , if and only if

|Φ̂(w)− 1| ≤ O(w)l, w → 0, (1.4)

and
|Φ̂(2πj + w)| ≤ O(w)l w → 0 (1.5)

hold. The paper [19] showed that the condition (1.4) can easily be satisfied
by modifying a given Φ. In particular, by a finite linear combination of
shifts of the function Φ one can satisfy the condition (1.4) if Φ̂ ∈ Cl and
Φ̂(0) 6= 0.
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A lot of functions satisfy the Strang- Fix conditions, such as the uniform
symmetric B- Spline and tensor product B- Splines. For conditionally pos-
itive definite radial functions such as multiquadrics and thin- plate splines,
one can satisfy the Strang- Fix conditions too by taking finite linear com-
binations of the shifts of the function [5][6].

However, all conditionally positive definite radial functions are unbounded
and not compactly supported. A negative result showed in [26] proves that
no finite linear combinations of shifts of compactly supported strictly pos-
itive definite radial functions satisfy the Strang- Fix conditions. A similar
negative result concerning positive definite radial functions like the Gaus-
sian is in M.D. Buhmann’s dissertation [5]. Among other things, this paper
overcomes these problems by a generalization of both the quasi- interpola-
tion scheme and the Strang- Fix conditions.

The advantages of radial basis functions [16, 18, 23, 25] are revealed espe-
cially in the case of multivariate approximation, where the computation of
the basis is cheap. There one uses a single univariate function φ : IR+ → IR
and scattered points xj ∈ IRd, called centers, to build shifted basis func-
tions Φj(x) = φ(‖x−xj‖). For interpolation, one takes the centers exactly
at the data points, and then the interpolation problem is uniquely solvable,
provided that the function Φ(·) = φ(‖ · ‖) is positive definite. Interpola-
tion by radial basis functions has a well- developed theory, and it is a very
powerful tool to approximate smooth functions. But since it needs to solve
large systems of linear equations with possibly bad condition, it is a very
interesting problem to go over to quasi- interpolation, especially in the case
of compactly supported radial kernels.

A more general approach to quasi- interpolation proceeds via the scheme
∑

λj(f)Φ(x− jh)

where λj(f) are linear functionals of f . The order of approximation of
such a quasi- interpolation scheme can be obtained via the theory of shift-
invariant spaces, which is covered by various articles of de Boor, DeVore
and Ron (e.g. [3, 4]). However, this scheme usually requires some addi-
tional work to get the values λj(f), which need not consist of finitely many
function values only, but can possibly require some integration. However,
the scheme would be powerful, if the λj(f) were readily available. Another
problem is how to generalize this quasi- interpolation scheme to scattered
data. Buhmann etc [6] discussed quasi- interpolation with radial basis on
scattered centers. Dyn and Ron [8] used a two- step algorithm to construct
a quasi- interpolant at first for gridded data followed by an approxima-
tion of the interpolant by radial basis functions based on scattered centers.
Yoon [27] has put this work on a more general basis. Some related top-
ics are discussed in [7] by Dyn etc too. However, the coefficients of the
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schemes are linear functionals of the function f too, but not in terms of
the given pointwise function value data as in Schoenberg’s scheme. Alto-
gether, these schemes use radial basis functions with scattered centers, but
not for scattered data. We do not want to study this topic here, because
we shall stick to Schoenberg’s model (1.2) due to its simplicity. In the end,
we shall generalize Schoenberg’s quasi- interpolation to scattered data, but
still require point- evaluation data only.

By using the results of non- stationary quasi- interpolation shown in [13],
we could construct quasi- interpolants with conditionally positive definite
radial functions as kernels. This is due to the fact that one can construct
linear combinations of shifts of conditionally positive definite functions to
satisfy the Strang- Fix conditions. However, conditionally positive definite
radial functions are not compactly supported. Furthermore, this discussion
would be still in the context of classical Strang- Fix conditions [2, 11].

In this paper we will show a generalized Strang- Fix condition using a scaled
variation Φh of a fixed given kernel Φ. Under the hypotheses Φ̂(w) ∈ Cl

and Φ̂(0) 6= 0 we can get a finite linear combination Ψ(x) =
∑

ajΦ(x− j)
of shifts of the function Φ such that the scales Ψh of the function Ψ serve
as a kernel for non- stationary quasi- interpolation with good convergence
properties without satisfying the classical Strang- Fix conditions.

Li and Micchelli [15] have also proposed a non- stationary quasi- inter-
polant where the kernel is constructed by scales of some given function. In
relation to our interpolant (3.7) they discuss the case p = 1/k, h = 1/n.
We shall generalize their quasi- interpolation scheme and find out the op-
timal p in (3.7). This will yield an optimal order of convergence for such a
quasi- interpolant. Finally, we construct quasi- interpolants for multivari-
ate scattered data (but not scattered centers) using radial basis function.
However, these results are far from complete and provide just a starting
point for further investigation.

2. PARTITIONS OF UNITY

Before we go into details of quasi- interpolation, we will first introduce
the concept of partition of unity.

Definition 1. A compactly supported function Φ : IRd → IR pro-
vides a partition of unity on the integer lattice, if

∑

j∈ZZd

Φ(x− j) = 1

holds for all x ∈ IRd.
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This is sufficient to yield a simple convergence result:

Theorem 1. For differentiable functions f : IRd → IR with a uniform
bound ‖f ′‖∞,IRd < ∞ we have

‖
∑

f(jh)Φ(
·
h
− j) → f(·)‖∞,IRd ≤ h · C(d, Φ) · ‖f ′‖∞,IRd ,

if Φ is bounded and provides a partition of unity.

Proof: Assume that the radius of support of the function Φ is R > 0.
Then

|
∑

f(jh)Φ(
x

h
− j)− f(x)|

= |
∑

[f(jh)− f(x)]Φ(
x

h
− j)|

= |
∑

|x−jh|≤Rh

[f(jh)− f(x)]Φ(
x

h
− j)|

≤ c(d)‖f ′‖∞‖Φ‖∞Rh

(2.6)

for small h, because the number of lattice points in the ball is proportional
to IRd with just a dimension- dependent constant.

Furthermore, if Φ is nonnegative, we can even get

|
∑

f(jh)Φ(
x

h
− j)− f(x)| ≤ ‖f ′‖∞Rh.

The condition that the function Φ should be compactly supported is not
always necessary. In fact, a fast decay of the function Φ is required only.

The above condition for the convergence of a quasi- interpolation scheme
based on a partition of unity is stronger than the classical Strang- Fix con-
ditions, since the latter are necessary and sufficient. However, the concept
of a partition of unity can be easily generalized to scattered data. In fact,
for any compactly supported function Φ ≥ 0 the function

Ψj(x) =
Φ(

x− xj

h
)

∑

k

Φ(
x− xk

h
)

is nonnegative and satisfies a generalized partition of unity condition for
scattered data points xj , provided that the point density

h = max
x

min
j
‖x− xj‖

is small enough. By suitable storage and retrieval techniques for scattered
data one can evaluate such functions efficiently. The proof of convergence
of ∑

f(xj)Ψj(x) ∼ f(x) as h → 0
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then proceeds along the same lines as (2.6). The first ingredient here is that
partitions of unity always reproduce constants, i.e. they enjoy a polynomial
reproduction property. Furthermore, by either nonnegativity or compact
support they are locally stable. These two properties together yield con-
vergence. Additional material on local methods with stable polynomial
reproduction can be found in [20], section 9.

3. GENERALIZED STRANG- FIX CONDITION

Our final quasi- interpolation operator for gridded data will be

I(f)(x) := (hp)d
∑

f(jh)Φ
(
hp

(x

h
− j

))
. (3.7)

It is composed of linear combinations of the shifts and scales of the function
Φ, carrying the advantages of Schoenberg’s scheme over to the new quasi-
interpolation. However, we want to explain its background first and relate
it to the Strang- Fix conditions.

Employing the idea of the partition of unity and the idea of a non- sta-
tionary quasi- interpolation from a shift- invariant space, we can expect
that ∑

f(jh)Φh(
x

h
− j) → f(x)

uniformly as h → 0, if
∑

j

Φh(x− j) 6= 1 but → 1 (3.8)

uniformly. Furthermore, we take Φh to be scaled versions

Φh(x) := (hp)dΦ(hpx) (3.9)

of a single given function Φ for computational reasons. To satisfy the
condition (3.8) we assume

∫

IRd

Φ(x)dx = 1 (3.10)

and simply approximate this by a Riemannian sum over gridded values
with step hp. Then we should get (3.8) in the form

(hp)d
∑

Φ(x− jhp) →
∫

IRd

Φ(x)dx = 1,

for any x.

These observations enter into the quasi- interpolation operator (3.7), and
the numerical integration argument is made precise by Theorem 4 in Ap-
pendix A.
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We see that the condition (3.10) is equivalent to Φ̂(0) = 1, and is just the
first part (1.4) of the Strang- Fix condition.

Definition 2. We say that a function Φ satisfies the generalized Strang-
Fix condition, if it satisfies (3.10), i.e. only the first part (1.4) of the classical
Strang- Fix condition.

From the discussion up to this point it is clear that there is no reason
why one should require the additional part of the classical Strang- Fix
conditions.

4. ERROR ESTIMATES

The new quasi- interpolant (3.7) can be viewed as a numerical integra-
tion based on a rectangular rule with stepsize hp of the integral

∫
f(hqt)Φ(

x

hq
− t)dt, q := 1− p.

The error estimates of the new quasi- interpolant are partially based on
the error estimates for the numerical integration. For the latter we refer
to the appendix A at the end of the paper. There we also see that tak-
ing other rules like Simpson’s will not improve the results. This can also
be understood from integration of periodic functions and the analysis of
Romberg integration via Richardson extrapolation of integration by trape-
zoidal sums. There, the lower order error terms come from the boundary
only, if the integrand is smooth enough.

Now we go back to the quasi- interpolant (3.7) and split the error analysis
in two parts. The integration error is

‖(hp)d
∑

f(jh)Φ(
x

hq
− jhp)−

∫
f(hqt)Φ(

x

hq
− t)dt‖∞, (4.11)

and we write the integral as a convolution at x/hq of the functions f(hq·)
and Φ, i.e. ∫

f(hqt)Φ(
x

hq
− t)dt =

( ̂f(hq·)Φ̂
)∨ ( x

hq

)

to define
‖

( ̂f(hq·)Φ̂
)∨ ( x

hq

)
− f(x)‖∞ (4.12)

as the second part of the error.

We start with the first part of the error and assume |Φ(x)| < o(1 +
|x|)−s−d and the Fourier transform Φ̂ ∈ Cs in what follows (these two
condition is almost equivalent, here |Φ(x)| < o(1 + |x|)−s−d means there is
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a small ε > 0 that |Φ(x)| < O(1 + |x|)−s−d−ε). By using the result in [19]
we can get a finite linear combination Ψ =

∑
ajΦ(x− j) such that

|Ψ̂(w)− 1| ≤ O(w)s as w → 0. (4.13)

For simplicity, we now assume that the function Φ itself satisfies (4.13).
Furthermore, if f ∈ Cv and Φ ∈ Cu with u ≥ v and the derivatives of order
v of the function f as well as the derivatives of order u of the function Φ
are all globally bounded and absolutely integrable, then the discussion in
appendix A concerning integration with stepsize = hp yields a bound of the
form O(h

svp
s+d ) for h → 0 for the first error. Note that x/hq can be taken

as a parameter, and the error estimates of Theorem 4 and Theorem 5 in
Appendix A are uniform.

Remark 1. The condition that the function f should be bounded is not
always necessary. The quasi- interpolant (3.7) is even valid for functions f
with polynomial growth of order s−1. However, the order of approximation
will be decreased in this case, since the estimation of the first part of the
error depends on the order of the decay of the integrand.

To estimate the second part of the error we have

‖
( ̂f(hq·)Φ̂

)∨ (
x
hq

)− f(x)‖∞

= ‖
∫

e−ixwf̂(w)(Φ̂(hqw)− 1)dw‖∞

≤ ‖
∫

|w|<h−r

e−ixwf̂(w)(Φ̂(hqw)− 1)dw‖∞

+‖
∫

|w|>h−r

e−ixwf̂(w)(Φ̂(hqw)− 1)dw‖∞
≤ ‖f̂‖1hs(q−r) + (‖Φ̂‖∞ + 1)hrv

≤ O(h
sqv
v+s )

up to constant factors, if we set r = qs
v+s to satisfy rv = s(q − r).

Summarizing the analysis above we get

|hp
∑

f(jh)Φ( x
hq − jhp)− f(x)|

≤ O(h
svp
s+d ) +O(h

svq
v+s )

≤ O(h
sv

(2s+v+d) ),

if we choose p = (s+d)
(2s+v+d) to satisfy svp

s+d = svq
v+s . Thus we have got an

optimal choice of the parameter p in the quasi- interpolant (3.7).
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Theorem 2. If f ∈ Cv(IRd) and |f̂(t)| < o(1 + |t|)−v−d, both ‖f‖∞
and ‖f̂‖L1 are bounded, if the kernel Φ ∈ Cu(IRd) (u ≥ v) has decay |Φ| <
o(1 + ‖x‖)−s−d, Φ̂ ∈ Cs and

∫
Φ(x)dx 6= 0, then we can put p = (s+d)

(2s+v+d)

to construct a non- - stationary quasi- interpolant with the error estimate

|CΨ(hp)d
∑

f(jh)Ψ(
x

hq
− jhp)− f(x)| ≤ O(h

sv
2s+v+d ),

where C−1
Ψ =

∫
Ψ(x)dx 6= 0, and where the function Ψ is a finite linear

combination of scaled shifts of the function Φ.

Remark 2. Comparing with the classical Strang- Fix conditions, Φ̂(0) 6=
0 is now the only condition for the convergence of the new quasi- inter-
polant. The total approximation order depends in principle only on the
continuity of the functions f , Φ and Φ̂. In this sense the new condition is
therefore weaker than the classical Strang- Fix conditions.

Remark 3. The classical Strang- Fix conditions are necessary and suf-
ficient. De Boor and Jia even showed that σh = span{Φ(x

h − j)} has local
approximation order k if and only if some Ψ ∈ σ1 satisfies the Strang- Fix
conditions of order k (see [2] Theorem 5.4). What we have done here is
different, because instead of the space σh we use span{Φ( x

hq − jhp)}. In
fact, hpdΦ(hpx) does not always satisfy the classical Strang- Fix conditions
but satisfies them asymptotically.

Remark 4. If the function f ∈ Cv(Ω) is defined on a convex compactly
supported domain Ω contained in a ball O(0, R) , we can use Hermi-
tian interpolation to extend the function f(x) to whole space that f ∈
Cv(IRd) and compactly supported on O(0, R). Then the quasi- interpola-
tions scheme for the grided data over whole space can be used, that the
summation of the quasi- interpolations scheme over the knots outside of
the domain Ω depend only on the cross derivatives of the function f(x)
on the boundary ∂Ω. Therefor we can easily construct a quasi- interpola-
tion scheme on the compactly supported domain that the scheme possesses
a boundary terms, which is derived from the summation over the knots
out side of the domain Ω and depend only on the cross derivatives of the
function f(x) on the boundary.

5. CONSTRUCTION OF QUASI- INTERPOLANTS
FOR MULTIVARIATE SCATTERED DATA

Quasi- interpolation is discussed usually for gridded data or as an op-
erator on a shift- invariant space. It is an interesting problem to generalize
quasi- - interpolation to the case of multivariate scattered data. Dyn and
Ron [8] and Yoon [27] have derived some schemes by using radial basis
functions with scattered centers, the coefficients of the quasi- interpolant
are some linear combination of grided data or linear functional of the func-
tion f(x). If we can solve the problem of quasi- interpolation for scattered
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data instead of just allowing scattered centers especially over a compactly
supported domain, then such a scheme will be very useful for applications
(see de Boor [1]).

Let Ω be a compact convex domain, the scattered set of points xj ∈ Ω be
given such that the fill distance or density

h = sup
x∈Ω

inf
j
‖x− xj‖

is finite and small. The function f(x) ∈ Cv(Ω), just follow the Remark 4
in last section we extend the function to whole space by using Hermitian
interpolation that f ∈ Cv(IRd) and compactly supported. Add the grided
data points with the spacing h outside of the domain Ω, then we require
only to discuss the problem for compactly supported function f(x).

If
∫

IRd

Φ(x)dx = 1, we can adopt the idea of (3.7) to define a quasi-

interpolant for scattered data to be

I(f) =
∑

j

f(xj)Φ(
x− xj

hq
)
∆j

hqd
, p + q = 1,

where ∆j are some weights of quadrature. For example, one can take
the volume of the a region Ωk satisfying xj ∈ Ωk, where the {Ωk} are a
partition of IRd such that Vol(Ωj ∩ Ωk) = 0, k 6= j and ∪Ωk = IRd (This
quadrature is then the Riemannian summation). A simple choice of Ωj is
via Dirichlet’s tessellation:

Ωj = {x| ‖x− xj‖ ≤ ‖x− xk‖, ∀k 6= j}.

The discussion in appendix A will not be valid for the case of multivari-
ate scattered data, because good results for numerical integration based
on multivariate scattered data are missing. Instead, we use a local ap-
proximation Aj(x) introduced by Yoon [27]. The functions Aj(x) are
compactly supported on balls B(xj , Rh) around xj with radius Rh and
satisfy

∑
p(xj)Aj(x) = p(x) for any polynomial p(x) of order at most u−1.

If we define ∆j =
∫

Aj(x)dx, then
∑

∆jf(xj) is a numerical integration
scheme of

∫
f(x)dx with local approximation order u. Since we discuss

only the compactly supported function, then the summation is finite and
the error of the numerical integration is O(hu). For the construction of the
approximation Aj(x), moving least square is a good choice, an example is
shown in Appendix B.

Remark 5. Theoretically we can use any approximations scheme to get
a good quadrature over the domain Ω, however then we will face to solve a
large scaled linear system of equation again and lost the advantage of the
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quasi- interpolation. The reason to use local approximation of Aj(x) is to
avoid solving large scaled system of equation (an example is given in the
Appendix B by solving some small size of least square problem).

Again, we split the error analysis into

‖
∑

j

f(xj)Φ(
x− xj

hq
)
∆j

hqd
−

∫

IRd

f(y)Φ(
x− y

hq
)

dy

hqd
‖,

‖
∫

IRd

f̂(w)Φ̂(hqw)e−ixwdw −
∫

IRd

f̂(w)e−ixwdw‖,

using the identity
∫

IRd

f(y)Φ(
x− y

hq
)

dy

hqd
=

∫

IRd

f̂(w)Φ̂(hqw)e−ixwdw,

and ∫

IRd

f̂(w)e−ixwdw = f(x).

Now we can estimate the error analogously to the discussion of the
gridded quasi- interpolant (3.7).

If the numerical integration scheme locally possesses an approximation or-
der of v, the first error behaves like O(hvp), if the function f and its deriva-
tives are bounded.

The second error term depends on the decay of the function f̂ and the
behavior of Φ̂ near the origin, analogously to the discussion in the last
section. We get a bound of the form O(h

svq
s+v ).

Finally, we can take the optimal p = s
2s+v and q = s+v

2s+v , to get a quasi-
interpolant with an error estimate O(h

sv
2s+v ) if u ≥ v.

Theorem 3. Let the kernel Φ ∈ Cu(IRd) have an algebraic decay |Φ| <
o(1+‖x‖)−s−d for x →∞ and satisfy

∫
Φ(x)dx 6= 0, and Φ̂ ∈ Cs. Assume

further f ∈ Cv(IRd) with u ≥ v and |f̂ | < o(1 + |t|)−d−v, a quadrature
scheme with weights {∆j} that possesses an approximation order v. Then
we can put p = s

2s+v and q = 1 − p to construct a non- stationary quasi-
interpolant with the error bound

|CΨ

∑

j

f(xj)Ψ(
x− xj

hq
)
∆j

hqd
− f(x)| ≤ O(h

sv
2s+v ),

where C−1
Ψ =

∫
Ψ(x)dx 6= 0 and Ψ is a linear combination of the scaled

shifts of the function Φ.
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APPENDIX A: QUADRATURE OVER THE WHOLE SPACE

Here, we will provide some results for numerical integration over the
whole space, as required for our study. We stick to simple rules bases on
evaluation of points centered in rectangles. By taking suitable linear com-
binations, one can easily show that gridded integration rules on rectangles
based on the midpoint rule, the trapezoidal rule and Simpson’s rule will
have the same error order. This is a typical fact for integration on the
whole space or for periodic functions, and there will not be a substantial
improvement by taking more complicated rules.

Theorem 4. If Φ ∈ Cu(IRd) and compactly supported on a ball around
the origin with radius R, then

∣∣∣∣∣∣

∫

IRd

Φ(x− y)dx− hd
∑

j∈ZZd

Φ(jh− y)

∣∣∣∣∣∣
≤ CRd‖Φ(u)‖∞hu

uniformly, independent of y.

Proof: Take locally polynomial interpolation over the every interval
[juh, (j + 1)uh] to get

| ∫
IRd Φ(x− y)dx− hd

∑
j∈ZZd

∑
|i|∞≤u wiΦ(juh + ih− y)|

≤ CRd‖Φ(u)‖∞hu
(A.14)

where i, j ∈ ZZd. Then shifts of the formula (A.14) and the average of the
shifts of the formula (A.14), equivalently the formula with rectangular rule

hd

ud

∑

|l|<u

∑

j∈ZZd

∑

|i|≤u

wiΦ(juh + ih + lh− y)

= hd
∑

j∈ZZd

Φ(jh− y)
(A.15)

possess the same approximation order as (A.14).

For the function |Φ(x)| < o(1 + |x|)−s−d, we can split the integral and the
summation into two parts with |x| < h−r and |x| > h−r. Then the summa-
tion and the integral for |x| > h−r are bounded by O(hsr). Furthermore,
the difference of the summation and the integral for |x| < h−r are bounded
by O(hu−rd) by using Theorem 4. The best error estimate can be obtained
by setting sr = u− rd. This yields

Theorem 5. If Φ ∈ Cu and |Φ(x)| < o(1 + |x|)−s−d, then

|
∫

IRd

Φ(x− y)dx− hd
∑

j∈ZZd

Φ(jh− y)| ≤ O(h
su

s+d ).

uniformly, independent of y.
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APPENDIX B: LOCAL POLYNOMIAL REPRODUCTION
APPROXIMATION AND THE QUADRATURE OVER WHOLE

SPACE FOR SCATTERED DATA

We would like to construct multivariate functions Aj(x) that are com-
pactly supported on O(xj , Rh) and satisfy

∑
Aj(x)p(xj) = p(x) for any

polynomial p(x) whose degree is less than or equal to u. The only ref-
erence for an explicit construction seems to be Sibson’s interpolation [21]
with u = 1. Thus we give an example of general construction here. The
approach is in fact the moving least square.

For simplicity we assume scattered data points xj with density h and take
a basis p1(x), . . . , pq(x) of multivariate polynomials with degree less than
or equal to u. For every j we take a subset Yj of the points such that

Yj = {yj,k} ⊂ {xk} ∩O(xj , Rh),

where R > 3u. Then for any xj the matrices Pxj = (p`(yj,k))`,k are all of
full rank (see e.g. [24]). Let fxj be vectors with the entries f(yj,k). We
construct a least squares approximation for every j by polynomials using
the data near the point xj by

Tj(x) = (p1(x), . . . , pq(x))(PT
xj

Pxj )
−1PT

xj
fxj .

Furthermore we define

w(x, y) =





‖x− y‖2
(Rh)2 − ‖x− y‖2 ‖x− y‖2 ≤ (Rh)2

∞ ‖x− y‖2 > (Rh)2

and construct the generalized Shepard’s interpolation

f∗(x) =
∑

Tj(x)Lj(x), (B.16)

where
Lj(x) = (

1
wu+1(x, xj)

)/(
∑

‖xk−x‖<Rh

1
wu+1(x, xk)

).

If the data comes from a polynomial T (x), the least squares approximation
is polynomial reproducing that satisfies Tj(x) = T (x) and then f∗(x) =
T (x) from the properties of Shepard’s interpolation. The scheme (B.16) is
a linear combination of fj , so that

f∗(x) =
∑

fjAj(x),

and if fj = T (xj) we have

T (x) =
∑

T (xj)Aj(x),

13



where Aj(x) are composed of some terms with factors Lk(x) satisfying
|xj − xk| ≤ Rh. Thus the Aj(x) are compactly supported on B(xj , 2Rh)
and reproducing polynomials up to degree u.

Now we construct the quadrature scheme over the compact domain Ω.
Let ∆j =

∫
Ω

Aj(x)dx, if the function f is compactly supported on Ω then
∑

f(xj)∆j =
∫
Ω

∑
f(xj)Aj(x)dx =

∫
Ω

f(x) +O(hu)dx
=

∫
Ω

f(x)dx +O(hu) =
∫

IRd f(x)dx +O(hu).
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