
Homework Assignment 1

Posted: 1/19/2010
Due: 1/26/2010

The assignment is due in class; please follow the instructions on the homework submission form.

Objectives
Apply features of object-orientation (specialization via inheritance, interfaces) in Java to 
achieve code reuse when solving closely related problems.

Develop a basic framework for the next assignment.

Familiarize yourself with the programming style requirements and the homework submission 
process.

Related Files
Homework submission form:
http://www.cs.unc.edu/Courses/comp524-s10/hw/submission-form.pdf 

Text of Herman Melville’s novel “Moby Dick, or, the whale” (Project Gutenberg version):
http://www.cs.unc.edu/Courses/comp524-s10/hw/1/mobydick.txt

Part 1
Implement a Java program, named Frequency, that lists the most-frequently used words in a 
text file (or, alternatively, the standard input stream) and the number of times that they occur.

Frequency must accept one or two command line arguments. The first argument specifies a 
limit on the number of words that should be displayed, e.g., if the first argument is “20”, then 
only the 20 most-frequently occurring words should be displayed. The second argument 
specifies the name of a text file. If the second argument is omitted, then the program should 
process the standard input stream (System.in).

Your implementation of Frequency should handle special cases (file empty) and error cases 
(invalid numbers, file not readable) gracefully (e.g., display an error message and exit).

For the purpose of this assignment, a word is simply a sequence of non-whitespace, non-
punctation, non-bracket characters, i.e., a word contains neither a space, a newline separator, 
nor one of the following characters: .:;,?!-"'()[]{}. Consecutive words are separated 
by at least one non-word character.

Part 2
Reusing the classes developed for Part 1, implement a Java program, named Count, that 
determines how often a given set of words is used in a text file (or, alternatively, the standard 
input stream).

Count must accept one or two command line arguments. The first argument specifies the 
name of a file that contains a list of words (one word per line). The second argument specifies 
the name of a text file. If the second argument is omitted, then the program should process the 
standard input stream (System.in).

COMP 524 Homework Assignment 1

http://www.cs.unc.edu/Courses/comp524-s10/hw/submission-form.pdf
http://www.cs.unc.edu/Courses/comp524-s10/hw/submission-form.pdf
http://www.cs.unc.edu/Courses/comp524-s10/hw/1/mobydick.txt
http://www.cs.unc.edu/Courses/comp524-s10/hw/1/mobydick.txt


Given a word list (specified by the first argument), Count must output the number of times 
that each word appears in the specified text file (second argument, or System.in if omitted).

Your implementation of Count should handle special cases (either file empty) and error cases 
(invalid filenames, either file not readable) gracefully (e.g., display an error message and exit).

Part 3
Use your implementations of Count and Frequency to examine Herman Melville’s novel 
“Moby Dick, or, the whale”. Specifically, determine

a) the 30 most-frequently used words, and

b) how many times the words “harpoon”, “whale”, “blood”, “love”, “peace”, and “flowers” 
occur.

Example
Suppose we are given the following two files, wordlist.txt and story.txt.

Content of wordlist.txt

is

short

moon

Content of story.txt

This is a rather short story in a short file.

Invoking Count on these two files should result in output similar to the following.

Output of java Count wordlist.txt story.txt

1 is

2 short

0 moon

Invoking Frequency with a limit of 5 on the file story.txt should result in output similar 
to the following.

COMP 524 Homework Assignment 1



Output of java Frequency 5 story.txt

2 short

2 a

1 story

1 is

1 file

Guidelines
You may discuss possible approaches with other students, but you cannot share source code. 

Your solution may use any class that is part of the Java standard library (J2SE 6, see [3]).

Hints:
- Make use of the Java Collections Framework and the Iterator/Iterable interfaces.
- Have a look at the StringTokenizer class.

Deliverables
The Java source code files that implement Count and Frequency. Make sure that your code 
can be compiled manually with javac.

A text file (plain text or PDF) that contains the answers to Part 3.

Grading
15 points — Functionality. Do Count and Frequency work as specified? (This covers Part 3).

05 points — Is the source code documented?

05 points — Style. Does the code look like a clean Java program?

05 points — Is the design properly object-oriented? Is code reused among the two programs?

Style Guide
“Programs must be written for people to read, and only incidentally for 
machines to execute.”
— Abelson & Sussman, The Structure and Interpretation of Computer Programs

“How do we convince people that in programming simplicity and clarity —in 
short: what mathematicians call "elegance"— are not a dispensable luxury, but 
a crucial matter that decides between success and failure?”
— Edsger W. Dijkstra

Use a clean and consistent coding style. The standard Eclipse style is ok. Spaces are preferred 
over tabulators. See [1] or [2] for detailed style guides that are acceptable.

Make sure you structure classes consistently (i.e., either first attributes, then constructors, 
followed by methods, or the other way around, but the order should be consistent across 
classes).

Do not use unstructured control flow constructs (break, continue). However, you may use 
System.exit() to simplify argument checking in the main method.

COMP 524 Homework Assignment 1



Implement proper exception handling (the main method should not throw any exceptions).

Write the program in an object-oriented style. The problem should be solved by collaborating 
objects. Make only sparse use of static methods; ideally, main should be the only static 
method.

Write brief and concise comments. Just get the idea across; do not spend too much time on 
documentation.

References
[1] http://developers.sun.com/sunstudio/products/archive/whitepapers/java-style.pdf

[2] http://incubator.apache.org/ace/java-coding-style-guide.html

[3] http://java.sun.com/javase/6/docs/api/index.html

COMP 524 Homework Assignment 1

http://developers.sun.com/sunstudio/products/archive/whitepapers/java-style.pdf
http://developers.sun.com/sunstudio/products/archive/whitepapers/java-style.pdf
http://incubator.apache.org/ace/java-coding-style-guide.html
http://incubator.apache.org/ace/java-coding-style-guide.html
http://java.sun.com/javase/6/docs/api/index.html
http://java.sun.com/javase/6/docs/api/index.html

