
Incremental algorithms for collision detection

between solid models �

Madhav K. Ponamgi Dinesh Manocha Ming C. Lin

Department of Computer Science

University of North Carolina

Chapel Hill, NC 27599

fponamgi,manocha,ling@cs.unc.edu

Abstract: Fast and accurate collision detection between general solid models is a

fundamental problem in solid modeling, robotics, animation and computer-simulated envi-

ronments. Most of the earlier algorithms are either restricted to a class of solid models, say

convex polytopes, or are not fast enough for practical applications. We present an incre-

mental algorithm for collision detection between general B-rep solid models in dynamic en-

vironments. The algorithm combines a hierarchical representation with incremental frame

to frame computation to rapidly detect collisions. It makes use of coherence between suc-

cessive instances to determine e�ciently the number of object features interacting. For

each pair of objects, it tracks the closest features between them on their respective convex

hulls using the [LC91] algorithm. It detects when these objects penetrate using a new

psuedo-internal Voronoi data structure and constructs the penetration region, identifying

the regions of contact on the convex hulls. The features associated with these regions are

represented in a precomputed hierarchy. The algorithm uses a coherence based approach to

quickly traverse the pre-computed hierarchy and check for collisions between the features.

The algorithm works well in practice and its complexity is output sensitive.

1 Introduction

A realistic visual simulation system, which couples geometric modeling and physical proto-

typing, can provide a useful toolset for applications in robotics, CAD/CAM design, molec-

ular modeling, manufacturing design simulations, etc. Such systems create electronic rep-

resentations of mechanical parts, tools, and machines, which need to be tested for intercon-

nectivity, functionality, and reliability. The goal of these virtual and electronic simulation

systems is to save processing time and manufacturing costs by avoiding the production of

actual physical prototypes [Hop88, HH87]. This is similar to the goal of CAD tools for

VLSI. It requires a complete test environment for simulating hundreds of parts interacting.

�
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A visual simulator can also be a signi�cant aid in engineering analysis. Experiments

which are too costly to construct or impractical to perform can be simulated, such as

support design for tunnels, where the engineers can visualize and test e�ect of natural

phenomena on the proposed tunnel support and watch the interactions among the blocks

and supports under stress. Another example is automobile crash tests which can be done

at much lower cost and under more varied conditions using computer aided simulation.

Both interactive applications and simulations of physical systems strive to present ac-

curate simulation with realistic visualization at interactive rates. For a simulation system

to mimic a true physical process, it needs not only to render realistic images according the

material's physical and geometric properties, but also to model object interactions precisely.

The interactions may involve objects in the simulation environment pushing, striking, or

smashing other objects. Detecting collisions and determining contact points is a crucial

step in portraying these interactions accurately.

The most challenging problem in a dynamic and visual simulation, namely the collision

phase, can be separated into three parts: collision detection, contact area determination,

and impact response. In this paper, we address two key elements of dynamic simulation by

presenting a general purpose collision detection and contact area determination algorithm

for simulations. Our collision detection routine reports the contact area and thus enables

the application to compute an appropriate response.

Our algorithm not only addresses interaction between a pair of general non-convex

objects, but also large environments consisting of hundreds of moving parts. We make no

assumptions regarding the geometry of the objects nor do we assume the motions of the

objects to be expressed as a closed form function of time. Our collision detection scheme

is e�cient and accurate (to the resolution of the models).

Main Contribution: We present an e�cient algorithm for exact collision detection be-

tween general polyhedral models. Our algorithm combines a coherence based approach

with a hierarchical algorithm to e�ectively prune down the number of object pairs inter-

acting and to reduce the total number of features we examine between a colliding object

pair. Our algorithm is output sensitive and its complexity is determined by the number of

object pairs in close proximity of each other and the number of features of each such pair.

The complexity of determining the number of objects in close proximity is O(k+N), where

N is the number of moving objects in the environment and k is the total number of object

pairs whose axis-aligned bounding boxes overlap. For each pair of objects whose bounding

boxes overlap, the complexity is O(m+n), where m is the number of feature pairs between

the objects that are close to each other. The n features of a polyhedron consist of vertices,

edges and faces. In particular, m correspond to number of feature pairs whose axis-aligned

bounding boxes overlap. In practice k and m are small. In the worst case, k can be O(N2)

and m can be O(n2). We highlight its performance on a threaded screw insertion and a

chain of toroidal rings.

Organization: The rest of the paper is organized as follows: Section 2 reviews some of the

previous work in collision detection. Section 3 gives an overview of our approach, including

some of our previous work and the concept of coherence. Section 4 presents the algorithm
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along with a number of implementation issues. We highlight its performance in Section 5

and address a number of robustness issues in Section 6.

2 Previous Work

Collision detection has been extensively studied in geometric modeling, computer graphics,

robotics, and computational geometry. Since collision detection is needed in a wide variety

of situations, many di�erent methods have been proposed. Most of them make speci�c

assumptions about the objects of interest and design a solution based on object geometry

or application domain.

Most robotics literature deals with collision detection in the context of path planning.

Using sophisticated mathematical tools, several algorithms have been developed that plan

collision-free paths for a robot in restricted environments [CC86, Can86]. This di�ers from

virtual prototyping and simulation-based applications, where motion is subject to dynamic

constraints or external forces and cannot be expressed as a closed form function of time.

Computational geometry literature typically deals with collision detection of objects in

a static environment. Objects are at a �xed location and orientation, and the algorithms

determine whether they are intersecting [CD87, DK85]. In most modeling and graphics

applications, where many objects are in motion, such an approach would be ine�cient.

Moreover, the objects move only slightly from frame to frame and the collision detection

scheme should take advantage of the information from the previous frame to initialize the

computation for the current frame [Bar92, LC91]. Several solutions based on this idea of

coherence have been proposed in [Lin93].

Approaches that combine collision response with detection can be found in [Bar92,

WG93, MW88]. The methods in [WG91, WG93] make use of boundary representation to

detect collisions.

Collision detection for multiple moving objects has recently become a popular research

topic with the increased interest in large-scaled virtual prototyping environments. For

example, a vibratory parts feeder can contain up to hundreds of mechanical parts moving

simultaneously under periodical force impulses in a vibratory bowl or tray. There may be

N moving objects andM stationary objects. Each of theN moving objects can collide with

the other moving objects, as well as the stationary ones. Keeping track of
�
N

2

�
+NM

pairs of objects at every time step can become time consuming as N and M get large. To

achieve interactive rates, the total number of pairwise intersection tests must be reduced

before performing exact collision tests on the object pairs, which are in the close vicinity

of each other. Several methods dealing with this situation are found in [Cam91, CLMP95,

DZ93]. Most methods use some type of a hierarchical bounding box scheme. Objects are

surrounded by bounding boxes. If the bounding boxes overlap, indicating the objects are

near each other, a more precise collision test is applied.

Approximate collision detection schemes using a series bounding boxes, spheres, or

voxels can be found in [AANJ94, HBZ90]. More recently, Hubbard [Hub93] has formulated

an approach where accuracy is traded for speed. The approximation schemes can be used
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to deal with general non-convex objects. A non-convex object can be broken into these

sub-units which are tested for collisions. However, to achieve desired accuracy using these

approaches in simulation is computationally expensive.

Many other techniques have been proposed on spatial partitioning methods for collision

detection among multiple object pairs [Tur89]. These include binary space partition trees

(BSP's), octrees, and approximation hierarchies [Cam91, FKN80, NAT90, Nay92]. How-

ever, they do not make use of coherence between successive instances and are relatively slow

in practice. Algorithms based on interval arithmetic for collision detection are described

in [Duf92, ea93]. These algorithms expect the motion of the objects to be expressed as

a closed form function of time. Moreover, the performance of interval arithmetic based

algorithms is too slow for interactive applications. Coherence based algorithms for curved

models are presented in [LM95].

2.1 Algorithm Overview

In this paper, we present a fast algorithm for contact determination between non-convex

polyhedra. Initially, we apply the distance computation algorithm of [LC91] to the convex

hulls of the polyhedra. The algorithm described in [LC91] may go into a cyclic loop when

convex hulls interpenetrate. To circumvent this problem, we introduce the notion of pseudo

internal Voronoi regions for a convex polyhedron. These are used to detect when the

convex hulls of a pair of objects penetrate. This is di�erent from computing the amount

of penetration between two objects, as shown in [GO94]. The modi�ed algorithm with

penetration detection has the same complexity as the original algorithm in [LC91].

We classify the features of the overlapping convex hulls into those belonging to the

original non-convex objects, and those constructed while computing the convex hull of the

non-convex objects. The \�ctitious" faces constructed by the convex hulls, cover the subset

of features we wish to test for collision between the pair of objects. Rather than performing a

brute-force O(n2) all possible pairs test, we employ a hierarchical sweep and prune technique

based on bounding boxes for these features. This reduces to sorting bounding boxes in the

three-dimensional space by taking their projections on one-dimensional axes. Based on

coherence, the overall complexity is O(n+m) at each instance, where m is the number of

overlapping bounding boxes of the features. These m feature pairs are eventually tested

for contacts. In practice, the overall complexity is output sensitive. Typically m is a small

constant or a linear function of n. Our algorithm is suitable for large environments and

simulations consisting of hundreds of moving objects. We make no assumptions regarding

the geometry or the motions of the objects.

3 Background

We review our previous algorithm for multiple moving convex polytopes in complex en-

vironments. Coherence combined with incremental computation is a major theme of our

work. By exploiting coherence, we are able to incrementally trim down the number of pair-
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Figure 1: Worst case scenarios for collision detection.

wise object and feature tests involved in each iteration. For many applications in robotics

and modeling, assuming coherence is reasonable [Bar90, Lin93].

De�nition: Temporal and geometric coherence is the property that the state of the

application does not change signi�cantly between successive time steps or simulation frames.

The objects move only slightly from frame to frame. This slight movement of the objects

translates into geometric coherence, since their geometry, de�ned by the vertex coordinates,

changes slightly between frames.

For a con�guration of N objects, the worst case running time for any collision detection

algorithm is O(N2) where N is the number of objects. For instance, consider Fig. 1(a)

where all object pairs are colliding. A similar situation can occur for all feature pairs

between a pair of colliding objects as shown in Fig. 1(b) with \comb polyhedra". However,

evidence suggests that these cases rarely occur in real models [CLMP95, Lin93]. So our

algorithm uses a Sweep and Prune technique to eliminate testing object pairs that are far

apart, and later we show that the technique can be extended to eliminate testing features

that are far apart between two colliding objects.

3.1 Sweep and Prune

We use a bounding box based scheme to reduce the O(N2) bottleneck of testing all possible

pairs of objects for collisions. In most realistic situations, an object has to be tested against

a small fraction of all objects in the environment for collision. For example, in a simulation

of a vibratory parts feeder most objects are in close proximity to only a few other objects. It

would be pointless and expensive to keep track of all possible interactions between objects

at each time step.

Sorting the bounding boxes surrounding the objects is the key to our Sweep and Prune

approach [CLMP95]. It is not intuitively obvious how to sort bounding boxes in 3-space to

determine overlaps. We use a dimension reduction approach. If two bounding boxes collide

in 3-D, then their orthogonal projections on the x, y, and z axes must overlap. The sweep

and prune algorithm begins by projecting each 3-D bounding box surrounding an object

onto the x, y, and z axes. Since the bounding boxes are axially-aligned, projecting them

onto the coordinate axes results in intervals. We are interested in overlaps among these

intervals, because a pair of bounding boxes can overlap if and only if their intervals overlap
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Figure 2: Bounding box overlaps in two dimensions.

in all three dimensions. Fig. 2 shows the overlapping intervals of the triangular object

between di�erent timesteps.

We construct three lists, one for each dimension. Each list contains the values of the

endpoints of the intervals in each corresponding dimension. By sorting these lists, we can

determine which intervals overlap. In the general case, such a sort would take O(N logN)

time, where n is the number of objects. We can reduce this time bound by keeping the

sorted lists from the previous frame, changing only the interval endpoints. In environments

where the objects make relatively small movements between frames, the lists will be nearly

sorted, so we can sort using insertion sort in expected O(N) time.

In addition to sorting, we need to keep track of changes in overlap status of interval

pairs (i.e. from overlapping in the last time step to non-overlapping in the current time

step, and vice-versa). This can be done in O(N + ex + ey + ez) time, where ex, ey , and

ez are the number of exchanges along the x, y, and z axes while sorting [Bar92]. Since

the exchanges are done during the sorting stage, the running time has the same expected

complexity of O(N). At the end of this stage, we have a list of pairs of objects whose

bounding boxes overlap. The number of pairs correspond to k. We pass this list onto the

next stage of the algorithm that determines for each pair if the convex hulls of the objects

are overlapping.

3.2 Collision Detection between Convex Polytopes

We use the algorithm described in [LC91, Lin93] to keep track of closest features for a

pair of convex polytopes. The algorithm maintains a pair of closest features for each

convex polytope pair and calculates the Euclidean distance between the features to detect

collisions. This approach can be used in a static environment, but is especially well-suited

for dynamic environments in which objects move in a sequence of small, discrete steps.

The method takes advantage of coherence: the closest features change infrequently as the

polytopes move along �nely discretized paths. In most situations, the algorithm runs in

expected constant time if the polytopes are not moving swiftly.
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Figure 3: A walk across Voronoi cells.

3.2.1 Voronoi Regions

Each convex polytope is pre-processed into a modi�ed boundary representation. The poly-

tope data structure has �elds for its features (faces, edges, and vertices) and corresponding

Voronoi regions. Each feature is described by its geometric parameters and its neighboring

features, i.e. the topological information of incidences and adjacencies.

De�nition: A Voronoi region associated with a feature is a set of points closer to that

feature than any other [PS85].

The Voronoi regions form a partition of the space outside the polytope, and form the

generalized Voronoi diagram of the polytope. Note that the generalized Voronoi diagram

of a convex polytope has linear number of features and consists of polyhedral regions. A

cell is the data structure for a Voronoi region of a single feature. It has a set of constraint

planes which bound the Voronoi region with pointers to the neighboring cells (which share

a constraint plane with it) in its data structure. If a point lies on a constraint plane, then

it is equi-distant from the two features which share this constraint plane in their Voronoi

regions. For more details on this construction and its properties, please refer to [Lin93].

3.2.2 Closest Feature Tests

Our method for �nding closest feature pairs is based on Voronoi regions. We start with a

candidate pair of features, one from each polytope, and check whether the closest points

lie on these features. Since the polytopes and their faces are convex, this is a local test

involving only the neighboring features of the current candidate features. If either feature

fails the test, we step to a neighboring feature of one or both candidates, and try again. As

the Euclidean distance between feature pairs must always decrease when a switch is made,

cycling is impossible for non-penetrating objects. An example of the algorithm is given in

Fig. 3.

Given a pair of features Face 1 and vertex Vb, on objects A and B, as the closest features

we test to see if vertex Vb lies within Cell 1 of of Face 1. Vb violates the constraint plane

imposed by CP of Cell 1. The constraint plane CP has a pointer to its adjacent cell Cell

2, so the walk proceeds to test the containmentship of Vb within Cell 2. In similar fashion,

vertex Vb has a cell of its own, and we see if the nearest point Pa on the edge to the vertex

Vb lies within Vb's Voronoi cell. Basically, we are performing the containmentship tests of a
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Figure 4: Pseudo Internal Voronoi regions.

point within a Voronoi region de�ned by the constraint planes of the region. The constraint

plane causing the containmentship test to fail points the next direction for the algorithm

to advance in the search of a new and closer feature. Eventually, we must reach the closest

pair of features.

4 Collision Detection for General Polyhedral Model

The original collision detection algorithm goes into a cyclic loop when penetration occurs

because it tries to compute the closest feature-pair using only the exterior Voronoi regions.

A penetration implies that the polytopes have entered into each other's interior where the

space has previously not been partitioned. This violates the algorithm's basic assumption

that two convex polytopes are separated and therefore results in the cyclic loop.

4.1 Penetration Detection for Polytopes

The key to detecting penetrations lies in partitioning the interior as well as the exterior

of the polytope. We are operating on the convex hull object, so the penetration detection

algorithm is used for determing when the convex hulls of the objects penetrate. For internal

partitioning, internal Voronoi regions can be used. The internal Voronoi regions can be

constructed for any convex polytope by computing all the equi-distant hyperplanes between

two or more facets on the polytope. However the general construction of the internal

Voronoi regions is a non-trivial computation [PS85]. To detect a penetration { as opposed

to knowing all the closest features { it is unnecessary to construct the exact internal Voronoi

regions.

To simply detect a penetration, it is unnecessary to construct the exact internal Voronoi

regions. We are not interested in knowing all the closest features between two interpene-

trating polytopes, but only the fact that they are penetrating.

An approximation to internal Voronoi regions is calculated by �rst computing the cen-

troid of each convex polytope { the weighted average of all vertices. Then, a plane from

each edge is extended towards the centroid. The extended plane tapers to a point, forming

a pyramid-type cone over each face. If all the faces are equi-distant from the centroid, as

in the cuboid, these hyperplanes form the exact Voronoi diagram inside the polytope.
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Figure 5: Walk from external to internal Voronoi regions.

The data structure of these pseudo internal Voronoi regions is similar to the Voronoi

regions described in the previous section. Each region associated with each face has e + 1

hyperplanes de�ning it, where e is the number of edges in the face's boundary. Each

hyperplane has a pointer directing to its neighboring region where the algorithm will step

to next, if the constraint imposed by this constraint plane is violated. In addition, a type

�eld is added in the data structure of a Voronoi cell to indicate whether it is an interior

(pseudo) or exterior Voronoi region.

The original collision detection algorithm goes into a cyclic loop when penetration occurs

because it tries to compute the closest feature-pair using only the exterior Voronoi regions.

A penetration implies that the polytopes have entered into each other's interior where the

space has previously not been partitioned. This violates the algorithm's basic assumption

that two convex polytopes are separated and results in the cyclic loop.

The pseudo internal Voronoi data structure takes care of this situation. Each of the

faces of the given polytope is now used as a constraint plane. If a candidate feature fails the

constraint imposed by the face (indicating the closest feature pair lies possibly behind this

face), the algorithm stepping \enters" inside of the polytope. If at any time we �nd one

point on a feature of one polytope is contained within the pseudo internal Voronoi region

(i.e. this point satis�es the constraints posed by an pseudo internal Voronoi region of the

other polytope), it corresponds to a penetration. Otherwise, the walk progresses as before

and the closest feature pair will be found between these two polytopes. Several possible

scenarios are indicated in Fig. 5.

In Fig. 5, initially two polytopes are separated. The closest pair of features between

them are V and the face cell. (Note that V lies inside the Vornoi cone of the face and vice

versa.) As the pyramid moves closer toward the cuboid and penetrates the face, now V lies

inside of the internal region . This region switch is indicated when V fails the constraint

imposed by the face (i.e. V lies beneath face). At this point, the face and V will be

returned as the critical feature pair where the penetration occurs. The face then points to

its pseudo-internal Vornoi region as the next candidate region. Once the algorithm veri�es

the containment of V inside the internal region, a penetration is reported as in Fig. 5.

The internal and external Voronoi regions are constructed during the pre-processing
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stage. Each Voronoi region de�ned by a large number of constraint planes is subdivided

into smaller region and each new region has a constant number of hyperplanes. Therefore,

all the Voronoi regions are de�ned by a constant number of constraint planes. This permits

us to claim that each veri�cation test (i.e. whether a point is contained within a Voronoi

region) takes only constant time.

In most of applications, we check for collisions at regular time intervals. During each

interval, the objects' motions are relatively small and generally preserve the geometric

relationships. This implies that tracking the new closest feature pairs between objects

involves traversing only a few Voronoi regions per object. Hence, the augmented distance

tracking algorithm with penetration detection runs as the original algorithm in nearly

constant time.

4.2 General Collision Detection

Building on the algorithms described in the previous section and the penetration dection

algorithm, we present an incremental output sensitive algorithm for collision detection

between general polyhedral models. The simplest algorithms are based on convex decom-

position along with algorithms for convex polytopes and multiple object pairs. However,

we chose not to use this approach for a number of reasons. The problem of computing

an optimal convex decomposition of 3-D objects has been shown to be NP-Hard [Cha84].

Recently algorithms for computing convex decomposition have been described in [BT92].

They are fairly non-trivial to implement and in many cases generate too many internal or

\�ctitious" features (edges and faces). For example, consider a polygonal representation

of a torus (Fig. 6). In such a case, any convex decomposition will generate O(n) internal

features and decompositions.

We make use of the coherence between successive frames. For each non-convex polyhe-

dral object, we compute its convex hull and the axis-aligned bounding box enclosing the

convex hull. A four level hierarchical algorithm is used to detect collisions:

1. For each pair of objects, we determine if the bounding boxes are overlapping using

the Sweep and Prune technique of Section 3.1.

2. For each intersecting bounding box pair, we check if the convex hulls of the objects

are colliding using the penetration detection algorithm of Section 4.1.

3. For each intersecting convex hull pair, we compute the areas of intersection on the

convex hulls. The faces comprising these areas are either actual features on the

original object or are faces (introduced by the convex hull) covering features of the

object.

4. The features on the areas of intersection are represented as a pre-computed hier-

archies. They are traversed using a hierarchical version of the Sweep and Prune

technique to �nd exact collision.
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Figure 6: Example of di�cult object to convex decompose.

After the �rst and second stage of the algorithm, we can determine whether the convex

hull of two non-convex objects are colliding. Next, we need to identify the regions of contact,

so that we can examine the interior of the convex hulls for collisions between features not on

the convex hulls. The features internal to the convex hull are organized in a pre-processed

data structure for e�cient traversal.

We �rst describe the pre-processing used to construct the data structures for the ex-

tended Hierarchical Sweep and Prune traversal. Then in section 4.7 we explain how this

technique is used in a dynamic environment.

4.3 Classifying the Features

Each non-convex object is described as a set of faces. Each face consists of a list of vertices

describing the edges of the face. The faces, edges, and vertices comprising an object

are called its features. Our �rst step in pre-processing is to categorize these features.

Constructing the convex hull of the object separates its features into three distinct regions

(as in Fig. 7). The features of the object that are coincident with the faces of the convex

hull are identi�ed as the hull features of the object. The features that do not lie on the

convex hull are identi�ed as the concavity features. The vertices and edges bordering the

hull and concavity features are designated as the boundary features. Formally, we de�ne

CH(A) as the convex hull of object A, HF(A) as the hull features of object A, CF(A) as

the concavity features of object A, and BF(A) as the boundary features of object A. The

relationship among these features can be represented using set operations:

HF(A) = A \CH(A):

CF(A) = CH(A)�HF(A):

BF(A) = HF(A)\CF(A):

Although we have grouped features of the same type in a single set, in reality each

single set is a union of disjoint sets of the same type of features. We identify these subsets

using a depth-�rst search technique. Any face that is a member of the hull feature set has

to have all of its vertices on the convex hull. Using this observation, we begin with a face

belonging to the object lying on the convex hull and determine if any of its neighboring
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Figure 7: Example of Hull, Concavity, and Boundary Features.

faces also lie on the convex hull. This operation is repeated recursively. The end product

is a single hull feature set composed of faces of the object on the convex hull. If there are

any additional faces of the object that lie on the convex hull, but are not members of this

set, then they are part of at least one other set. The depth-�rst search technique is applied

again to all such faces until all the faces lying on the convex hull are associated with a hull

feature set. Applying this method for an arbitrary object A results in a set of disjoint hull

feature sets. This collection is denoted as HF(A).

In a similar fashion, the concavity features are identi�ed. Any face that has one or

more of its vertices not on the convex hull, is a member of the concavity feature set. Here

too, multiple disjoint concavity feature sets can result. For example, a sphere with multiple

dimples or dents (like a golf ball) is an object with multiple disjoint concavities.

The boundary feature set is the intersection of the hull feature set and the concavity

feature set. The vertices and edges of the boundary can be identi�ed by looking at the

faces of the hull features which border a concavity. So any face that is part of a concavity,

but has at least one vertex/edge on the convex hull contains a boundary vertex/edge. To

identify the boundary vertices as a connected series of segments a three-step process is

followed:

1. All the boundary vertices are identi�ed by examining faces belonging to the concavity

feature set bordering faces belonging to the hull feature set. We �nd them by com-

paring the vertices of the convex hull with the vertices of the object. Faces that are

part of a concavity but have a vertex on the convex hull, contain a boundary vertex.

2. We begin from one boundary vertex and determine if any faces from the concavity

feature set adjoining it contain boundary vertices. For each face that does, the edges

leading from this vertex to those other boundary vertices form part of a boundary

loop. This operation is applied recursively. When this operation is applied to all

boundary vertices, the end result is a series of boundary loops.

3. All boundary loops that lie on the same plane are grouped together. It is possible

that a boundary loop has only a portion on a common plane with other boundary

loops. The loops and loop segments that lie on a common plane also lie on the same

face of the convex hull of this object. So for each face of the convex hull, the boundary

loops and loop segments resting on it are identi�ed.
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In addition, each concavity feature subset has associated with it a set of boundary loops.

In particular, these are the loops that lie on the convex hull faces covering this concavity

feature. The boundary loops can form complicated 3-D structures.

� The boundary loops bordering a concavity are 3-dimensional structures shown in

Fig. 7.

� The boundary loop can have holes in the sense that they can be arbitrarily nested.

See for example Fig. 8. The rims of a series of connected cylindrical shells of the

same height but decreasing diameter that are nested within each other form a nested

collection of boundary loops.

� The boundary loop can form self-intersecting structures.

4.4 Computing Caps

We want to compute a \cap" over each concavity feature subset using its boundary loops.

These caps \hide" the features of the concavity. Multiple caps need to be computed because

an object may be composed of disjoint concavity feature subsets. The dimpled sphere

described earlier requires multiple caps because it consists of multiple concavity feature

subsets connected by a single hull feature set. Using our former notation, a cap of object

A is denoted as CAP(A):

CAP(A) = CH(A)�A:

There has been some work done on computing 2-dimensional caps (caps for non-convex

polygons) [Lou66]. A cap algorithm for simple 3-dimensional objects has been described in

[AP76]. Fig. 9 shows an example of a cap.

The caps are computing the \missing" regions of the object so as to form its convex

hull. The convex hull of an object is unique, and every face of the convex hull is a convex

polygon. However, an original face of the object may be coincident with only a portion of

the convex hull face covering it. These portions have to be carefully subtracted from the

convex hull faces. The end result is that arbitrary non-simple polygons may be formed out

of the convex hull faces with this subtraction process (See Fig. 9 for a simple example).

This leads to the following O(n2) algorithm for computing caps, provided the faces of the

object and convex hull are bounded by a constant number of edges:
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Figure 9: Cap Example.

1. Construct the convex hull of the object.

2. Each face of the object lying on the convex hull is subtracted from the convex hull

by �nding the polygons it intersects or overlaps.

3. Repeat steps 1 and 2 until no faces are left on the object that lie on the convex hull.

4. We identify each cap with the concavity features it covers. For each concavity feature

we use an algorithm described earlier to determine its boundary vertices. A cap that

uses the same vertices is its cover.

The O(n2) complexity of the algorithm comes from convex hull computation. In our im-

plementation we use incremental algorithms of quadratic complexity as opposed to optimal

algorithms of complexity O(n logn) [PS85]. Moreover, the resulting non-simple polygons

are triangulated. The implementation of this algorithm has some numerical robustness

problems for long thin faces. An implementation less susceptible to this is a brute force

triangulation of the boundary vertex sets. All pairs of vertices resting on a common convex

hull face are considered as possible new edges. If a new edge crosses an existing edge or

rests on an existing face of the object it is rejected. Otherwise, it is added to the list of

legal edges. Its worst case complexity can be O(n3), but it is simpler to implement.

After the cap computation, one �nal data structure is constructed. Each concavity

feature subset is represented as an axis-aligned bounding box hierarchy. The bounding box

hierarchy is traversed using an extended version of the Sweep and Prune algorithm when

trying to compute collisions between the features that do not lie on the convex hull.
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4.5 Constructing the Bounding Box Hierarchy

We have used a minor variation of octrees based on vertex partitioning. We refer to as

an octree variant (OTV). Initially, for both of them, the vertices of each concavity are

surrounded by an axis aligned bounding box. For an octree hierarchy, this bounding box

is split into smaller bounding boxes with uniformly spaced cutting planes along the x,

y, and z axes. For example, splitting the box in half along the x, y, and z axes results

in eight children for the top-level box. The number of cuts along each axis is a user-

de�nable parameter. The subdivision of child boxes continues recursively until each child

box contains a threshold number of vertices. Then the faces associated with vertices are

introduced.

Each face is surrounded by an axis aligned bounding box that contains all of its orienta-

tions. Usually these face bounding boxes do not �t completely inside the leaf box containing

the vertices. So each such face is trimmed against the sides of the leaf box. The trimmed

features are introduced as new faces into the boxes they spill over. This operation is carried

out over all boxes at the leaf nodes and at the end of it a hierarchical representation of

the concavity subset is constructed. An alternative to splitting the faces that straddle the

boundaries of the partitioning walls is to evenly divide the faces among the bounding boxes

they overlap. This results in overlapping boxes, but no new faces are introduced.

A binary-space-partitioning (BSP) tree was not used, primarily because for our sweep

and prune technique to work, axis-aligned bounding boxes are required. For the octree

variant tree (OTV), the cutting planes used to divide the vertices are not uniformly dis-

tributed over the bounding box volume. The cutting planes are introduced in a manner

similar to k � d trees [PS85]. For example, a single cut along each of the x, y, and z axes

is implemented as follows:

� The median of the x-coordinates is found. A cutting plane perpendicular to the x-axis

splits them into two groups: X1 and X2.

� The median y-coordinates of the vertices of X1 and X2 are found along the y-axis

and split separately into two sub-groups each: XY11, XY12, XY21, and XY22.

� Each of the four groups from the y-cut median is found along the z-axis, and split

into two group each. This results in eight total sub-groups for the original box.

The bounding box hierarchy computed by this algorithm is applied recursively. Its

termination condition is the same as that of the octree's. When a bounding box has

vertices below a threshold, the cutting procedure stops and faces are introduced at these

leaf boxes. Again the faces are trimmed against the sides of the leaf boxes as in the octree's

construction or the faces are divided evenly among the boxes. This tree is more expensive

to construct because the cuts require �nding the median of the vertices.

A total hierarchy for each polytope is constructed by building sub-hierarchies for each

hull feature subset and concavity feature subset. We have experimented with di�erent
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con�gurations for these hierarchies by varying the number of cuts along the axes for both

types of hierarchies.

As the objects move, the bounding box hierarchy has to be updated. Each bounding

box examines its children and �nds the minimum and maximum coordinates of its children

along each axis and uses them to determine its dimensions. The operation is repeated

recursively up the tree until the root node is reached. Several optimizations are used for

performance improvement. The �rst is to make the boxes containing the faces large enough

to contain the faces at any orientation. Thus, updating the hierarchy amounts translating

the box coordinates. We have implemented this method for the bounding boxes containing

the convex hulls of the objects with excellent results [CLMP95]. Another approach is to

pre-compute the hierarchy dimensions at common orientations and interpolate between

these.

4.6 Determining Contact Regions between Polytopes

When the convex hulls of two polytopes are determined to be colliding based on the pen-

etration algorithm, we enter the third stage of the algorithm. The collision between the

objects' the convex hulls has three cases as illustrated in Fig. 10:

1. The collision is between hull feature subsets on both the objects. This is a \real"

collision, and the objects are not permitted to penetrate any further because the

objects are physically touching each other.

2. The collision is between a cap of one object and a convex feature subset of the other

object. We want to check if the convex feature subset collides with any of the faces

underneath the cap belonging to the concavity.

3. The collision is between two caps. We want to determine if any faces underneath

both caps collide.

There can be various combinations of these cases. Determining the interpenetration

volume of the convex hulls delineates which caps (and the features underneath them) and

which hull features from both objects are involved in the collision. A optimal linear time

convex polytope penetration algorithm is described in [Cha89]. The algorithm pre-computes

a hierarchy of simpli�ed representations for each polytope (the Dobkin-Kirkpatrick hierar-

chy [DK85]) and traces the intersection through this hierarchy. The pre-processing and the

algorithm are quite complex, so we present two simpler methods that based on coherence.

When two convex hulls A and B interpenetrate, then at least one feature of a 2 A

is contained within the pseudo internal Voronoi region of B and vice-versa for feature

b 2 B. These two features can be used as the starting basis to construct the complete

interpenetrated volume with a depth-�rst-search technique. Each adjacent feature of a is

tested against the pseudo Voronoi cell containing a and eventually the pseudo Voronoi cell

containing it is determined. This is repeated recursively for adjacent features of a and b.

After the initial cost of constructing this interpenetration volume, the update time for each
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(a)
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Figure 10: Collisions involving di�erent feature sets.

feature, as each of these features move slightly from frame to frame, is an expected constant

due to coherence (for each feature). Moreover, only the penetrating features on both objects

are considered so the overall cost is linear in the number of features penetrating. The total

expected running time using the internal penetration walk is O(n).

There is another simple approach to compute the penetrating region. The initial in-

terpenetration point a can used to construct the intersection volume in another way. We

designate a point p = (px; py; pz) that is an � o�set from a and is internal to both con-

vex hulls to be the origin. The vertices of the convex hulls and normals of each face are

recomputed relative to this origin.

Each convex hull can be thought of as the intersection of the half-spaces described by

the faces. The half space of a face f is described by the inequality:

nx(f)x+ ny(f)y + nz(f)z � d(f)

where nx(f); ny(f); nz(f); and d(f) are the normal and skew away from the origin of the

face. We can normalize d(f) to be 1. We now de�ne a dual transform T such that the

face planes of the convex hull are transformed to points by dualizing their normals. Vertex

points of the convex hull are dualized to face planes.

A point q = (qx; qy ; qz) originally a distance d =
q
q2x + q2y + q2z under the transformation

becomes a plane 1=d from the origin on the other side [DF78]. A similar transformation

occurs for face planes. Because we have de�ned a new origin, internal to both convex hulls,

the closer faces move further away and the further ones closer with this transformation. To
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Figure 11: Tree Hierarchies.

�nd the interpenetrating volume, we simply �nd the convex hull of the dualized face planes

(which are points) and transform them back into face planes on the objects [DF78].

With this computation we now know which caps have been penetrated as well as which

features of the hull features have penetrated. The hull and concavity features are in a

pre-computed hierarchy, so we traverse the two hierarchies to determine the contact status

between the two objects. As the objects move, this overlapping convex volume changes

little from frame to frame, so the convex hull computation can use the previous convex hull

vertices as the starting basis for faster results.

Once the algorithm detects interpenetration, it applies hierarchical Sweep and Prune

between the object representations to determine precise contacts in successive instances.

It uses the inital penetration detection algorithm's features as the starting features and

traverses upwards in object hierarchies to see what extent the objects are overlapping. This

process continues recursively until we reach a high enough level at which the hierarchies

do not overlap. Then from this point, we traverse using downwards in both hierarchies to

the face bounding box level to �nd the exact points of contact. The hierarchical Sweep and

Prune is explained in the next section.

4.7 Hierarchical Sweep and Prune

Consider two object hierarchies of levels 3 and 4 as shown in the Fig. 11. Initially, we have

discovered, via the penetration detection algorithm, that the root level bounding boxes

object A and object B overlap. The children of these bounding boxes are sorted using

the Sweep and Prune technique to determine if they too overlap. Sorting and determining

children's overlap status is done recursively until we reach the leaf boxes which contain the

faces of both hierarchies. If the hierarchies are of the same height, then we test the boxes

at the levels (1; 1); (2; 2); (3; 3); etc successively. If the hierarchies are of di�erent heights,

then the last level of the shallower hierarchy is tested against the descending levels of the

other hierarchy. For example, in Fig. 11 the bounding boxes of levels (1; 1); (2; 2); (3; 3),

and (3; 4) are tested because the second hierarchy has a greater depth. The hierarchical

sort manager keeps track of these level pairs between a pair of objects.
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Figure 12: Chain interlocked tori.

When both hierarchies are at the leaf level, the bounding boxes enclosing faces are sorted

and tested for overlaps. At this last level, we check to see if the the faces of the relevant leaf

nodes are intersecting. An intersection consisting of one or more faces indicates a collision

between the objects. The exact contact points are computed by �nding the intersection of

the polygons and passed to the application to plan an appropriate response.

The level by level sorting of the bounding box hierarchies is tricky to manage both

in terms of e�ciency and memory usage for objects composed of thousands of polygons.

Multiple lists have to be sorted at each level since not all children overlap. Moreover,

this information needs to be managed e�ciently. We use a bounding box management

scheme that allocates the space for the data once, but can have multiple pointers to it. So

instead of allocating this data value at multiple levels in the hierarchy, it e�ciently swaps

pointers during the sort. It also allocates only as much memory per pair of objects as the

number of features of the objects that are interacting (as opposed to allocating memory

for all possible feature pairs for the objects). This is critical because an ine�cient all pairs

allocation quickly results in memory exhaustion for objects of thousands of polygons.

The data structure also keeps the data from each sorting pass to use on the next

pass. The previous frame's sorted bounding box lists, which indicate the coordinates of

objects' features, usually change little from frame to frame. Therefore, the lists in the

current frame, with the updated coordinates, should require only a minimal amount of

swapping. Exploiting this coherence is critical to the performance of our approach. We

have implemented several simulations using this hierarchy data structure with promising

results.

5 Applications

The Fig. 12 shows a still from one of the simulations we used to test our collision detection

algorithm.

The tori simulation consists of seven interlocked tori (a toroidal chain). We polygonize

each torus into 400 polygons and check for collision between the polyhedral approxima-

tions. After the polyhedral models overlap, a local algebraic solver checks for exact col-

lision [LM95]. Each ring was initially given an arbitrary translation and rotation vector.

19



Tori Tree Type Levels X-Y-Z Cuts Iteration Time

2 None N/A N/A 0.045 secs.

2 Octree 1 2-2-2 0.014 secs.

2 OTV 1 2-2-2 0.012 secs.

8 Octree 2 3-2-2/2-2-2 0.046 secs.

8 OTV 2 3-2-2/2-2-2 0.038 secs.

Table 1: Performance of the collision detection algorithm on the toroidal chain

Their motions resulted in elastic collisions. The interlocked con�guration generated many

collisions involving features not on the convex hull. This problem was speci�cally chosen

to illustrate that our algorithm performs well in di�cult simulations.

We tried various con�gurations of the bounding box hierarchy with the tori chain: no

hierarchy, octree tree variant (OTV) vs octree, and variable number of children per level.

Table 5 is a synopsis of our results. These numbers do not include rendering time.

The �rst entry shows the time for a brute force collision scheme where all pairs of face

bounding boxes were sorted. So for two interlocked tori, we applied an initial sweep and

prune over all bounding boxes surrounding the faces of the two objects. Those overlapping

were further tested for face-face intersections. The second and third entries constructed a

one level hierarchy for each torus. Each torus was split into eight parts and the bounding

boxes surrounding the faces were assigned to one of these eight boxes depending on whether

they �t inside the boxes. The octree version split the faces uniformly whereas the octree

variant partitioned the faces depending on vertex position. The time for two tori improved

by a factor of three with the hierarchies. The third and fourth entries constructed a two

level hierarchy of 12 children at the �rst level and then 8 children per node on the second

level. These last two con�gurations were used on an interlocked chain of eight tori.

5.1 Application to Threaded Insertion

We have applied the contact determination algorithm for dynamic simulation of a threaded

insertion. According to an earlier study by Nevins and Whitney [NW80], the insertion and

tightening of threaded fasteners is one of the twelve most commonly assembled tasks. More

recently, Nicolson and Fearing have presented the �rst algorithm and system for dynamic

simulation of screw insertion [NF91]. In this section, we briey describe the geometric

model of the screw based on the formulation in [NF91].

A screw thread is a ridge of a thread pro�le, wrapped in a helical fashion about a

cylinder. The pitch is the spatial period of the thread pro�le. The external screw thread

is the thread of the bolt and the internal screw thread is that on a nut. The root of the

pro�le is the smallest diameter and the crest is the largest. Based on these de�nitions, a

rounded crest and root thread pro�le can be made with the following four variables:
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Figure 13: A cross-threaded bolt and nut con�guration [NF91]

p: pitch.

d: internal thread basic major diameter.

a: allowance ratio, 0 � a � 1, where the actual allowance is a � d

r: root and crest radius.

The ratio d
p
determines if the bolt has �ne or coarse threads. Typically (d

p
)�ne = 2(d

p
)coarse.

The allowance ratio gives the relative radius of the bolt with respect to the nut. A cross-

section of the geometric model is shown in Figure 13.

The thread pro�le is parameterized as a function of position, t, and thread pitch, p.

Given r and a, it can be represented as a bivariate piecewise function of t and p [NF91]. This

thread pro�le is used to formulate the surface of the screw in space as a parametric function

of two variables. Given the geometric description of the thread, the dynamic simulation

requires precise determination of contact points between the nut and the bolt. Since the

motion of the bolt can not be expressed as a closed form function of time, it is also very

useful to know the exact distance between them. This helps in choosing the appropriate

time steps. There are no general purpose analytic and e�cient approaches known for

computing the contact points between the bolt and the nut. Nicolson and Fearing [NF91]

used a set of \critical points" on the thread pro�le at which contact is most likely to occur.

This is based on approximating the bolt by a helix, whose radius is same as that at the

crest of the bolt thread. Given the set of critical points, their algorithm checks whether

these critical points lie on the surface of the nut. In their simulation, collision detection

accounted for almost half of the simulation time and misses some contacts at times [Nic94].

We have applied our collision detection algorithm to a polygonal approximation of the

bolt and nut. The polygonal approximation is speci�ed to an � tolerance of the original

model. For our measurements � = 0:04 and as a result we obtain 154 polygons corresponding

to each thread of the bolt and the nut. The top and the bottom of the bolt are modeled

as cylinders and their polygonal approximation consists of 100 polygons each. For a bolt

with Tb threads and a nut with Tn threads, this reduces to computing all the contacts

between 200 + 154Tb polygons corresponding to the bolt and 154Tn polygons of the nut.

The motion of the bolt is a cylindrical function speci�ed by the controller. The algorithm

at each instance is able to detect all possible contacts between the polygons. In case there
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Tb (Bolt Tn (Nut Bolt Nut Coll.

Threads) Threads) Polygons Polygons Det. Time

3 3 562 462 0.059 sec.

6 6 1024 924 0.099 sec.

9 9 1486 1386 0.191 sec.

Table 2: Performance of Collision Detection Algorithm on Threaded Insertion

are no contacts, it is able to compute the closest distance between the polygonal features.

In Table 2, we have highlighted the average performance of the collision detection routines

for the given simulation. All simulations were performed on an HP 735 with 64 MB of

main memory.

At each instance the position of the nut is �xed and the bolt is undergoing rigid motion.

The algorithm updates the positions of each vertex on the bolt and uses it to compute the

necessary boundary boxes for the sweep and prune method. The overall running time of the

contact determination algorithm increases linearly, despite the fact the number of possible

interactions increases quadratically. As a result, we are able to accurately compute all the

contacts e�ciently.

6 Robustness Issues

All the algorithms described in this paper have been implemented in C. We use oating-

point arithmetic. In practice we have encountered many degenerate geometric problems

while testing our algorithm on many real-world models. We are listing a few of them here.

� The model may have coincident polygons. This a�ects the feature classi�cation algo-

rithm and at times the algorithm may miss collision.

� The model may have co-planar faces. In several parts of the overall algorithm, we

compute the convex hull of an object. It is a well-known problem that taking the

convex hull of co-planar faces (hence vertices) causes numerical problems [O'R94].

� The model may have T-vertices, where one edge intersects another edge somewhere

in the middle. We add extra edges to remove the T-vertices.

� Problems in constructing of the bounding box hierarchy. While grouping the faces

into boxes, we use orthogonal cutting planes which cut the existing faces. These cuts

can result in long thin faces which combined with oating point arithmetic cause

representation problems.

For many of these conditions, we wrote pre-processing code to remove or identify them.

In several instances, we have introduced � tolerance tests. However, it is rather di�cult
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to guarantee robustness based on these tests. Future work includes perturbation-based

approaches to handle degeneracies.

7 Conclusions

We have presented an incremental algorithm for contact determination between general

polyhedral solid models. Its running time is a function of the complexity of the collision

status between the models. The algorithm e�ciently and accurately computes all the

contact points between moving objects. We have demonstrated it on simulations of high

geometric complexity.
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