
COMP 524: Programming Language Concepts
Björn B. Brandenburg

The University of North Carolina at Chapel Hill

Based in part on slides and notes by S. Olivier, A. Block, N. Fisher, F. Hernandez-Campos, and D. Stotts.

Scope

Thursday, March 4, 2010



UNC Chapel HillUNC Chapel Hill Brandenburg — Spring 2010

COMP 524: Programming Language Concepts08: Scope

Referencing Environment

The set of active bindings.
➡At any given point in time during execution.
➡Can change: names become valid and invalid during 

execution in most programming languages.
➡Exception: early versions of Basic had only a single, 

global, fixed namespace.

How is the referencing environment defined?
➡Scope rules.
➡The scope of a binding is its “lifetime.”
➡I.e., the textual region of the program in which a binding 

is active.

2

“All currently known names.”

Thursday, March 4, 2010



UNC Chapel Hill Brandenburg — Spring 2010

COMP 524: Programming Language Concepts08: Scope

Scope of a Binding

3

float entity

int entity

Name

time t1t0 t2 t3 t4

void method() {
  int name;
  // code executed in [t1-t2).
  {
    float name;
    // code executed in [t2-t3).
  }
  // code executed in [t3-t4).
}

The (textual) region in which a binding is active.

Thursday, March 4, 2010



UNC Chapel Hill Brandenburg — Spring 2010

COMP 524: Programming Language Concepts08: Scope

The (textual) region in which a binding is active.
Scope of a Binding

4

float entity

int entity

Name

time t1t0 t2 t3 t4

void method() {
  int name;
  // code executed in [t1-t2).
  {
    float name;
    // code executed in [t2-t3).
  }
  // code executed in [t3-t4).
}

Scope of name-to-int-entity binding.

Thursday, March 4, 2010



UNC Chapel Hill Brandenburg — Spring 2010

COMP 524: Programming Language Concepts08: Scope

The (textual) region in which a binding is active.
Scope of a Binding

5

float entity

int entity

Name

time t1t0 t2 t3 t4

void method() {
  int name;
  // code executed in [t1-t2).
  {
    float name;
    // code executed in [t2-t3).
  }
  // code executed in [t3-t4).
}

Scope of name-to-float-entity binding.

Thursday, March 4, 2010



UNC Chapel Hill Brandenburg — Spring 2010

COMP 524: Programming Language Concepts08: Scope

Scope of a Binding

6

float entity

int entity

Name

time t1t0 t2 t3 t4

void method() {
  int name;
  // code executed in [t1-t2).
  {
    float name;
    // code executed in [t2-t3).
  }
  // code executed in [t3-t4).
}

Terminology: the name-to-int-entity binding 
is out of scope in this code fragment.

The scope is said to have a “hole.”

The (textual) region in which a binding is active.

Thursday, March 4, 2010



UNC Chapel HillUNC Chapel Hill Brandenburg — Spring 2010

COMP 524: Programming Language Concepts08: Scope

Language Scope Rules

Dynamically Scoped.
➡ Active bindings depend on 

control flow.
➡ Bindings are discovered during 

execution.
➡ E.g., meaning of a name 

depends on call stack.

7

Statically Scoped.
➡ All bindings determined a 

compile time.
➡ Bindings do not depend on 

call history.
➡ Also called lexically scoped.

void printX() {
   printf(“x = ” + x);
}

a major language design choice

what does x refer to?

Thursday, March 4, 2010



UNC Chapel Hill Brandenburg — Spring 2010

COMP 524: Programming Language Concepts08: Scope

Dynamically vs. Statically Scoped

8

Dynamically Scoped:

Subroutine body is executed in the
referencing environment of the subroutine caller.

Statically Scoped:

Subroutine body is executed in the
referencing environment of the subroutine definition.

Which bindings are active in subroutine body?

Thursday, March 4, 2010



UNC Chapel HillUNC Chapel Hill Brandenburg — Spring 2010

COMP 524: Programming Language Concepts08: Scope

Dynamic Scope Example

9

# This is dynamically scoped Perl.
$x = 10;

sub printX {
! # $x is dynamically scoped.
! $from = $_[0];
! print "from $from: x = $x \n";
}

sub test0 {
! local $x; # binding of $x is shadowed.
! $x = 0;
! printX "test0"
}

sub test1 {
! local $x; # binding $x is shadowed.
! $x = 1;
! test0;
! printX "test1"
}

test1;
printX "main";

Thursday, March 4, 2010



UNC Chapel HillUNC Chapel Hill Brandenburg — Spring 2010

COMP 524: Programming Language Concepts08: Scope

Dynamic Scope Example

10

# This is dynamically scoped Perl.
$x = 10;

sub printX {
! # $x is dynamically scoped.
! $from = $_[0];
! print "from $from: x = $x \n";
}

sub test0 {
! local $x; # binding of $x is shadowed.
! $x = 0;
! printX "test0"
}

sub test1 {
! local $x; # binding $x is shadowed.
! $x = 1;
! test0;
! printX "test1"
}

test1;
printX "main";

New binding created.
Existing variable is
not overwritten,

rather, the existing
binding (if any) is 

shadowed.

Thursday, March 4, 2010



UNC Chapel HillUNC Chapel Hill Brandenburg — Spring 2010

COMP 524: Programming Language Concepts08: Scope

Dynamic Scope Example

11

# This is dynamically scoped Perl.
$x = 10;

sub printX {
! # $x is dynamically scoped.
! $from = $_[0];
! print "from $from: x = $x \n";
}

sub test0 {
! local $x; # binding of $x is shadowed.
! $x = 0;
! printX "test0"
}

sub test1 {
! local $x; # binding $x is shadowed.
! $x = 1;
! test0;
! printX "test1"
}

test1;
printX "main";

Dynamically scoped:
the current binding of $x is

the one encountered
most recently during execution 
(that has not yet been destroyed).

Thursday, March 4, 2010



UNC Chapel HillUNC Chapel Hill Brandenburg — Spring 2010

COMP 524: Programming Language Concepts08: Scope

Dynamic Scope Example

12

# This is dynamically scoped Perl.
$x = 10;

sub printX {
! # $x is dynamically scoped.
! $from = $_[0];
! print "from $from: x = $x \n";
}

sub test0 {
! local $x; # binding of $x is shadowed.
! $x = 0;
! printX "test0"
}

sub test1 {
! local $x; # binding $x is shadowed.
! $x = 1;
! test0;
! printX "test1"
}

test1;
printX "main";

from test0: x = 0 
from test1: x = 1 
from main: x = 10

Output:

Thursday, March 4, 2010



UNC Chapel HillUNC Chapel Hill Brandenburg — Spring 2010

COMP 524: Programming Language Concepts08: Scope

Dynamic Scope Example

13

# This is dynamically scoped Perl.
$x = 10;

sub printX {
! # $x is dynamically scoped.
! $from = $_[0];
! print "from $from: x = $x \n";
}

sub test0 {
! local $x; # binding of $x is shadowed.
! $x = 0;
! printX "test0"
}

sub test1 {
! local $x; # binding $x is shadowed.
! $x = 1;
! test0;
! printX "test1"
}

test1;
printX "main";

from test0: x = 0 
from test1: x = 1 
from main: x = 10

Output:

Thursday, March 4, 2010



UNC Chapel HillUNC Chapel Hill Brandenburg — Spring 2010

COMP 524: Programming Language Concepts08: Scope

Dynamic Scope Example

14

# This is dynamically scoped Perl.
$x = 10;

sub printX {
! # $x is dynamically scoped.
! $from = $_[0];
! print "from $from: x = $x \n";
}

sub test0 {
! local $x; # binding of $x is shadowed.
! $x = 0;
! printX "test0"
}

sub test1 {
! local $x; # binding $x is shadowed.
! $x = 1;
! test0;
! printX "test1"
}

test1;
printX "main";

from test0: x = 0 
from test1: x = 1 
from main: x = 10

Output:

Thursday, March 4, 2010



UNC Chapel HillUNC Chapel Hill Brandenburg — Spring 2010

COMP 524: Programming Language Concepts08: Scope

Dynamic Scope Example

15

# This is dynamically scoped Perl.
$x = 10;

sub printX {
! # $x is dynamically scoped.
! $from = $_[0];
! print "from $from: x = $x \n";
}

sub test0 {
! local $x; # binding of $x is shadowed.
! $x = 0;
! printX "test0"
}

sub test1 {
! local $x; # binding $x is shadowed.
! $x = 1;
! test0;
! printX "test1"
}

test1;
printX "main";

from test0: x = 0 
from test1: x = 1 
from main: x = 10

Output:

Thursday, March 4, 2010



UNC Chapel HillUNC Chapel Hill Brandenburg — Spring 2010

COMP 524: Programming Language Concepts08: Scope

Dynamic Scope
Origin.
➡Most early Lisp versions were dynamically scoped.
➡Scheme is lexically scoped and became highly influential; 

nowadays, dynamic scoping has fallen out of favor.

Possible use.
➡Customization of “service routines.” E.g., field width in output.
➡As output parameters for methods (write to variables of caller).

Limitations.
➡Hard to reason about program: names could be bound to 

“anything.”
➡Accidentally overwrite unrelated common variables (i, j, k, etc.).
➡Scope management occurs at runtime; this creates overheads and 

thus limits implementation efficiency.
16

Thursday, March 4, 2010



UNC Chapel HillUNC Chapel Hill Brandenburg — Spring 2010

COMP 524: Programming Language Concepts08: Scope

Static Scope Example

17

public class Scope {
! static int x = 10;
!
! static void printX(String from) {
! ! System.out.println("from " + from +
                       ": x = " + x);
! }
!
! static void test0() {
! ! int x = 0;
! ! printX("test0");
! }
!
! static void test1() {
! ! int x = 1;
! ! test0();
! ! printX("test1");
! }
!
! public static void main(String... args) {
! ! test1();
! ! printX("main");
! }
}

Thursday, March 4, 2010



UNC Chapel HillUNC Chapel Hill Brandenburg — Spring 2010

COMP 524: Programming Language Concepts08: Scope

Static Scope Example

18

public class Scope {
! static int x = 10;
!
! static void printX(String from) {
! ! System.out.println("from " + from +
                       ": x = " + x);
! }
!
! static void test0() {
! ! int x = 0;
! ! printX("test0");
! }
!
! static void test1() {
! ! int x = 1;
! ! test0();
! ! printX("test1");
! }
!
! public static void main(String... args) {
! ! test1();
! ! printX("main");
! }
}

New binding created.
Existing variable is
not overwritten,

rather, the existing
binding (if any) is 

shadowed.

Thursday, March 4, 2010



UNC Chapel HillUNC Chapel Hill Brandenburg — Spring 2010

COMP 524: Programming Language Concepts08: Scope

Static Scope Example

19

public class Scope {
! static int x = 10;
!
! static void printX(String from) {
! ! System.out.println("from " + from +
                       ": x = " + x);
! }
!
! static void test0() {
! ! int x = 0;
! ! printX("test0");
! }
!
! static void test1() {
! ! int x = 1;
! ! test0();
! ! printX("test1");
! }
!
! public static void main(String... args) {
! ! test1();
! ! printX("main");
! }
}

from test0: x = 10
from test1: x = 10
from main: x = 10

Output:

Thursday, March 4, 2010



UNC Chapel HillUNC Chapel Hill Brandenburg — Spring 2010

COMP 524: Programming Language Concepts08: Scope

Static Scope Example

20

public class Scope {
! static int x = 10;
!
! static void printX(String from) {
! ! System.out.println("from " + from +
                       ": x = " + x);
! }
!
! static void test0() {
! ! int x = 0;
! ! printX("test0");
! }
!
! static void test1() {
! ! int x = 1;
! ! test0();
! ! printX("test1");
! }
!
! public static void main(String... args) {
! ! test1();
! ! printX("main");
! }
}

from test0: x = 10
from test1: x = 10
from main: x = 10

Output:

Lexically scoped:
the binding of x is determined

at compile time and based on the 
enclosing scope of

the method definition.

Thursday, March 4, 2010



UNC Chapel HillUNC Chapel Hill Brandenburg — Spring 2010

COMP 524: Programming Language Concepts08: Scope

Static Scope Example

21

public class Scope {
! static int x = 10;
!
! static void printX(String from) {
! ! System.out.println("from " + from +
                       ": x = " + x);
! }
!
! static void test0() {
! ! int x = 0;
! ! printX("test0");
! }
!
! static void test1() {
! ! int x = 1;
! ! test0();
! ! printX("test1");
! }
!
! public static void main(String... args) {
! ! test1();
! ! printX("main");
! }
}

from test0: x = 10
from test1: x = 10
from main: x = 10

Output:

Scope of the
outermost binding of x.

shadowed

shadowed

Thursday, March 4, 2010



UNC Chapel HillUNC Chapel Hill Brandenburg — Spring 2010

COMP 524: Programming Language Concepts08: Scope

Static/Lexical Scope

Variants.
➡Single, global scope: Early Basic.
➡Just two, global + local: Early Fortran.
➡Nested scopes: modern languages.

Advantages.
➡Names can be fully resolved at compile time. 
➡Allows generation of efficient code;

code generator can compute offsets.
➡Easier to reason about; there is only one 

applicable enclosing referencing environment.

22
Thursday, March 4, 2010



UNC Chapel Hill Brandenburg — Spring 2010

COMP 524: Programming Language Concepts08: Scope

Nested Scopes

23

If there are multiple bindings for a name to 
choose from, which one should be chosen?

// this is C++
#include <iostream>
using namespace std;

int aName = 10;

class AClass {
private:
   int aName;

public:
   AClass();
   void aMethod();
   void bMethod();
};

AClass::AClass() {
   aName = 1;
}

// continued…

void AClass::aMethod() {
   int aName = 2;
   cout << "a: " << aName << " "
        << ::aName << endl;
}

void AClass::bMethod() {
   cout << "b: " << aName << " "
        << ::aName << endl;
}

int main() {
! AClass obj;
! obj.aMethod();
! obj.bMethod();
! return 0;
}

Thursday, March 4, 2010



UNC Chapel Hill Brandenburg — Spring 2010

COMP 524: Programming Language Concepts08: Scope

// this is C++
#include <iostream>
using namespace std;

int aName = 10;

class AClass {
private:
   int aName;

public:
   AClass();
   void aMethod();
   void bMethod();
};

AClass::AClass() {
   aName = 1;
}

// continued…

void AClass::aMethod() {
   int aName = 2;
   cout << "a: " << aName << " "
        << ::aName << endl;
}

void AClass::bMethod() {
   cout << "b: " << aName << " "
        << ::aName << endl;
}

int main() {
! AClass obj;
! obj.aMethod();
! obj.bMethod();
! return 0;
}

Nested Scopes

24

If there are multiple bindings for a name to 
choose from, which one should be chosen?

Output:
a: 2 10
b: 1 10

Thursday, March 4, 2010



UNC Chapel Hill Brandenburg — Spring 2010

COMP 524: Programming Language Concepts08: Scope

// this is C++
#include <iostream>
using namespace std;

int aName = 10;

class AClass {
private:
   int aName;

public:
   AClass();
   void aMethod();
   void bMethod();
};

AClass::AClass() {
   aName = 1;
}

// continued…

void AClass::aMethod() {
   int aName = 2;
   cout << "a: " << aName << " "
        << ::aName << endl;
}

void AClass::bMethod() {
   cout << "b: " << aName << " "
        << ::aName << endl;
}

int main() {
! AClass obj;
! obj.aMethod();
! obj.bMethod();
! return 0;
}

Output:
a: 2 10
b: 1 10

Nested Scopes

25

If there are multiple bindings for a name to 
choose from, which one should be chosen?

Closest nested scope rule:
a binding is active in the scope in which it is declared and

in each nested scope, unless it is shadowed by another binding 
(of the same name). This is the standard in Algol descendants.

Thursday, March 4, 2010



UNC Chapel Hill Brandenburg — Spring 2010

COMP 524: Programming Language Concepts08: Scope

// this is C++
#include <iostream>
using namespace std;

int aName = 10;

class AClass {
private:
   int aName;

public:
   AClass();
   void aMethod();
   void bMethod();
};

AClass::AClass() {
   aName = 1;
}

// continued…

void AClass::aMethod() {
   int aName = 2;
   cout << "a: " << aName << " "
        << ::aName << endl;
}

void AClass::bMethod() {
   cout << "b: " << aName << " "
        << ::aName << endl;
}

int main() {
! AClass obj;
! obj.aMethod();
! obj.bMethod();
! return 0;
}

Output:
a: 2 10
b: 1 10

Nested Scopes

26

If there are multiple bindings for a name to 
choose from, which one should be chosen?

C++: Scope Resolution Operator ::
Some languages, such as C++, allow the closest-
nested-scope rule to be overridden by explicitly 

referring to shadowed entities by “their full name.”

Thursday, March 4, 2010



UNC Chapel HillUNC Chapel Hill Brandenburg — Spring 2010

COMP 524: Programming Language Concepts08: Scope

Implementing Scope
Symbol table.
➡Map Name → (Entity: Address, data type, extra info)
➡Keeps track of currently known names.
➡One of two central data structures in compilers.

(the other is the abstract syntax tree).

Implementation.
➡Any map-like abstract data type. E.g.:
‣Association list.
‣Hash map.
‣Tree map.

➡But how to keep track of scopes?
‣Constantly entering and removing table entries is 
difficult and slow.

27
Thursday, March 4, 2010



UNC Chapel HillUNC Chapel Hill Brandenburg — Spring 2010

COMP 524: Programming Language Concepts08: Scope

Entering & Exiting a Scope
Idea: one table per scope/block.
➡Called the “environment.”

Referencing environment = stack of environments.
➡Push a new environment onto the stack when entering a nested 

scope
➡Pop environment off stack when leaving a nested scope.
➡Enter new declarations into top-most environment.

Implementation.
➡Can be implemented easily with a “enclosing scope” pointer.
➡This is called the static chain pointer.
➡The resulting data structure (a list-based stack of maps) is called the 

static chain.
➡O(n) lookup time (n = nesting level).
‣Optimizations and alternate approaches exist, esp. for interpreters.

28
Thursday, March 4, 2010



UNC Chapel HillUNC Chapel Hill Brandenburg — Spring 2010

COMP 524: Programming Language Concepts08: Scope

Entering & Exiting a Scope
Idea: one table per scope/block.
➡Called the “environment.”

Referencing environment = stack of environments.
➡Push a new environment onto the stack when entering a nested 

scope
➡Pop environment off stack when leaving a nested scope.
➡Enter new declarations into top-most environment.

Implementation.
➡Can be implemented easily with a “enclosing scope” pointer.
➡This is called the static chain pointer.
➡The resulting data structure (a list-based stack of maps) is called the 

static chain.
➡O(n) lookup time (n = nesting level).
‣Optimizations and alternate approaches exist, esp. for interpreters.

29

Implementing the Closest Nested Scope Rule

To lookup a name aName:
   curEnv = top-most environment
   while curEnv does not contain aName:
      curEnv = curEnv.enclosingEnvirontment
      if curEnv == null:
         // reached top of stack
         throw new SymbolNotFoundException(aName)
   return curEnv.lookup(aName)

Thursday, March 4, 2010



UNC Chapel HillUNC Chapel Hill Brandenburg — Spring 2010

COMP 524: Programming Language Concepts08: Scope

Scoping & Binding Issues

Scoping & Binding: Name resolution.
➡Simple concepts…
➡…but surprisingly many design and implementation 

difficulties arise.

A few examples.
➡Shadowing and type conflicts.
➡Declaration order: where exactly does a scope begin?
➡Aliasing.
‣An object by any other name…

30

int foo;
…
while (…) {
  float foo; // ok?
}

Thursday, March 4, 2010



UNC Chapel HillUNC Chapel Hill Brandenburg — Spring 2010

COMP 524: Programming Language Concepts08: Scope

Declaration Order
Scope vs. Blocks.
➡ Many languages (esp. Algol descendants) are block-structured.

31

if {
  // a block
  while (…) {
    // a nested block
  }
}

What is the scope of a declaration?
➡ Usually, the scope of a declaration ends with the block in which it 

was declared.
➡ But where does it begin?
➡ Does declaration order matter?

BEGIN
  // a block
  REPEAT
    BEGIN
      // a nested block
    END
  UNTIL …
END

Thursday, March 4, 2010



UNC Chapel HillUNC Chapel Hill Brandenburg — Spring 2010

COMP 524: Programming Language Concepts08: Scope

Declaration Order
Scope vs. Blocks.
➡ Many languages (esp. Algol descendants) are block-structured.

32

if {
  // a block
  while (…) {
    // a nested block
  }
}

What is the scope of a declaration?
➡ Usually, the scope of a declaration ends with the block in which it 

was declared.
➡ But where does it begin?
➡ Does declaration order matter?

BEGIN
  // a block
  REPEAT
    BEGIN
      // a nested block
    END
  UNTIL …
END

Example: Algol 60
Declarations must appear at beginning of block and are valid 

from the point on where they are declared.
 Thus, scope and block are almost the same thing.

But how do you declare a recursive structure like a linked list?

Thursday, March 4, 2010



UNC Chapel HillUNC Chapel Hill Brandenburg — Spring 2010

COMP 524: Programming Language Concepts08: Scope

Declaration Order
Scope vs. Blocks.
➡ Many languages (esp. Algol descendants) are block-structured.

33

if {
  // a block
  while (…) {
    // a nested block
  }
}

What is the scope of a declaration?
➡ Usually, the scope of a declaration ends with the block in which it 

was declared.
➡ But where does it begin?
➡ Does declaration order matter?

BEGIN
  // a block
  REPEAT
    BEGIN
      // a nested block
    END
  UNTIL …
END

Example: Pascal
Names must be declared before they are used,

but the scope is the entire surrounding block.

Thursday, March 4, 2010



UNC Chapel HillUNC Chapel Hill Brandenburg — Spring 2010

COMP 524: Programming Language Concepts08: Scope

Declaration Order
Scope vs. Blocks.
➡ Many languages (esp. Algol descendants) are block-structured.

34

if {
  // a block
  while (…) {
    // a nested block
  }
}

What is the scope of a declaration?
➡ Usually, the scope of a declaration ends with the block in which it 

was declared.
➡ But where does it begin?
➡ Does declaration order matter?

BEGIN
  // a block
  REPEAT
    BEGIN
      // a nested block
    END
  UNTIL …
END

Example: Pascal
Names must be declared before they are used,

but the scope is the entire surrounding block.

Surprising interaction…

const N = 10;
…
procedure foo; { procedure is new block }
const
    M = N;  { error; N used before decl. }
    …
    N = 20; { ok; outer N shadowed  }
…

Thursday, March 4, 2010



UNC Chapel Hill Brandenburg — Spring 2010

COMP 524: Programming Language Concepts08: Scope

Variable /Attribute Scope in Java

35
Thursday, March 4, 2010



UNC Chapel Hill Brandenburg — Spring 2010

COMP 524: Programming Language Concepts08: Scope

Variable /Attribute Scope in Java

36

Error:
bar cannot be resolved

(Scope of bar ends with block.)

Thursday, March 4, 2010



UNC Chapel Hill Brandenburg — Spring 2010

COMP 524: Programming Language Concepts08: Scope

Variable /Attribute Scope in Java

37

Error:
Duplicate local variable foo
(local fooʼs scope not shadowed!)

Thursday, March 4, 2010



UNC Chapel Hill Brandenburg — Spring 2010

COMP 524: Programming Language Concepts08: Scope

Variable /Attribute Scope in Java

38

Ok:
local foo shadows attribute

Thursday, March 4, 2010



UNC Chapel Hill Brandenburg — Spring 2010

COMP 524: Programming Language Concepts08: Scope

Declaration Order in Java

39
Thursday, March 4, 2010



UNC Chapel Hill Brandenburg — Spring 2010

COMP 524: Programming Language Concepts08: Scope

Declaration Order in Java

40

Error:
bar cannot be resolved

(Must be declared before use, like Pascal.)

Thursday, March 4, 2010



UNC Chapel Hill Brandenburg — Spring 2010

COMP 524: Programming Language Concepts08: Scope

Declaration Order in Java

41

Ok: attribute foo not yet shadowed
(both bar and local foo initialized to 3.0; differs from Pascal)

Thursday, March 4, 2010



UNC Chapel HillUNC Chapel Hill Brandenburg — Spring 2010

COMP 524: Programming Language Concepts08: Scope

Declaration vs. Definition

C/C++: Name only valid after declaration.
➡ How to define a list type (recursive type)?
‣Next pointer is of the type that is being defined!

➡ How to implement mutually-recursive functions?
‣E.g., recursive-descent parser.

Implicit declaration.
➡ Compiler “guesses” signature of unknown function.
➡ signature: return value and arguments.
➡ Guesses wrong; this causes an error when actual 

declaration is encountered.

42
Thursday, March 4, 2010



UNC Chapel HillUNC Chapel Hill Brandenburg — Spring 2010

COMP 524: Programming Language Concepts08: Scope

Declaration vs. Definition

C/C++: can declare name without defining it.
➡ Called a “forward declaration.”
➡ A promise: “Iʼll shortly tell you what it means.”

Declare before use; define later.
➡ Recursive structures possible.
➡ Also used to support separate compilation in C/C++.
‣Declaration in header file.
‣Definition not available until linking.

43

Solution: split declaration from definition.

Compiles without errors.

Thursday, March 4, 2010



UNC Chapel HillUNC Chapel Hill Brandenburg — Spring 2010

COMP 524: Programming Language Concepts08: Scope

Declaration vs. Definition

C/C++: can declare name without defining it.
➡ Called a “forward declaration.”
➡ A promise: “Iʼll shortly tell you what it means.”

Declare before use; define later.
➡ Recursive structures possible.
➡ Also used to support separate compilation in C/C++.
‣Declaration in header file.
‣Definition not available until linking.
‣ If not defined: linker reports “symbol not found” error.

44

Solution: split declaration from definition.

Compiles without errors.

Forward declaration without definition.

Thursday, March 4, 2010



UNC Chapel HillUNC Chapel Hill Brandenburg — Spring 2010

COMP 524: Programming Language Concepts08: Scope

Aliasing
Objects with multiple names.
➡Aliasing: seemingly independent variables refer to same object.
➡Makes understanding programs more difficult

(reduced readability).

Hinders optimization.
➡ In general, compiler cannot decide whether an object can become 

aliased in languages with unrestricted pointers/references.
➡To avoid corner cases: possible optimizations disabled.

45

double sum, sum_of_squares;
void acc(double &x){
sum += x;
sum_of_squares += x * x;
}
acc(sum);

Thursday, March 4, 2010



UNC Chapel HillUNC Chapel Hill Brandenburg — Spring 2010

COMP 524: Programming Language Concepts08: Scope

Aliasing
Objects with multiple names.
➡Aliasing: seemingly independent variables refer to same object.
➡Makes understanding programs more difficult

(reduced readability).

Hinders optimization.
➡ In general, compiler cannot decide whether an object can become 

aliased in languages with unrestricted pointers/references.
➡To avoid corner cases: possible optimizations disabled.

46

double sum, sum_of_squares;
void acc(double &x){
sum += x;
sum_of_squares += x * x;
}
acc(sum);

C++: x is passed by reference
(Function doesnʼt get a copy of the value,

but the actual address of x).

Thursday, March 4, 2010



UNC Chapel HillUNC Chapel Hill Brandenburg — Spring 2010

COMP 524: Programming Language Concepts08: Scope

Aliasing
Objects with multiple names.
➡Aliasing: seemingly independent variables refer to same object.
➡Makes understanding programs more difficult

(reduced readability).

Hinders optimization.
➡ In general, compiler cannot decide whether an object can become 

aliased in languages with unrestricted pointers/references.
➡To avoid corner cases: possible optimizations disabled.

47

double sum, sum_of_squares;
void acc(double &x){
sum += x;
sum_of_squares += x * x;
}
acc(sum);

In this case, x and sum refer to the same object!

Thursday, March 4, 2010



UNC Chapel HillUNC Chapel Hill Brandenburg — Spring 2010

COMP 524: Programming Language Concepts08: Scope

Aliasing
Objects with multiple names.
➡Aliasing: seemingly independent variables refer to same object.
➡Makes understanding programs more difficult

(reduced readability).

Hinders optimization.
➡ In general, compiler cannot decide whether an object can become 

aliased in languages with unrestricted pointers/references.
➡To avoid corner cases: possible optimizations disabled.

48

double sum, sum_of_squares;
void acc(double &x){
sum += x;
sum_squares += x * x;
}
acc(sum);

Thus, the value of x changes 
between the two additions:

not a proper “sum of squares.”

Thursday, March 4, 2010



UNC Chapel HillUNC Chapel Hill Brandenburg — Spring 2010

COMP 524: Programming Language Concepts08: Scope

Aliasing
Objects with multiple names.
➡Aliasing: seemingly independent variables refer to same object.
➡Makes understanding programs more difficult

(reduced readability).

Hinders optimization.
➡ In general, compiler cannot decide whether an object can become 

aliased in languages with unrestricted pointers/references.
➡To avoid corner cases: possible optimizations disabled.

49

double sum, sum_of_squares;
void acc(double &x){
sum += x;
sum_squares += x * x;
}
acc(sum);

Desirable optimization:
keep the value of x in a register between additions.

However, with aliasing, this is not a correct optimization:
semantics of program would be altered in corner case!

Thursday, March 4, 2010



UNC Chapel HillUNC Chapel Hill Brandenburg — Spring 2010

COMP 524: Programming Language Concepts08: Scope

Aliasing
Objects with multiple names.
➡Aliasing: seemingly independent variables refer to same object.
➡Makes understanding programs more difficult

(reduced readability).

Hinders optimization.
➡ In general, compiler cannot decide whether an object can become 

aliased in languages with unrestricted pointers/references.
➡To avoid corner cases: possible optimizations disabled.

50

double sum, sum_of_squares;
void acc(double &x){
sum += x;
sum_squares += x * x;
}
acc(sum);

When runtime efficiency is favored over language safety:
Some languages disallow or restrict aliasing,

e.g., Fortran (aliasing illegal) and C99 (type restrictions).

Thursday, March 4, 2010



UNC Chapel HillUNC Chapel Hill Brandenburg — Spring 2010

COMP 524: Programming Language Concepts08: Scope

Bottom Line

‣Languages designed for efficient compilation 
are usually statically scoped.
‣Rules for scopes, nested scopes, and 
shadowing are crucial elements of language 
design.
‣Seemingly simple rules can give rise difficult 
corner cases and inconsistent behavior.

51

Carefully read  your languageʼs specification!

Thursday, March 4, 2010



UNC Chapel HillUNC Chapel Hill Brandenburg — Spring 2010

COMP 524: Programming Language Concepts08: Scope

The Need for Modules / Namespaces
Unstructured names.
➡So far we have only considered “flat” namespaces.
‣Typical for language design before the mid ʻ70ies.

➡Sometimes multiple “flat” namespaces:
‣E.g., one each for subroutines, types, variables and constants.
‣No shadowing between variable start and a subroutine 
start in this case.

Too much complexity.
➡Referencing environment often contains thousands of names.
‣OS APIs, libraries, the actual program, etc.

➡Significant “cognitive load,” i.e., too many names confuse 
programmers.

52
Thursday, March 4, 2010



UNC Chapel HillUNC Chapel Hill Brandenburg — Spring 2010

COMP 524: Programming Language Concepts08: Scope

The Need for Modules / Namespaces
Unstructured names.
➡So far we have only considered “flat” namespaces.
‣Typical for language design before the mid ʻ70ies.

➡Sometimes multiple “flat” namespaces:
‣E.g., one each for subroutines, types, variables and constants.
‣No shadowing between variable start and a subroutine 
start in this case.

Too much complexity.
➡Referencing environment often contains thousands of names.
‣OS APIs, libraries, the actual program, etc.

➡Significant “cognitive load,” i.e., too many names confuse 
programmers.

53

Possibly including names for internal “helpers.”
Programmer should not have to worry about these.

Thus, weʼd like some way to
encapsulate unnecessary details and

expose only a narrow interface.

Thursday, March 4, 2010



UNC Chapel HillUNC Chapel Hill Brandenburg — Spring 2010

COMP 524: Programming Language Concepts08: Scope

Name Clash Example in C

54
Thursday, March 4, 2010



UNC Chapel HillUNC Chapel Hill Brandenburg — Spring 2010

COMP 524: Programming Language Concepts08: Scope

Name Clash Example in C

55

Name already taken by POSIX API!
(as are thousands of other names)

Thursday, March 4, 2010



UNC Chapel HillUNC Chapel Hill Brandenburg — Spring 2010

COMP 524: Programming Language Concepts08: Scope

Name Clash Example in C

56

Name already taken by POSIX API!
(as are thousands of other names)

Common kludge: prefix all names with library name
E.g., use db_open instead of just open.

Thursday, March 4, 2010



UNC Chapel HillUNC Chapel Hill Brandenburg — Spring 2010

COMP 524: Programming Language Concepts08: Scope

Module / Namespace / Package

Collection of named objects and concepts.
➡ Subroutines, variables, constants, types, etc.

Encapsulation: constrained visibility.
➡ Objects in a module are visible to each other

(i.e., all module-internal bindings are in scope).
➡ Outside objects (e.g., those defined in other 

modules) are not visible unless explicitly imported.
➡ Objects are only visible on the outside (i.e., their 

bindingʼs scope can extend beyond the module) if 
they are explicitly exported.

Visibility vs. Lifetime.
➡ Lifetime of objects is unaffected.
➡ Visiblity just determines whether compiler will allow 

name to be used: a scope a rule.
57

A means to structure names and enable information hiding.

Module A

Module B

helpery z
open

b
aopen

Module C

Module E

x

solve

imports

better_open

hidden internal nam
es

…
clever_trick

Thursday, March 4, 2010



UNC Chapel HillUNC Chapel Hill Brandenburg — Spring 2010

COMP 524: Programming Language Concepts08: Scope

Module / Namespace / Package

Collection of named objects and concepts.
➡ Subroutines, variables, constants, types, etc.

Encapsulation: constrained visibility.
➡ Objects in a module are visible to each other

(i.e., all module-internal bindings are in scope).
➡ Outside objects (e.g., those defined in other 

modules) are not visible unless explicitly imported.
➡ Objects are only visible on the outside (i.e., their 

bindingʼs scope can extend beyond the module) if 
they are explicitly exported.

Visibility vs. Lifetime.
➡ Lifetime of objects is unaffected.
➡ Visiblity just determines whether compiler will allow 

name to be used: a scope a rule.
58

A means to structure names and enable information hiding.

Module A

Module B

helpery z
open

b
aopen

Module C

Module E

x

solve

imports

better_open

hidden internal nam
es

Hide internal helper definitions:
encourages decomposition of 

problems into simpler parts without 
“littering the global namespace.”

…
clever_trick

Thursday, March 4, 2010



UNC Chapel HillUNC Chapel Hill Brandenburg — Spring 2010

COMP 524: Programming Language Concepts08: Scope

Module / Namespace / Package

Collection of named objects and concepts.
➡ Subroutines, variables, constants, types, etc.

Encapsulation: constrained visibility.
➡ Objects in a module are visible to each other

(i.e., all module-internal bindings are in scope).
➡ Outside objects (e.g., those defined in other 

modules) are not visible unless explicitly imported.
➡ Objects are only visible on the outside (i.e., their 

bindingʼs scope can extend beyond the module) if 
they are explicitly exported.

Visibility vs. Lifetime.
➡ Lifetime of objects is unaffected.
➡ Visiblity just determines whether compiler will allow 

name to be used: a scope a rule.
59

A means to structure names and enable information hiding.

Module A

Module B

helpery z
open

b
aopen

Module C

Module E

x

solve

imports

better_open

clever_trick

hidden internal nam
es

…

Selectively import desired names
Avoid unintentional name clashes.

Thursday, March 4, 2010



UNC Chapel HillUNC Chapel Hill Brandenburg — Spring 2010

COMP 524: Programming Language Concepts08: Scope

Imports & Exports
Scope “permeability.”
➡ closed: names only become available via imports.
‣Anything not explicitly imported is not visible.

➡ open: exported names become automatically visible.
‣Can hide internals, but referencing environment can be large.

➡ selectively open: automatically visible with fully-qualified name; 
visible with “short name” only if imported.

60

Java package scopes are selectively-open.
Thursday, March 4, 2010



UNC Chapel HillUNC Chapel Hill Brandenburg — Spring 2010

COMP 524: Programming Language Concepts08: Scope

Imports & Exports
Scope “permeability.”
➡ closed: names only become available via imports.
‣Anything not explicitly imported is not visible.

➡ open: exported names become automatically visible.
‣Can hide internals, but referencing environment can be large.

➡ selectively open: automatically visible with fully-qualified name; 
visible with “short name” only if imported.

61

Java package scopes are selectively-open.

Closed wrt. “short names”:
IOException becomes only 
available after explicit import.

Thursday, March 4, 2010



UNC Chapel HillUNC Chapel Hill Brandenburg — Spring 2010

COMP 524: Programming Language Concepts08: Scope

Imports & Exports
Scope “permeability.”
➡ closed: names only become available via imports.
‣Anything not explicitly imported is not visible.

➡ open: exported names become automatically visible.
‣Can hide internals, but referencing environment can be large.

➡ selectively open: automatically visible with fully-qualified name; 
visible with “short name” only if imported.

62

Java package scopes are selectively-open.

Open wrt. fully-qualified names:
java.io.IOException is always 

visible and thus a valid name.

Thursday, March 4, 2010



UNC Chapel HillUNC Chapel Hill Brandenburg — Spring 2010

COMP 524: Programming Language Concepts08: Scope

Imports & Exports
Scope “permeability.”
➡ closed: names only become available via imports.
‣Anything not explicitly imported is not visible.

➡ open: exported names become automatically visible.
‣Can hide internals, but referencing environment can be large.

➡ selectively open: automatically visible with fully-qualified name; 
visible with “short name” only if imported.

63

Java package scopes are selectively-open.

In Algol-like languages, subroutine scopes 
are usually open, but module scopes are 

often closed or selectively-open.

Thursday, March 4, 2010



UNC Chapel HillUNC Chapel Hill Brandenburg — Spring 2010

COMP 524: Programming Language Concepts08: Scope

Opaque Exports
Hide implementation detail.
➡ Export type without 

implementation detail.
‣ A map ADT could be a 

hashmap, a tree, a list, etc.
➡ Want to export the abstract 

concept, but not the 
realization (which could 
change and should be 
encapsulated).

Opaque export.
➡ Compiler disallows any 

references to structure 
internals, including 
construction.

➡ Explicitly supported by many 
modern languages.

➡ Can be emulated.

64

Emulating opaque exports in Java.

Thursday, March 4, 2010



UNC Chapel HillUNC Chapel Hill Brandenburg — Spring 2010

COMP 524: Programming Language Concepts08: Scope

Module as a…
… manager.
➡Module exists only once.
➡Basically, a collection of subroutines and possibly types.
➡Possibly hidden, internal state.
➡Java: packages.

… type.
➡Module can be instantiated multiple times.
➡Can have references to modules.
➡Each instance has its private state.
➡Precursor to object-orientation.
➡Java: class.

65
Thursday, March 4, 2010



UNC Chapel HillUNC Chapel Hill Brandenburg — Spring 2010

COMP 524: Programming Language Concepts08: Scope

Capturing Bindings / Scope

‣Scope of a binding can be extended via 
closures.
‣When a closure is defined, it captures all 
active bindings.
‣Weʼll return to this when we look at 
nested subroutines and first-class 
functions.

66
Thursday, March 4, 2010


