
On-the-Fly Adaptive Subdivision Terrain

Dirc Rose, Martin Kada, Thomas Ertl

University of Stuttgart, Institute of Computer Science
Visualization and Interactive Systems Group

Breitwiesenstraße 20-22, 70565 Stuttgart, Germany
Email:

�
rose|ertl � @informatik.uni-stuttgart.de
martin.kada@ifp.uni-stuttgart.de

Abstract

In this paper we present a method to achieve inter-
active rendering of smooth terrain based on coarse
data. Therefore we use adaptive subdivision sur-
faces which are calculated on the fly by using in-
formation from the directed edge based mesh of the
previously rendered frame and throwing away trian-
gles not used any longer. This way we are able to
gain fast, high quality meshes which are refined de-
pending on the point of view with marginal memory
consumption. Additionally, this technique is com-
patible to traditional data structures like progressive
meshes.

1 Introduction

Although terrain rendering has improved a lot with
regard to quality and speed in the recent years,
there are still some shortcomings when approach-
ing a surface. Massive use of textures may give
a terrain a natural appearance and this works fine
when viewed from afar, but when closing up the flat
facets of a terrain can be clearly spotted in general
cases. This may be annoying, e.g. in flight simula-
tors which show a smooth surface from above but
coarse hills when in low level flight or rolling on
the ground. Low resolution can originate from sev-
eral facts. Rendering speed should not be the bottle-
neck, since progressive meshes and level-of-detail
overcome this problem. The main aspect is memory
consumption, both main memory and hard drive or
CD/DVD capacity. It seems impossible nowadays
to save the elevation data of the whole world with
a resolution of 1m � 1m � 1m. When disregarding
the oceans this still yields about � � � � �
 � � bytes of
uncompressed, difficult to manage data. Therefore
either the range of interaction or the resolution has

to be restricted. In many cases the latter is chosen
and the typical distance between two sample points
is about 100m, and 30m or below for more interest-
ing regions.

This results in the mentioned visual defect when
approaching the ground. We want to show a way to
polish rough edges with almost no supplementary
use of memory by adaptively subdividing the terrain
data on the fly. This strategy meets today’s typical
computer equipment, e.g. console platforms, pro-
viding a low- to mid-end graphics board, relatively
little memory, and nevertheless a quite fast proces-
sor.

2 Related Work

In recent years a lot of research has been conducted
in simplification of complex meshes. In a first
preprocessing step these techniques [14, 9] can be
used to reduce high resolution data to a manageable
amount of samples. In a second preprocessing pass
a progressive mesh structure [3] may be calculated.
During interaction these progressive meshes or sim-
ilar algorithms [8, 10, 11, 15] can be used to build
up a view-dependent level-of-detail representation
of the scene.

In our scenario we adapt data structures based
on these methods. However, when approaching the
ground we want to switch the direction and refine
the mesh. Since we had to drop most of the de-
tailed “smooth” information due to lack of memory,
we must find a way to regain or reinvent the lost
data. For this purpose we use subdivision patches
originally developed as an enhancement to B-spline
surfaces. In general these are used to describe ob-
jects, e.g. in CAD, with just a few control points.
The possibility to use subdivision algorithms as a
method to reconstruct surfaces is shown in [12].

VMV 2001 Stuttgart, Germany, November 21–23, 2001

So far subdivision approaches were too slow to
allow interactive frame rates. In the following sec-
tions we will present a way to overcome this prob-
lem, therefore allowing smooth looking surfaces
even on low-memory platforms.

3 Subdivision Surfaces

There are many forms of subdivision surfaces [17].
These surfaces are generated by consecutively di-
viding an initial coarse mesh, converging against a
smooth surface. The subdivision is controlled by
a subdivision mask or stencil. This mask deter-
mines which coordinates of neighboring points are
combined to calculate the newly inserted point of
an edge. Loop and Catmull-Clark surfaces [5] are
approximating subdivision surfaces. Similar to B-
splines, these surfaces are close to the control points
but do not contain them. Due to this property we
cannot use this kind of surfaces because we want
to keep the original coordinates and not alter them.
We use an interpolating scheme instead, the butter-
fly surface [6], whose initial mask (the solid lines
of Figure 1) looks like a butterfly. For better results
this mask can be extended by two additional points
[7, 18], as shown in Figure 1. The points are multi-

b

b cc

c c

aa
dd

Figure 1: Butterfly subdivision mask for the white
point in the middle

plied by different weights � � � , with the parameter� allowing a more subtle control of the resulting
surface:

� � �� � � � � � �� � � � � � � � �
� " � � � � � � (1)

Setting � &
 results in the original butterfly
mask. The tangent space can be calculated using
the complete 1- and 2-ring neighborhood of a point
as shown in Figure 4 and with this information it
is easy to obtain the normal at this point. For the
weights please refer to [17].

We have implemented an adaptive algorithm that
only subdivides a triangle when this will result in

a visible change. This can be either a change in
height by one pixel or more or it can be a signifi-
cant change in normal direction. As a first order ap-
proximation for both cases we can use the distance
between the yet to be inserted point and the center
point of the corresponding edge. Scaled by the ratio
of window size to z depth, it is a quality measure in
screen space dimensions. Setting the error bound to
1 pixel or below will produce an adaptive mesh that
looks the same as an infinitely subdivided surface.

During the subdivision process a red-green tri-
angulation strategy [1, 2] is used to avoid cracks
between neighboring triangles. Therefore we per-
mit only a difference of one level in subdivision be-
tween two neighboring triangles. This procedure
also guarantees the easy registration of the subdi-
vision mask at any time.

The (� continuity at the borders permits a
smooth transition to the surrounding original coarse
mesh. Subdivision of the border will not be allowed
until it is needed due to higher order divisions of
neighboring triangles. In this case the border is
subdivided linearly to guarantee that there will not
be any cracks between the subdivided parts and the
original surrounding mesh.

4 On-the-Fly Control

The key to achieve interactive frame rates lies in
an efficient algorithm for inserting and destroying
newly subdivided triangles which are not needed
any more. The main data structure is based on a
lean version of directed edges [4]. Here a half-edge
is represented by the address of the vertex where
the directed edge points to. Thus a triangle is de-
fined by three consecutive half-edges. The neigh-
boring triangle of an edge can be accessed via an-
other pointer that addresses the opposing half-edge.
Progressive meshes use the same or a similar data
organization in general which facilitates the combi-
nation with our algorithm. If a neighboring triangle
is subdivided one level less than the original trian-
gle, then its half-edge points to only one of the jux-
taposed half-edge as can be seen in Figure 2.

This is one reason why we introduce mid-vertices
to the original half-edge structure. These mid-
vertices belong to every edge and contain the posi-
tion which would arise when subdividing this edge.
Additionally we can attach the pointer to the sec-
ond neighboring half-edge to it and therefore we

88

Figure 2: Half-edge structure with white mid-vertex

can save the costly search for this second edge.
Another advantage of mid-vertices is the ease to

calculate the next subdivision level of a triangle.
In regions of high curvature we can benefit from
these precalculated vertices because the registration
of the subdivision mask is more favourable. The
calculation of the mid-vertices itself is quite sim-
ple since the neighboring triangles do not have the
strong fragmentation they may have one step later.
In some cases such a fragmentation may induce a la-
borious search for the butterfly mask vertices along
the half-edges, as shown in Figure 3a. The retrieval
is straightforward if the mid-vertices have been pre-
calculated on a coarser level (Figure 3b).

a)

b)

Figure 3: a) The way along the directed edges to the
outer gray points can be lengthy
b) Using precalculated mid-vertices may save work

The mid-vertices are also useful when calculating
the tangent vectors since we need the 1- and 2-ring
neighborhood. The mid points help to limit the ex-
pansion, since they are already subdivided one level
higher as can be seen in Figure 4. In most cases
this prevents the need for virtual vertices (see be-
low) and allows a faster calculation of the tangents
and accordingly the normals.

Finally, we need the mid-vertices for the fast
quality evaluation in screen space. As mentioned in

0

2

3

4

7138

10 16 11

9

14

15 17

6

121

5

Figure 4: Butterfly tangent mask of the white point
using precalculated mid-vertices

Section 3 we use this as an overestimated approxi-
mation of the expensive Hausdorff distance, which
would be the exact error measure.

Another improvement to the original half-edge
structure concerns to border vertices. Sometimes
it can be difficult or impossible to find all edges be-
longing to a border vertex by simply moving along
neighboring triangles and edges. A separate pointer
to the incoming border edge solves this problem and
results in a speedup.

Butterfly surfaces need the 1-ring of the vertices
defining the edge to be split (see Figure 1). At bor-
ders it is not possible to find a 1-ring that fulfills
the requirements for the subdivision mask because
a border vertex does not have a valence of 6 in most
cases. Therefore we have to mirror vertices from in-
side along the border to define virtual vertices out-
side so we regain a valence of 6. When the subdivi-
sion surface is embedded in a surrounding progres-
sive mesh, it is possible and advisable to use neigh-
boring vertices from the outer mesh since this will
mostly result in a better quality than using virtual
vertices.

A topological operator manages the reorganiza-
tion of triangle and edge relationships. When a tri-
angle needs to be subdivided, a dyadic split is per-
formed, which divides this triangle into four trian-
gles. The middle triangle becomes the new mas-
ter triangle, which reuses the memory of the par-
ent triangle. The surrounding three slave trian-
gles are newly created. The master triangle saves
the information about the subdivision depth or the
level, respectively. The slave triangles do not need
this information because they will either be of the
same depth or they will get their own master tri-

89

angle defining their level of subdivision if they are
subdivided further. If the difference of levels be-
tween neighboring triangles is greater than one, the
coarser triangle needs to be subdivided too. In these
cases the stored depth can be used for a fast com-
parison. When refining it is reasonable to first split
all coarse triangles and subsequently the more and
more refined ones. This leads to the following algo-
rithm:

for all triangles T (increasing level)
{
if needed then subdivide(T)

}

procedure subdivide(Triangle T)
{
for all neighboring triangles N of T
{

if subd_level(N) < subd_level(T)
{

subdivide(N)
}

}
dyadic_split(T)

}

However, before the refinement process is per-
formed, the mesh is investigated in areas where it
can be simplified again if the new point of view per-
mits it. Simplification is only possible when all tri-
angles in the neighborhood have the same or smaller
subdivision level because otherwise the condition
that only a difference of 1 level is allowed would
be broken. If the triangles meet the condition, the
information of the master triangle will be used to re-
build the old, one level coarser triangle and to undo
the dyadic split. It makes sense to start with the
finest triangles ascending to the coarsest triangles,
resulting in the pseudocode:

for all mastertriangles TMid
(decreasing level)

{
if quality is too good then
{

get_slaves T1,T2,T3 of TMid
undivide(TMid,T1,T2,T3)

}
}

undivide(Triangle TMid,T1,T2,T3)
{
for all neighboring triangles N of

TMid,T1,T2,T3
{

if subd_level(N) > subd_level(TMid)
{

return
}

}
undo_dyadic_split(T)

}

Finally the surface can be rendered. Although
we used a red-green triangulation strategy, we al-
low differences in subdivision depth of level 1. This
may result in gaps where different levels meet. But
fortunately it is easy to fill these gaps with a final
“just in time” subdivision which does not need to be
stringently dyadic in analogy to a green split. Ba-
sically there are three cases which need a patch to
avoid holes shown in Figure 5.

Figure 5: Temporary split to avoid cracks

The texture coordinates are calculated during the
rendering process by a simple orthographic projec-
tion of the texture along the height axis onto the fine
mesh. This is valid since terrain textures are gained
mostly from pictures taken from vertically above by
satellites or planes, which also corresponds to an
approximately linear mapping function. Addition-
ally textures may be used for hardware accelerated
lighting calculations of small details [16].

5 Results

The frame rates of Table 1 were obtained on an
Athlon K7C 1.33GHz with a GeforceII-MX graph-
ics board by rotating the heightfield—which can be
seen on the color plates in the appendix—around
various axes and averaging the times.

When using uniform subdivision, the number of
triangles is the same, for a viewport size of both
640 � 480 and 1280 � 960 pixels. The frame rates
for higher resolutions are limited by the fill rate of
the graphics board. The appearance does not im-
prove very much at subdivision level 5 or higher,
good results can be achieved at level 3 or 4.

Accordingly, the adaptive method with an error
bound of 2 or 1 pixels yields the same quality but

90

viewport x
�

viewport y

640
�

480

1280
�

960

level of
subdiv.

number of
triangles

frames per
second

0 128 300 125
1 512 273 121
2 2048 154 93
3 8192 51 43

u
n

if
o

r
m

4 32768 14 13
5 131072 3.5 3.5

error in
pixels

number of
triangles

frames per
second

250-320 275*
3 680-810 117

440-540 273*
2 1280-1400 108

a
d

a
p

ti
v

e

1300-1450 150*
1 2800-3300 61

Table 1: Frame rates of terrain data starting with
8 � 8 facets

is 2.5 up to 10 times faster than the uniform divi-
sion. Here the lower values in higher resolutions
are caused by fill rate limits as well. Additionally
there are more triangles to be rendered due to the
dependency of the error limit on the viewport di-
mensions.

6 Conclusions and Future Work

In this paper we have presented a fast and efficient
implementation of the butterfly subdivision algo-
rithm. By using a modified directed edges data
structure and by introducing mid-vertices, which
are easier and faster to calculate on a coarser level, it
is possible to achieve highly interactive frame rates.
The compatibility with conventional techniques like
progressive meshes alleviates the handling and al-
lows the use of both methods at the same time. The
field of application may be an improvement of tradi-
tional terrain rendering or LOD-rendering of CAD
models described as subdivision surfaces.

In the future we would like to study if an im-
plementation via hardware accelerated vertex pro-
gramming is possible. This would result in an
enormous speed burst on contemporary PC graph-
ics hardware.

7 Acknowledgement

The implementation and ideas are based on the
diploma thesis [13] of one of the authors and we
would like to thank Rüdiger Westermann for valu-
able hints during this work.

References

[1] Randolph E. Bank, Andrew H. Sherman,
and Alan Weiser, “Refinement algorithms and
data structures for regular local mesh refine-
ment”, Scientific Computing, R. Stepleman,
ed., North Holland, Amsterdam, pp. 3–17,
1983.

[2] Jürgen Bey, “Tetrahedral Grid Refinement”,
Computing, 55, pp. 355–378, 1995.

[3] Swen Campagna, “Polygonreduktion zur
effizienten Speicherung, Übertragung und
Darstellung komplexer polygonaler Mod-
elle”, PhD-thesis, Herbert Utz Verlag, 1999.

[4] Swen Campagna, Leif Kobbelt, and Hans-
Peter Seidel, “Directed Edges – A Scalable
Representation for Triangle Meshes”, Tech-
nical Report 2/1998, Lehrstuhl für Graphis-
che Datenverarbeitung, Universität Erlangen-
Nürnberg, 1998.

[5] Edwin Catmull and James Clark, “Recur-
sively Generated B-Spline Surfaces on Arbi-
trary Topological Meshes”, Computer Aided
Design 10, 6, pp. 350–355, 1978.

[6] Nira Dyn, David Levin, and John A. Gre-
gory, “A Butterfly Subdivision Scheme for
Surface Interpolation with Tension Control”,
ACM Transactions on Graphics 9, 2, pp. 160–
169, 1990.

[7] Nira Dyn, Sigalit Hed, and David Levin,
“Subdivision Schemes for Surface Interpola-
tion”, Workshop in Computational Geometry,
pp. 97–118, 1993.

[8] Michael Garland and Paul S. Heckbert,
“Fast Polygonal Approximation of Terrains
and Height Fields”, Technical Report CMU-
CS-95-181, School of Computer Science,
Carnegie Mellon University, Pittsburgh, 1995.

[9] Paul S. Heckbert and Michael Garland, “Sur-
vey of Polygonal Surface Simplification Algo-
rithms”, SIGGRAPH ’97, 1997.

[10] Hugues Hoppe, “View-Dependent Refinement
of Progressive Meshes”, SIGGRAPH ’97 Pro-

91

ceedings, pp. 189–198, 1997.
[11] Hugues Hoppe, “Smooth view-dependent

level-of-detail control and its application to
terrain rendering”, IEEE Visualization ’98
Proceedings, pp. 35–42, 1998.

[12] Hugues Hoppe, Tony DeRose, Tom Duchamp,
Mark Halstead, Hubert Jin, John McDonald,
Jean Schweitzer, Werner Stuetzle, “Piecewise
Smooth Surface Reconstruction”, SIGGRAPH
’94 Proceedings, pp. 295–302, 1994.

[13] Martin Kada, “Unterteilungsverfahren zum
beschleunigten Rendering von Oberflächen”,
Diplomarbeit, Institut für Informatik, Univer-
sität Stuttgart, 2001.

[14] Reinhard Klein, Gunther Liebich, and Wolf-
gang Straßer, “Mesh Reduction with Error
Control”, IEEE Visualization ’96 Proceed-
ings, pp. 311–318, 1996.

[15] Stefan Roettger, Wolfgang Heidrich, Philipp
Slusallek, and Hans-Peter Seidel, “Real-Time
Generation of Continuous Levels of Detail for
Height Fields”, Procceedings of WSCG ’98,
pp. 315–322, 1998.

[16] Dirc Rose and Thomas Ertl, “Rendering De-
tails on Simplified Meshes by Texture Based
Shading”, Workshop on Vision, Modelling,
and Visualization VMV ’00, pp. 239–245. in-
fix, 2000.

[17] Denis Zorin, “Stationary Subdivision and
Multiresolution Surface Representations”,
Ph.D. Thesis, California Institute of Technol-
ogy, 1998.

[18] Denis Zorin, Peter Schröder, and Wim
Sweldens, “Interpolating Subdivision for
Meshes with Arbitrary Topology”, SIG-
GRAPH ’96 Proceedings, pp. 189–192, 1996.

92

519

b)
su

bd
iv

id
ed

8
+ 8

te
rr

ai
n

(l
ev

el
3)

d)
co

m
pa

ri
so

n:
te

rr
ai

n
16

+ 16
fa

ce
ts

a)
co

ar
se

te
rr

ai
n

8

+ 8
fa

ce
ts

c)
su

bd
iv

id
ed

8

+ 8
te

rr
ai

n
(a

da
pt

iv
e,

,

-

.

pi
xe

l)

D. Rose, M. Kada, Th. Ertl: On-the-Fly Adaptive Subdivision Terrain (p. 87)

519

