
Terrain Representation using Right-Triangulated Irregular Networks

Abstract

A Right-triangulated Irregular Network, often called an
RTIN, is a quadtree-based triangulation commonly used for
hierarchical representation of terrain for 3D visualization.
In this paper we provide a representation of RTINs, so that
we are able to access neighbors in constant time. Further,
we note that piecewise planar representations of surfaces
are unable to fit curved surfaces within a triangle, which
causes the triangles to split several times until the required
accuracy is reached. We describe how RTINs can be used
to represent terrains as a mosaic of polynomial surface
patches. Finally, we compare memory requirements for two
representations of RTINs (planar and quadratic) and a typ-
ical general TIN representation of a terrain, for a range of
elevation errors.

1 Introduction

Terrain data in Geographic Information Systems is of-
ten sampled on raster grids, but displayed as collections
of triangles. The Triangulated Irregular Network (TIN), a
piecewise-planar approximation of the surface with a mesh
of triangles, is often used because the data structure can
adapt to the terrain—placing points on breaklines and us-
ing large triangles in areas of low variation—and because
graphics pipelines are optimized for triangles.

A Right-Triangulated Irregular Network is a special TIN
using isosceles right-angled triangles, formed as a binary
tree by splitting [5] along the perpendicular bisector on the
hypotenuse. Both RTINs and general TINs are irregular in
structure, that is, they allow non-uniform sampling. Some
parts of the terrain are represented with fewer triangles than
others in such irregular meshes. Though an RTIN typically
has more triangles for a given error-bound, it has clear ad-
vantages over other TIN variants for data sampled on a grid.
The most important is that it is hierarchically structured like
a quadtree [14], so it can avoid storing edge and neighbor
information and derive this information from the hierarchy.

In this paper, we show that when triangles are assigned
binary ids in the natural way according to this hierarchy,
the ids of the neighbors of a triangle can be computed with

O(1) arithmetic operations. We also show how terrains
can be approximated by piecewise-quadratic surfaces and
compare the memory requirements for such a representa-
tion with other piecewise-planar representations.

2 Related Work

There has been a lot of work done in approximation sur-
faces, in particular multi-resolution representation of spatial
data as quadtree-like structures. RTINs have been indepen-
dently developed in several large-scale terrain visualization
systems [9, 4, 3, 10, 11]. Lee and Samet [7] discuss triangle
quadtrees, which are quadtrees with equilateral triangles,
each triangle splitting into four new triangles by joining the
midpoints of the triangle edges. Equilateral triangles are
encoded in a binary form so as to allow constant-time navi-
gation to the neighbors. A similar approach is discussed by
Lee et al in [8], to find equal-sized neighbors in a tetrahedral
mesh. Samet [13] describes an algorithm to find neighbor-
ing terminal quadtree nodes by traversing up and down the
tree, guided by the size and position of the nodes.

Lee with Samet and de Floriani [7, 8], as well as Evans
et al [5] describe methods to compute neighbors of trian-
gles in constant time. However, we provide a much sim-
pler method than the above which draws on ideas from lin-
ear quadtrees initiated by Schrack [15]. Polynomials on
triangulated terrain models have also been proposed be-
fore [12, 1, 2]. Preusser [12] describes the formulation of
twice differentiable bivariate Hermite polynomials on a set
of triangles. Akima [1, 2] describes the use of quintic bi-
variate polynomials to represent height fields over the xy
plane.

3 RTIN Representation

The key to an RTIN is to represent the hierarchical parti-
tion of the domain region of the xy plane. We store integer
triangle ids in their binary representation. We begin with
a large right triangle that contains the region of interest, the
root φ. We split a right triangle T into two from its right
angle to its hypotenuse, forming T0 to the left and T1 to
the right. Figure 2 shows a labeled example.
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(a) (b) (c) (d)

Figure 1. Various representations of the terrain: (a) input grid, (b) piecewise-planar representation,
(c) piecewise-quadratic representation, (d) piecewise-quadratic representation with smoothed edge
normals.

(a) (b) (c) (d)

Figure 3. Increasing levels of refinement in RTINs (on Lidar data over the China Lake region). The
maximum average error per unit area within each triangle is set to (a) 20m, (b) 12m, (c) 8m, and (d)
3m, respectively.
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Figure 2. Portion of an RTIN and some neigh-
bor cases. RTIN triangles’ ids are at their
right angles.

The above scheme ensures that the triangle id uniquely
defines a path from the root to the triangle. We can also
determine the location and orientation of the triangle from
its id, if the coordinates for the root triangle is known. In
fact, for every triangle we just store: (1) its id, (2) elevation

of its north-west vertex (see Figure 4), and (3) coefficients
(when using a polynomial representation). Storing one ver-
tex per triangle helps reduce redundancy, and at the same
time, we are able to cover almost all vertices in the mesh by
choosing a suitable vertex for each triangle (see Figure 4).
The vertices on the boundaries are likely to be left out (in
our case, the south and the east boundaries) – so we store
all 3 vertices of these boundary triangles.

Since every triangle id uniquely defines a path from
the root triangle to itself, we do not need to store a tree
structure. We represent the mesh as a list of triangles, and
a hashtable with references to these triangles. A suitable
function is chosen to hash triangle ids to the table. This
allows constant time lookups for any given triangle (or its
neighbor, as we will see below).

A triangle in a TIN can have neighbors sharing any of
its three sides. Although we do not store edge pointers to
neighbors in our mesh representation, it is desirable that we
are able to find neighbors in constant time. We use a scheme
which is motivated by the quadtree-like structure of the tri-
angulation, where either the parents of two neighbors are
neighbors themselves or the two neighbors have a common



parent. The following method describes how neighbors are
calculated in O(1) time.

As mentioned before, triangle ids are stored as binary
strings. We use a postfix notation for the neighbors, with
the letters {L,R,H}, depending on whether it is sharing
the left or right arm or the hypotenuse. Neighbors are at the
same level of the hierarchy or one level higher (for H) or
lower (for L or R). Actually, we need concern ourselves
only with the same-size H-neighbor: to find the lower
neighbors for L (or R), we take the left (or right) child and
find its H-neighbor; to find a larger neighbor (higher in the
hierarchy), we just drop the least significant bit from the
same-sized neighbor.

4 Computing an H-neighbor

In a structure of depth h, finding neighbors of triangles
by recursion can take Θ(h) time, in the worst case. We
claim the following simple algorithm computes the same-
level H-neighbor in O(1) operations of AND (·), exclusive-
OR (⊕), multiplication by 2, and addition (+).

HNEIGHBOR(T )

1. Assume M = (10)∗ is precomputed.

2. D = (T ⊕ 2T ) · M .

3. R = D + 2D.

4. C = R ⊕ (R + 11).

5. Return T ⊕ C.

We show a step-by-step execution of the pseudocode for
an example HNEIGHBOR computation below.

HNEIGHBOR(01110010100101)
D =10000010101010
R =10000111111110
C =00001111111111

Return 01111101011010

Theorem: Given a triangle id T , HNEIGHBOR(T ) cor-
rectly computes the id of same level H-neighbor.

Proof: We derive this algorithm from the relations that
Evans et al. [5] used to perform recursive neighbor calcu-
lations. In our notation, recall that a triangle T is split into
children T0 on the left and and T1 on the right, so that
T0L = T1 and T1R = T0. We also have recursive rules
when a triangle and its neighbor are not direct children of
their parent.

T0R = TH1 T1L = TH0
T0H = TL1 T1H = TR0 (1)

These recursive rules apply until one meets the common
ancestor triangle. If the root is reached first, we may have
gone off the edge: ρL = ρR = ρH = ∅. By simply
applying these rules, one obtains the neighbor in a tree of
depth h using Θ(h) steps.

Notice that we can eliminate the L and R rules from 1 if
we look two steps ahead:

T00H = T11 T11H = T00
T01H = TH10 T10H = TH01 (2)

Thus, if we pair bits starting from the least significant one,
the H carries through the first pair with 00 or 11, then stops.
All bits carried through are complemented. Thus, the task
is to compute the XOR mask C = (11)k for the appropri-
ate k > 0. This is done in the following three steps.

The computation of D marks which pairs contain two
different bits by the pattern 10. Next, R fills in so a solid
block of 1s indicate where the carry can ripple, extending
one bit past, and containing a few spurious bits. Then C ac-
tually ripples a carry bit, and patches up both ends to obtain
exactly (11)k.

Since we can construct neighboring triangle ids, we can
store triangles by simply hashing their ids. We recover the
actual neighbors with at most two hash lookups, one for the
neighbor at the same level and one for the parent. This can
be a significant storage advantage over general TINs, which
must record adjacencies.

(a) (b)

Figure 4. (a) Highlighted points show the ver-
tices whose elevations are stored. We store
elevations of only one vertex (the NW vertex)
per triangle. (b) Coverage of vertices in the
mesh. Note that the boundary vertices (in
the above figure, south and east boundaries),
may not get covered – so we store all 3 ver-
tices of these boundary triangles.
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Figure 5. Surface representation using regular TINs, and linear and quadratic polynomials over
RTINs. Figure (a) shows a piecewise planar representation on regular TINs (9909 triangles), (b)
shows the planar representation on RTINs (40,759 triangles), (c) and (d) show the surface as rep-
resented by piece-wise quadratic polynomials on RTINs (10794 triangles). Figure (d) has normals
smoothed along triangle edges.

(a)

(b)

Figure 6. Plots of memory usage vs. Error:
Planar Representation

5 Quadratic surface patches on RTINs

Typically, in a triangulated terrain, each triangle approx-
imates a region of the surface covering multiple grid points.
The number of grid points covered by the triangle would
depend on the variation of the height field over the re-
gion where the triangle lies. Planar triangles are helpful
in reducing storage (see plots in Figure 6), due to very
low per-triangle storage cost. However, for a given error
bound, a planar- representation ends up having lot more
triangles than necessary, due to the inability to represent
curved surfaces within triangles. We present a method,
where quadratic surface patches are used to represent the
terrain instead of planar triangles. In such a representation
there is an overhead of storing coefficients with the trian-
gles, but with benefit of reducing the overall number of tri-
angles in the mesh.

The quadratic patch on a triangle would be represented
by:

z = f(x, y) = c0x
2 + c1y

2 + c2xy + c3x + c4y + c5 (3)

The coefficients vector c = {ci}, where, i = 0, 1, . . . , 5,
can be determined by a number of ways. We use two meth-
ods to calculate the coefficients – (1) by fixing vertices and
(2) using a best-fitting polynomial. For (1), we determine
the 6 coefficients by taking samples at the 3 vertices and 3
edge-midpoints. For (2), we take N sample points that lie
within the triangle, and build up a N×6 matrix, A, with cor-
responding values of x2, y2, xy, . . ., and an elevation vector,
b, of size N . We then minimize the value of |A · x − b|,
to get the coefficients, c = xmin. Fixing vertices and edge-
midpoints does not attempt to fit any of the interior points
to the polynomial surface, but is a simple way to ensure that
curves match along triangle edges. However, a best-fitting
polynomial should fit the interior points to the surface more



tightly, with the overhead of having to minimize a linear
system with 6 variables and N constraints.

Once the coefficients are computed, we still need to ren-
der the piecewise polynomial surfaces. We subdivide each
of the mesh triangles into smaller triangles, and use this
finer mesh to render the polynomial surfaces. To avoid splits
along edges due to difference in sampling, the edges of the
smaller (rendered) triangles are made proportional to the
edges of the original mesh triangles. Unit normals, U(x, y),
are computed on the surface S(x, y, f(x, y)) (from Equa-
tion 5) as follows.

U =
Sx × Sy

|Sx × Sy|

=
(−fx,−fy, 1)√

1 + f2
x + f2

y

(4)

where, fx =
δf

δx
and fy =

δf

δy

To assign a single vector to points along triangle edges,
the normals from all triangles sharing an edge are averaged,
and the result is renormalized and assigned. This smooths
the normals without changing the mesh representation in
any way – it just gives a better visualization of the terrain
represented by the piece-wise polynomial surfaces. Thus
in Figure 5, (c) and (d) have identical error measures and
memory requirements.

6 Experiments and Results

(a) (b) (c)

Figure 7. Input Grids: (a) China Lake region,
(b) University of Utah region and (c) Salt Lake
City capital.

Our goal is to compare memory usage vs. accu-
racy for several different representations. We have used
both piecewise- planar and piecewise-quadratic represen-
tations on RTINs as described in the above sections and
the planar representation on regular TINs for comparisons.
The input grids used for our experiments were down-
loaded from the USGS Seamless Data Distribution Sys-
tem (http://seamless.usgs.gov). USGS provides data from
both NED (National Elevation Dataset) and SRTM (Shuttle

Radar Topography Mission) at various resolutions. We have
used the NED 1

3 arc second data for the region around China
Lake and LIDAR (Light Detection and Ranging) data for
the regions around University of Utah and Salt Lake City
capital. We have cropped some of the data and converted
them to raster DEMs (grids of squares) using the ArcInfo
software.

We use a relatively small dataset from the China Lake re-
gion (Figure 7 (b)), and a larger grid from the region around
University of Utah Figure 7 (b) near Salt Lake City. The
metadata from the DEM files generated by ArcInfo are:

1. China Lake Region:
ncols 401
nrows 249
xllcorner 373400
yllcorner 3808200
cellsize 9.2235465283486

2. University of Utah Region:
ncols 1825
nrows 1380
xllcorner 429759
yllcorner 4512752
cellsize 1

The values above are in the UTM (Universal Transverse
Mercator) coordinate system and distances are measured in
meters.

We chose not to use SRTM data because of its low res-
olution. LIDAR data is higher in resolution, but at the
same time is sensitive to aerosol and cloud particles, hence
recording noisy data at times. The datasets over urban re-
gions (for example, the region over Salt Lake City, Fig-
ure 7 (c)) are much more noise-prone, and result in unde-
sirable number of subdivisions. In such cases it is hard to
analyze the two representations that we have described in
this paper. We have not used any noise-filtering or artifact-
removal methods for our experiments, instead, have used
regions with a fair amount of natural terrain features – like
mountains and valleys.

As described in the previous sections, each triangle
contains its id and the elevation of one vertex in the
piecewise-planar representation. The exact number of bytes
per triangle is platform-dependent, for comparisons we
have assumed 4-byte storage for both integers and float-
ing points. Therefore a triangle (an average triangle, not
those on the boundaries), can be stored in 8 bytes. For the
piecewise- quadratic surface representation, we need 6 ad-
ditional floating-point coefficients to be stored with the tri-
angles. This increases the per-triangle size to 8 + 4 ∗ 6 =
32 bytes.

Figure 10 shows the triangle meshes obtained from the
planar and polynomial representations. The polynomial
representation has fewer number of triangles in the mesh
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Figure 8. Error grids from the planar surface representation on RTINs. Grid from the University of
Utah region is used as input. Each pixel of the grid is colored based on the absolute error at that point.
As the absolute error increases, the color changes from black to green to yellow to red. Refer to
Table 2 for corresponding memory usage for each of the above experiments.

(a) (b) (c) (d) (e) (f) (g) (h) (i)

Figure 9. Error grids from the quadratic surface representation on RTINs. Grid from the University
of Utah region is used as input. Each pixel of the grid is colored based on the absolute error at that
point. As the absolute error increases, the color changes from black to green to yellow to red. Refer
to Table 3 for corresponding memory usage for each of the above experiments.

as expected. Considering the fact that each triangle in the
polynomial representation needs 4 times more storage than
the planar triangles, the reduction in the number of trian-
gles still does not allow us to easily choose between the two
representations. However, in some applications we might
need to store a lot more information with the triangles (ir-
respective of the representation), for example, demographic
data, vegetation, maximum or average slopes, drainage in-
formation, etc. It might then be reasonable to represent
RTINs with polynomial patches with the additional storage
of 24 bytes/triangle for coefficients, in order to reduce num-
ber of triangles in the mesh from 3837 to 1481 triangles (as
in Figure 10).

For regular TINs, we have assumed the following mem-
ory structure: For a TIN with V vertices, the number of
triangles are about 2V and the number of edges are around
3V (from Euler’s equations). Each triangle would have 3
vertex pointers and 3 neighboring triangle pointers. So, as-
suming 4-byte storage for floating points, the memory re-
quired to store such a TIN would be about (V ∗ 3 ∗ 4) bytes
+ (2V ∗ 6 ∗ 4) bytes = 60V bytes. Allowing, an additional
4 bytes for flags, we need 64V bytes to store the TIN. We
have used Scape (version 1.2), a terrain simplification soft-
ware from CMU [6], to generate the TIN models from the
raster grids.

The number of triangles in the RTINs and vertices in the
regular TINs are chosen suitably so that the total memory
utilization varies over a common range (about 25 kB to 750

kB). For each such representation, we record the sum of
absolute errors over all grid points. Figures 8 and 9 show
the variation of absolute error over the entire region.

Figure 10. Triangle meshes for planar and
quadratic representations respectively.
There are 3837 triangles for the planar
representation and 1481 triangles in the
representation using quadratic polynomials.

Figure 11 shows plots of memory usage vs. cumulative
error over the entire grid, for three representations of the ter-
rain. Note that although the planar representation appears to
be slightly better than the polynomial representation using
RTINs, in applications where each triangle structure bulkier
(with more terrain information) having fewer triangles (as
in the polynomial representation) would be a more signifi-
cant benefit.
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Figure 11. Comparison of memory usage vs.
accuracy between various surface represen-
tations (values from Tables 1, 2 and 3).

7 Conclusions

In this paper we describe how to represent terrains as
RTINs efficiently, and present a method for fast neighbor
computations, which are useful in applications for traver-
sals over the terrain. We also study the usefulness of poly-
nomial surfaces with the underlying RTIN model, which
allows us to represent the terrain using fewer triangles by
fitting points to polynomial surfaces. Also, we have repre-
sented each triangle minimally with just enough geometric
information to regenerate the terrain. Various applications
might require triangles to store other information – like de-
mography, drainage or vegetation – thus making each trian-
gle bulkier to store. Reduction in the number of triangles
becomes a significant benefit in such applications, and its
reasonable to use polynomial patches with RTINs instead
of planar RTINs.

RTINs provide a better representation than general TINs
in hierarchical approximations such as multiple level-of-
detail approximations. However, RTINs usually have larger
number of mesh triangles than normal TINs for a given ac-
curacy. This is due to the fact that the xy location of a
point inserted in an RTIN is not data-dependent – it must
lie on the midpoint of a hypotenuse to allow splitting of a
right-angled isosceles triangle into two smaller ones. On the
other hand, TIN has the advantage of allowing a point to be
inserted at the “most important” location in the triangle.

SNo. No. of Triangles Memory Usage Total Error
(in kB) (×106 m)

(a) 820 25.781 7.69487
(b) 1765 55.430 6.02655
(c) 2963 92.883 5.47972
(d) 5933 185.930 4.31289
(e) 9909 310.367 3.64954
(f) 11896 372.563 3.46474
(g) 14869 465.680 3.20724
(h) 17863 559.289 2.99998
(i) 20848 652.688 2.79482
(j) 23844 746.344 2.62189

Table 1. Error Vs. Memory readings from
experiments with the planar surface repre-
sentation on regular TINs using University of
Utah grid.)

8 Future Work

Using polynomial surface patches to represent terrains is
also an area which needs further research. The main chal-
lenge is to find a way to fit interior grid points tightly to the
polynomial surface. We have used only quadratic surfaces,
but it might be useful to try cubic surfaces too. Using higher
degree polynomials has the overhead of storing more coef-
ficients, not necessarily guaranteeing a tighter fit to the grid
points. In fact, polynomial patches of degree 5 or higher
often tend to be noisy.

Rendering curved surface patches is another problem to
consider. We have used a finer triangle mesh (not stored,
but generated on the fly) just for rendering, but for large
terrains, rendering speeds are quite slow. Although in this
paper, our main goal was data representation and compres-
sion, it might be useful to try level-of-detail methods to ren-
der the curved surfaces to attain interactive frame rates.
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