Runtime System

; \ COMP 524: Programming Language Concepts
I Bjorn B. Brandenburg

g

The University of North Carolina at Chapel Hill

Based in part on slides and notes by S. Olivier, A. Block, N. Fisher, F. Hernandez-Campos, and D. Stotts.

Thursday, April 22, 2010

15: Runtime System

COMP 524: Programming Language Concepts

What is the Runtime System (RTS)?

Language runtime environment.

= 0S view: RTS is part of the user program.

= But RTS was not programmed by the language user.

= The RTS is everything not part of the OS and not explicitly
provided by the user (i.e., the program or 3rd party libraries).

Standard

Program

‘ Standard H i \

Interpreted

Compiled

UNC Chapel Hill

Brandenburg — Spring 2010

15: Runtime System COMP 524: Programming Language Concepts

s

Examples: memory allocator, garbage collector, support for runtime
casts, exception handling infrastructure, just-in-time (JIT) compiler,
support for closure and anonymous functions, lazy evaluation, dynamic
type checking, byte code verifier, OS abstraction layers (if any), class-
loading and plugin support (if any), multi-threading support, remote
procedure calls (e.g., Java RMI), ...

provided "4 the user (i.e., the program'or 3rd party libraries).

-
‘ Program

Standard

-

Interpreted Compiled
UNC Chapel Hill Brandenburg — Spring 2010

Thursday, April 22, 2010

15: Runtime System COMP 524: Programming Language Concepts

What is the Runtime System (RTS)?

RTS:
the infrastructure required to (transparently) realize
higher-level language abstractions at runtime.

Standard

Program

‘ Standard H i \

Interpreted Compiled
UNC Chapel Hill Brandenburg — Spring 2010

15: Runtime System COMP 524: Programming Language Concepts

Our Focus

»We’'ll discuss three RTS components.
»Garbage collection.
»Just-in-Time Compilation.

»Security issues.

UNC Chapel Hill Brandenburg — Spring 2010

15: Runtime System COMP 524: Programming Language Concepts

Heap Management

Allocation and deallocation of objects on the heap.
= Arbitrary object lifetime.
= Traditional language design:
» Code, static, and runtime stack managed by compiler / interpreter.

» Heap managed by programmer.

Simplified 32-bit Memory Model

Ox0 Increasing Virtual Addresses Ox et

UNC Chapel Hill Brandenburg — Spring 2010

Thursday, April 22, 20

15: Runtime System COMP 524: Programming Language Concepts

Garbage

Memory reclamation.

= An object is “garbage” if it is not going to be used again.

= Memory holding garbage must be reclaimed in long-
running programs.

Classic imperative approach: explicit heap management.

= malloc/free, new/delete, etc.

= Problems: dangling pointers, memory leaks...

= Experience suggests that programmers, on average, are
not very good at correctly identifying garbage.

UNC Chapel Hill Brandenburg — Spring 2010

Thursday, April 22, 2010

15: Runtime System COMP 524: Programming Language Concepts

Garbage Collection

Automatic heap management.

=The RTS should manage memory, not the
programmer.

=First developed for Lisp in 1958

=Merits hotly contested until ‘90ies.

Widespread use.

=Essential in functional languages
»e.g., Haskell, ML.

=Key feature of scripting languages
»e.g., Python, Perl.

=|Increasingly popular modern imperative languages
re.qg, Java, C#.

UNC Chapel Hill Brandenburg — Spring 2010

15: Runtime System COMP 524: Programming Language Concepts

Reachable Objects

Root Set
The set of objects that are iImmediately available to a
program without following any pointers/references.

Object graph.

=Allocated objects form a graph.
»Vertices: objects.
»Edges: references/pointers.

=Any non-garbage object must be reachable from
the root set.

UNC Chapel Hill Brandenburg — Spring 2010

15: Runtime System COMP 524: Programming Language Concepts

Garbage Collection: Techniques

Detecting garbage.

=\When is an object no longer being referenced?
=False positives: program crash.

=False negatives: memory leak.

Garbage collection techniques.
=Reference counting.
=Mark-and-sweep collection.
=Store-and-copy.

=(Generational collection.

UNC Chapel Hill Brandenburg — Spring 2010

15: Runtime System COMP 524: Programming Language Concepts

Reterence Counting

Indirect reachability.
= Each object has an associated reference counter.
= Object graph: how many incoming edges?

Maintained invariant.

= Counter is incremented when a new reference is acquired.

= Counter is decremented when a reference is removed.

= |f an object is reachable, then its associated reference
counter Is positive.

Widespread use.
= Easy to implement in C (but error-prone).
= Used in Linux kernel, Python, many other projects.

UNC Chapel Hill Brandenburg — Spring 2010

Thursday, April 22, 2010

15: Runtime System COMP 524: Programming Language Concepts

Reterence Counting Example

II-FOOII

strl

UNC Chapel Hill Brandenburg — Spring 2010

15: Runtime System COMP 524: Programming Language Concepts

Reterence Counting Example

After object allocation: reference counter is initially one.

Gl

stril “"foo”

UNC Chapel Hill Brandenburg — Spring 2010

15: Runtime System COMP 524: Programming Language Concepts

Reterence Counting Example

Str2 = strl

UNC Chapel Hill Brandenburg — Spring 2010

15: Runtime System COMP 524: Programming Language Concepts

Reterence Counting Example

Adding a new reference increments the counter.

Cle

Str2 = strl

UNC Chapel Hill Brandenburg — Spring 2010

15: Runtime System COMP 524: Programming Language Concepts

Reterence Counting Example

strl
Str2

None
None

UNC Chapel Hill Brandenburg — Spring 2010

15: Runtime System COMP 524: Programming Language Concepts

Reterence Counting Example

/

No remaining references: it is now safe to deallocate the object.

D

strl
Str2

None
None

UNC Chapel Hill Brandenburg — Spring 2010

15: Runtime System COMP 524: Programming Language Concepts

Reterence Counting: Problems

Efficiency.

=Increases number of (slow) writes.

=\With multithreading, it may require (even slower)
atomic updates.

Accuracy.

=Disjoint union types: what if one variant
contains a reference, and another doesn’t?
» Reference counting must track variant tags.

=|n a weakly typed language such as C?
»Cannot reliably tell pointers from integers apart.

=(Cannot detect circular garbage.

UNC Chapel Hill Brandenburg — Spring 2010

15: Runtime System COMP 524: Programming Language Concepts

Cycles in the Object Graph

rmERE DEme
o T

UNC Chapel Hill Brandenburg — Spring 2010 19

15: Runtime System COMP 524: Programming Language Concepts

Memory leak: not reachable, but will not be deallocated.

stooges

UNC Chapel Hill Brandenburg — Spring 2010 20

Thursday, April 22, 2010

15: Runtime System COMP 524: Programming Language Concepts

Mark and Sweep GC

Direct reachability.

= Instead of using a counter to track possible incoming paths,
actually discover all paths at runtime by traversing the
object graph.

= Anything not visited must be garbage.

= Every objects carries an “in-use” flag.

Algorithm concept.

= Mark every object in the heap as unreachable by clearing all
“In-use” flag.

= Starting from the root set, traverse all references.

= Mark every visited object as reachable by setting its flag.

= Reclaim all unused objects (“sweep”).

= Run when memory is “low”.

UNC Chapel Hill Brandenburg — Spring 2010

15: Runtime System COMP 524: Programming Language Concepts

Mark and Sweep: Challenges

“Stop the world” GC.

=\What if object graph is changed during traversal?

=Simple solution: program execution is halted during GC.
»Can cause noticeable pauses.

UNC Chapel Hill Brandenburg — Spring 2010

15: Runtime System COMP 524: Programming Language Concepts

Mark and Sweep: Challenges

“Stop the world” GC.

=\What if object graph is changed during traversal?

=Simple solution: program execution is halted during GC.
»Can cause noticeable pauses.

-

Concurrent Garbage Collector:
GC and program can run concurrently (i.e.,
any interleaving is acceptable).

Incremental Garbage Collector:
GC does not process whole object graph at
once. Instead, it is invoked more frequently.

UNC Chapel Hill Brandenburg — Spring 2010

15: Runtime System COMP 524: Programming Language Concepts

Mark and Sweep: Challenges

ldentifying objects.
=How to identify objects in the heap?
»Must carry size/type tags, or have uniform size.

» Alternative: allocate objects of equal size/type from
specific address ranges.

»Sometimes called “Big Bag of Pages” (BIBOP).

=How to discern arbitrary values from pointers?
»Could have a number that “points” to a garbage object.
»Could have a number that “points” outside of heap
bounds.

UNC Chapel Hill Brandenburg — Spring 2010

15: Runtime System COMP 524: Programming Language Concepts

Mark and Sweep: Challenges

ldentifyi '
=How
»y Mus Precise Garbage Collector:

 Alter GC can unambiguously determine whether a
given value is a pointer/reference.
spec
» SO Conservative Garbage Collector:
=How 1 Works without discerning pointers/reference
»Coul from other values with certainty. ect
»Coul

bounds.

UNC Chapel Hill Brandenburg — Spring 2010

15: Runtime System COMP 524: Programming Language Concepts

Mark and Sweep: Challenges

Memory requirements.
=G C algorithm runs when memory is scarce.
=Graph traversal requires memory itself!
» Proportional to the longest path in the object graph.
»Reserves are wasteful...

Tradeoff.

=|mplementation complexity vs. efficiency.
=Could use incremental GC to reduce problem.
=Specialized stack-less techniques exist.

UNC Chapel Hill Brandenburg — Spring 2010

15: Runtime System COMP 524: Programming Language Concepts

Mark&Sweep vs. Ret. Counting

Reference counting.
=(ccurs continuously: no pauses.
»But: overheads are incurred continuously, too.

=|_eaks circular structures.
=Relatively easy to implement.

Mark & Sweep.
=Difficult to implement efficiently.
»Esp. avoiding “stop the world”.

=Pauses, but otherwise fast execution and allocation.
=With precise GC, no leaking of unreachable objects.

UNC Chapel Hill Brandenburg — Spring 2010

15: Runtime System COMP 524: Programming Language Concepts

Copying Garbage Collection

simply identifying and freeing garbage doesn’t solve fragmentation

Partitioned heap.
= Two arenas: live objects arena and free space.
= Allocate from live object area until full.
= Then mark&sweep to find all live objects.
= Copy all live objects to free space.
» Fast consecutive allocation.

= Switch roles: formerly live arena is now free.

UNC Chapel Hill Brandenburg — Spring 2010

Y, Ap

15: Runtime System COMP 524: Programming Language Concepts

Copying Garbage Collection

Live Arena —
E——
- B

Free Arena

UNC Chapel Hill Brandenburg — Spring 2010

Thursday, April 22, 20

15: Runtime System COMP 524: Programming Language Concepts

Copying Garbage Collection

Live Arena —

Free Arena

Free Arena

Live Arena

UNC Chapel Hill Brandenburg — Spring 2010 30

Thursday, April 22, 201

15: Runtime System COMP 524: Programming Language Concepts

Copying Garbage Collection

Live Arena —
—
- B

Free Arena

Garbage doesn’t need to be explicitly reclaimed.

=T
HEEYACHE!
—B—

Live Arena

UNC Chapel Hill Brandenburg — Spring 2010

Thursday, April 22, 2010

15: Runtime System COMP 524: Programming Language Concepts

Copying Garbage Collection

Live Arena —
——
- B

Free Arena

Copy GC

rl‘AA AMAIAA

Very fast allocation: no searching for available space.
Live Arena
——Eﬂ

UNC Chapel Hill Brandenburg — Spring 2010

Thursday, April 22, 2010

15: Runtime System COMP 524: Programming Language Concepts

Copying Garbage Collection

Live Arena —
—
- B

Free Arena

Limitation: half of the heap is unused.

PV r—

Free-Arana

Live Arena

UNC Chapel Hill Brandenburg — Spring 2010

Thursday, April 22, 2010

15: Runtime System COMP 524: Programming Language Concepts

Generational GC

Generational Hyothesis.

= In many programs there is high “infant mortality.”

= Most objects are short-lived: they become garbage quickly
after allocation.

= Thus, “older” objects are less likely to become garbage.

Arenas for different “ages”.

= Multiple allocation arenas.

= The “generation 0 arena” (the “nursery”) is used for new
allocations.

= “Survivors” are copied to the next arena.

= Which is also gc’ed at some point, at which generation 1
objects move to the generation 2 arena, etc.

UNC Chapel Hill Brandenburg — Spring 2010

15: Runtime System COMP 524: Programming Language Concepts

Generational GC

Generational Hyothesis.
- I . TP T - : I liley V)

)

. Objects that are unlikely to be garbage are only
-1 examined infrequently: reduced GC runtime.

Ar New objects can be allocated very cheaply
= from the nursery (simply increment the “end of

of last object” pointer).
:, Modern high-performance VMs often use this

approach (e.g., Java Virtual Machine).

UNC Chapel Hill Brandenburg — Spring 2010

15: Runtime System COMP 524: Programming Language Concepts

GC vs. Manual Deallocation

Efficiency.

=Correct manual heap management is more efficient
than naive GC.

=But software development cost considerations strongly
favor GC.

=G C can be faster than manual management due to
reduced allocation costs (copying GC).

Finalizers and nhon-memory resources.

=|_anguages such as Java use finalizers to free non-
memory resources (such as file handles) when an
object is freed.

=Problem: may run out of non-memory resources
before GC kicks in.

UNC Chapel Hill Brandenburg — Spring 2010

15: Runtime System COMP 524: Programming Language Concepts

Just-in-Time Compilation (JIT)

Static compilation.

=Compile time vs. run time.
=Compiler produces machine code once; W@

resulting program is executed many times. y

| Compiler ’
Pure interpretation. |
=interpreter evaluates syntax tree directly. .

. Intermediate
-’SIOW. . Program

|
Bytecode interpretation. /

= Source compiled to bytecode. nput | [T Output
= Bytecode interpreted by VM.
= Still slower than statically compiled

programs.

UNC Chapel Hill Brandenburg — Spring 2010

Y, Ap

15: Runtime System COMP 524: Programming Language Concepts

~ Justin-Time Compilation (JIT)

JIT: compile byte code at run time to
speed up overall program execution.

ller produces machine code once;
resull hg program is executed many times.

Pure inlerpretation.
=interpr ter evaluates syntax tree directly.
=Slow. /

Bytecode interpretation.

=Source compiled to bytecode.

=Bytecode interpreted by VM.

=Still slower than statically compiled programs.

UNC Chapel Hill Brandenburg — Spring 2010

15: Runtime System COMP 524: Programming Language Concepts

Just-in-Time Compilation (JIT)
r Static compilation. \
=Compile time vs. run time.
=Compiler produces machine code once;
resulting program is executed many times.

Pure interpretat’
=interpreter evalud\tes syntax tree directly.
=Slow.

Sometimes referred to as ahead-of-time compilation (AOT).

=Bytecode interpreted by VM.
=Still slower than statically compiled programs.

UNC Chapel Hill Brandenburg — Spring 2010

15: Runtime System COMP 524: Programming Language Concepts

ldea and Limitations

“Write once, run anywhere.”

= Combine efficiency of compilation with flexibility of
interpretation.

= “Late binding of machine code.”

= Java: web applets, mobile phones, embedded systems...

Overheads.
= Startup delay.
» After a program starts, parts must be compiled before output
IS produced, which can result in a noticeable delay.

» Hide by running interpreter and JIT compiler in parallel.
» Avoid compiling whole program at once.

UNC Chapel Hill Brandenburg — Spring 2010

15: Runtime System COMP 524: Programming Language Concepts

JIT Overhead

Piecewise compilation.
= Program is compiled on demand in small chunks.
= Subroutine at a time, maybe even only parts of a subroutine.

Tradeoff.

= Compilation takes considerable time...

= ...but compiled code is faster.

= Thus: compiled code must be executed many times to make tradeoft
beneficial.

Threshold.

= Practical JIT systems trigger compilation only for code fragments that
are executed more often then some threshold (e.g., 100 times).

= [ntuition: focus on the common paths.
» avoid Initialization code and rare error paths
» optimize main work loops

UNC Chapel Hill Brandenburg — Spring 2010

15: Runtime System COMP 524: Programming Language Concepts

JIT Overhead

D; . o

The exact threshold depends on the efficiency of jytine.
the byte code interpreter and the JIT compilation
speed and must be determined experimentally.

= ...but compiled code is qaster.

= Thus: compiled code must \e executed many times to make tradeoft
beneficial. \l

Threshold.

= Practical JIT systems trigger compilation only for code fragments that
are executed more often then some threshold (e.g., 100 times).

"= Intuition: focus on the common paths.

» avoid Initialization code and rare error paths
» optimize main work loops

™)

7,

UNC Chapel Hill Brandenburg — Spring 2010

15: Runtime System COMP 524: Programming Language Concepts

Optimization vs. JIT Compilation

Simplicity wins.
Goal: = Only simple transformations.
Lower Total Runtime = No “big picture” optimization.
= Fast, non-optimal algorithms instead of
slower, provably better algorithms.

Many'’Aavanced
Optimizations

ast Machine Code Slower C.

Increasedilotal HrgherT|iae
Runtime Threshold

UNC Chapel Hill Brandenburg — Spring 2010

Thursday, April 22, 2010

15: Runtime System COMP 524: Programming Language Concepts

Optimizations

_Source Program |

| AOT Compiler '

)

L
il -]

UNC Chapel Hill Brandenburg — Spring 2010

Thursday, April 22, 2010

15: Runtime System COMP 524: Programming Language Concepts

-

The "heavy lifting”:
Intra-procedural analysis, common sub-expression
analysis, dead code eliminations, flow analysis,
polymorphism, etc.

| AOT Compiler '

A

o o — — — — — — — — — — — — — — —

)
W — [VM+JIT|QM

UNC Chapel Hill Brandenburg — Spring 2010

Thursday, April 22, 2010

15: Runtime System COMP 524: Programming Language Concepts

Simple transformations:
basic byte code blocks to equivalent machine code.

_Souce Progran |
y

| AOT Compiler '

)
(ov7) —

UNC Chapel Hill Brandenburg — Spring 2010

Thursday, April 22, 2010

15: Runtime System COMP 524: Programming Language Concepts

JIT Advantages

Trace collection.
=Record execution statistics during interpretation.
=(Can (re-)optimize at run time.

JIT can outperform AOT.

=Additional information available at run time.
»Specific types (instead of interfaces), accurate
branch prediction.

=(Can be used to generate specialized code.
»E.g., suppress error checking that is not needed
for a particular data set.

=Additional inlining possibilities.

UNC Chapel Hill Brandenburg — Spring 2010

15: Runtime System COMP 524: Programming Language Concepts

JIT Advantages

Trace collection.

=Record execution statistics during interpretation.
m(.an (ra-\nntimize at riin time

-

Tradeoff: long-running vs. short-running processes

Example: Java VM has a server mode that does spends
more time on aggressive optimizations.

ranch prediction.

=(Can be used to generate specialized code.
»E.g., suppress error checking that is not needed
for a particular data set.

=Additional inlining possibilities.

UNC Chapel Hill Brandenburg — Spring 2010

15: Runtime System COMP 524: Programming Language Concepts

JIT and Prototype-Based Languages

Challenges.
= Java: JIT on class methods.
= What if there are no classes?

Tracing JIT.

= Derive “implicit’ classes based on source code location
where object was created (i.e., where the prototype was
assigned).

= Most prototypes are not changed during run time.

= Must re-JdIT an object if either
»the object’s prototype is changed, or
»a new prototype is assigned.

UNC Chapel Hill Brandenburg — Spring 2010

15: Runtime System COMP 524: Programming Language Concepts

Binary Translation / Binary Rewriting

Compiling machine code to machine code.
=Either AOT or JIT.
=Basically a compiler without source code.

Uses.
=Debugging, logging (add invariant checking, etc.).
=Performance analysis.
=Adding security hooks.
»Or exploits...

=Legacy system emulation.
»E.g.: Apple’s Rosetta.

UNC Chapel Hill Brandenburg — Spring 2010

15: Runtime System COMP 524: Programming Language Concepts

Security Issues

Untrusted code.

= Third party code that might be malicious.

= Often downloaded automatically via Internet.
» Embedded Javascript, Java applets, Flash, etc.
» Browser plugins.

Byte code validation.

= Proving arbitrary properties of arbitrary source code is
Impossible.
» Halting problem...

= |dea: allow only “known good” byte code.
» Be conservative.

Alternative.
= Code signing: attestation by trusted third party “this is ok.”

UNC Chapel Hill Brandenburg — Spring 2010

15: Runtime System COMP 524: Programming Language Concepts

Security Issues

Untrusted code.

Java Track Record:
Many bugs and thus security vulnerabilities over the years.

BDIRVAA' w J 1 Ul U

Byte code validation.

= Proving arbitrary propertie § of arbitrary source code is
Impossible.
» Halting problem... /

=|dea: allow only “known good” byte code.
» Be conservative.

\S .

Alternative.
= Code signing: attestation by trusted third party “this is ok.”

UNC Chapel Hill Brandenburg — Spring 2010

15: Runtime System COMP 524: Programming Language Concepts

Security Issues

Untrusted code.

= Third pd

= Often d Example:
» Embec Microsoft-certified Windows device drivers.
» Browserprc

Byte code validation.

= Proving arbitrary properties of arbitrary source cor g is
Impossible.
» Halting problem...

= |dea: allow only “known good” byte code.
» Be conservative.

™

| /
Alternative.
= Code signing: attestation by trusted third party “this is ok.”

UNC Chapel Hill Brandenburg — Spring 2010

