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Abstract

We present techniques for fast motion planning by using
discrete approximations of generalized Voronoi diagrams,
computed with graphics hardware. Approaches based on
this diagram computation are applicable to both static
and dynamic environments of fairly high complexity. We
compute a discrete Voronoi diagram by rendering a three-
dimensional distance mesh for each Voronoi site. The sites
can be points, line segments, polygons, polyhedra, curves
and surfaces. The computation of the generalized Voronoi
diagram provides fast proximity query toolkits for motion
planning. The tools provide the distance to the nearest ob-
stacle stored in the Z-buffer, as well as the Voronoi bound-
aries, Voronoi vertices and weighted Voronoi graphs ex-
tracted from the frame buffer using continuation methods.
We have implemented these algorithms and demonstrated
their performance for path planning in a complex dynamic
environment composed of more than 140,000 polygons.

1 Introduction

Motion planning is one of the fundamental problems in
robotics and automation. Most of the earlier work has
focused on the classic Piano Mover’s problem. Besides
robotics, this problem also arises in motion control and
planning of digital actors or autonomous agents [KKKL94]
in computer animation, maintainability study in virtual
prototyping [CL95], drug design [FKL+97] and robot-
assisted medical surgery [STK+94, TAL99]. This prob-
lem has been well studied for decades and a number of al-
gorithms have been proposed. Most of them can be clas-
sified into global or local methods. Some of the well-
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known approaches include roadmap algorithms, exact and
approximate cell-decomposition, and potential field meth-
ods [Lat91].

1.1 Related Work

Several algorithms have been proposed based on gener-
alized Voronoi diagrams [CD87,́OSY83, CB94, CB95a,
CB95b, CB96, CKR97a, CKR97b, CMB97, Cho97, KC97,
SAW99b, SAW99a]. The underlying idea is that the
boundaries of generalized Voronoi diagrams or simplified
Voronoi diagrams provide paths of maximal clearance be-
tween the robot and the obstacles. This characteristic of
the paths generated by Voronoi-based algorithms is simi-
lar to those generated by the potential field based roadmap
methods [BL91, CL90, CL93, Lat91]. However, due to the
practical complexity of computing generalized Voronoi di-
agrams, the applications of such planners have been limited
to environments composed of a few simple obstacles.

Our approach also treats Voronoi diagrams as paths of
maximal clearance. However, we accelerate the compu-
tation by designing algorithms that make use of graph-
ics hardware. Polygon rasterization graphics hardware has
been used in geometric computation [GMTF89, RMS92,
RR86, HCK+99a], and in motion planning for construct-
ing configuration space [LRDG90]. Our method imposes
no restrictions on input size or primitive type, is efficient
for planning in dynamic environments, and is easy to im-
plement. Though the computation is discrete, we enumer-
ate all sources of errors and generate output within a spec-
ified tolerance.

1.2 Main Contribution

In this paper, we present techniques for fast motion plan-
ning that use a discrete approximation of the generalized
Voronoi diagram computed with graphics hardware. We



show how to utilize rasterization hardware to compute the
following information for path planning in complex envi-
ronments with stationary and moving obstacles and other
robots atinteractive rates:

� Approximate distance functions with bounded error,
suitable for not only classical motion planning in a
static environment, but also for planning in a dynamic
environment and for sensor-based planning.

� Voronoi neighbors, Voronoi boundaries, and Voronoi
vertices, used to identify potential paths with impor-
tant “junction points” or “meet points” to ensure the
correct topological connection of paths.

� Color and distance buffers to provide “weights” for all
Voronoi edges. These values can be further used to
estimate potential “narrow” passages in configuration
space, reduce the search space, establish milestones,
or bias paths based on length, clearance, or other con-
straints.

We demonstrate their effectiveness with our prototype
implementation of a potential field based planner in a three-
dimensional configuration space. We show that it is feasi-
ble to plan motions of autonomous robots based on gener-
alized Voronoi diagrams for highly complex environments
composed of hundreds of thousands of primitives at inter-
active rates. Our approach is complementary to other tech-
niques proposed for computing roadmaps. However, this
technique is simple to implement and uses graphics hard-
ware capabilities to achieve high performance.

1.3 Organization

The rest of the paper is organized as follows: In Sec-
tion 2, we describe an overview of our approach. Sec-
tion 3 presents our algorithm for computing the generalized
Voronoi diagram using graphics hardware. Section 4 dis-
cusses the use of the discrete generalized Voronoi diagram
for motion planning. We demonstrate our prototype system
implementation in Section 5. Finally, we conclude with fu-
ture research directions.

2 Algorithm Overview

In this section, we briefly describe the basic ideas of our
approach, giving an overview of generalized Voronoi dia-
grams and polygon rasterization hardware. Next, we sum-
marize how we accelerate the computation of generalized
Voronoi diagrams with graphics hardware and use them for
motion planning.

2.1 Generalized Voronoi Diagram

Let the set of input sites be denoted ass1; s2; : : : ; sn. For
each sitesi, define a distance functiondi(x) = dist(si;x).
The Voronoi region of si is the setVi = fx j di(x) �

dj(x) 8j 6= ig.
The collection of regionsV1; : : : ; Vn is called thegener-

alized Voronoi diagram orGVD, which partitions the space
into cells suitable for proximity queries.

The (ordinary) Voronoi diagram corresponds to the case
when eachsi is an individual point. The boundaries of the
regionsVi are calledVoronoi boundaries, which are loci of
points equidistant to at least two sites. TheVoronoi ver-
tices are locations equidistant to at least three Voronoisites.
For sites such as points, lines, polygons, and splines, the
Voronoi boundaries are portions of algebraic curves or sur-
faces.

2.2 Graphics Rasterization Hardware

Graphics hardware has readily available, and is often pro-
vided with desktop computers. To take advantage of ad-
vances in hardware development, we make use of standard
Z-buffered raster graphics hardware for rendering poly-
gons. The color buffer stores the attributes (intensity or
shade) of each pixel in the image space; the depth buffer
(Z-buffer) stores the depth of every visible pixel. Given the
vertices of a triangle, the rasterization hardware interpo-
lates depth linearly across the triangle’s interior. All raster
samples covered by a triangle have an interpolated depth.

2.3 Key Concept

We compute a discrete Voronoi diagram by rendering a
three-dimensional distance mesh for each site. A site may
be a point, line segment, polygon, polyhedron, curve, or
curved surface. The 3D polygonal distance mesh is a
bounded-error approximation of a possibly non-linear dis-
tance function over a plane. Each site is assigned a unique
identifying color, and the corresponding distance mesh is
rendered in that color using a parallel projection. The
graphics system performs a depth test for each pixel in or-
der to resolve the visibility of surfaces. The depth buffer
keeps a running minimum depth as polygons are rendered.
When the minimum depth is updated, the frame buffer is
also updated with the pixel’s color. Thus, the rasterization
provides, for each pixel, the identity of the nearest site (en-
coded as a color) and the distance to that site (encoded as
a depth value). The error in the mesh is bounded to be
smaller than the half the distance between diagonally adja-
cent pixel samples, in order to maintain an accurate Voronoi
diagram.



2.4 Motion Planning Using GVD

The depth buffer stores the distance values needed for
many motion planning algorithms. The distance gradi-
ent is easily computed by finite differences. The color ID
for each Voronoi site is used to identify the nearest neigh-
bors, the Voronoi boundaries, the Voronoi vertices, and
the Voronoi graph. By traveling on the Voronoi bound-
aries, the robot steers away from all obstacles. The Voronoi
boundaries can also provide “hints” for sampling the con-
figuration space for probabilistic roadmap methods. Fur-
thermore, we can use the distance information to elimi-
nate paths that are clearly not feasible, or to bias the robot
toward regions of with sufficient clearance or short path
length. Since we compute the Voronoi diagram of the en-
vironment at interactive rates, these techniques are useful
for dynamic environments where obstacles or other robots
are moving, and forsensor-based planningwhere the robot
constructs a map of the partially known environment as it
explores with sensor information.

3 Computing Generalized
Voronoi Diagrams Using
Graphics Hardware

In 2D, the distance function for a point is a circular cone.
Our algorithm approximates this cone with a fan of nar-
row radial triangles. In this section, we describe distance
functions for points and other site types in the plane, and
also in a planar slice of three-space. We also present tech-
niques for computing error-bounded polygonal approxima-
tions to these distance functions. More details are given in
[HCK+99b].

3.1 2D Voronoi Diagrams

For apoint in 2D, the conical distance function is approxi-
mated with a fan of radial triangles. The maximum error in
this approximation is at the mesh edge. In the general case,
the radius of the mesh must be equal to the diameter of the
scene (though in specific cases, it can often be made much
shorter). The number of triangles in the mesh is chosen so
as to commit the maximum allowable error� at the mesh
edge. A reasonable value for� is half the distance between
diagonally adjacent pixels, measured in scene coordinates.
Under this assumption, a simple calculation [HCK+99a]
shows that the distance mesh for a point requires 60 trian-
gles for a512� 512 display resolution, or 85 triangles for
a 1024 � 1024 display resolution. In practice, the radius
of the mesh can safely be taken to be significantly less than
the scene diameter, allowing for a smaller mesh with fewer
triangles.

An open line segment in 2D has a tent-shaped distance
function. Since the function is linear, it can be meshed
without error. The algorithm draws two quadrilaterals. A
polygonal chain in 2D is approximated by a pair of quadri-
laterals for the interior of each edge, together with a partial
cone at each vertex on its convex side.

3.2 3D Voronoi Diagrams and Other Gener-
alizations

Our hardware-based algorithms have been extended to
compute 3D Voronoi diagrams. The implementation of our
motion planner presented in this paper works in three de-
grees of freedom based on a 2D Voronoi diagram. Our ex-
tended algorithm, however, could be applied to planners
with more degrees of freedom. The 3D algorithm is de-
scribed in [HCK+99a, HCK+99b] and has been used suc-
cessfully for planning of a free-flying rigid robot in a 3D
environment [PHLM00]. The basic idea is to compute the
diagram in a series of parallel 2D slices.

So far we have described methods for linear sites. For
a curved site such as a B´ezier curve, the distance func-
tion is a high-degree algebraic function. We tessellate a
Bézier curve into a piecewise linear approximation. The
tessellation error is independent of the meshing error, so
the two errors combine by addition. Bounded-error tessel-
lation methods for parametric curves and surfaces can be
found in [FG87] and [Kum96].

Our method also generalizes easily toadditively-
weighted, multiplicatively-weighted and farthest-site
Voronoi diagrams. Each of these corresponds to a simple
transformation of the distance mesh for a site. Note
that scaling the distance function for a multiplicatively-
weighted diagram also scales the meshing error.

4 Interactive Motion Planning

The computation of a generalized Voronoi diagram using
graphics hardware provides us discrete information in two
buffers: the depth buffer and the color buffer. Both are used
for motion planning in a two-dimensional scene.

4.1 Use of Depth Buffer

The depth buffer gives the distance from each sample point
to its nearest obstacle. Distance information is often used
for proximity queries. Potential-field motion planners use
a combination of an attractive force to the goal and a re-
pulsive force away from the obstacles in order to plan the
motion of the robot. The strength of the repulsive force is
often a function of the distance to the nearest obstacle, and
the direction of force is based on the gradient of the dis-
tance.



We begin by computing the discrete Voronoi diagram of
the obstacles in the scene. We determine the repulsive force
acting on the robot by examining the distance buffer. At a
point on the robot, we interpolate a distance and compute a
gradient by finite differences.

In order to compute the force acting on a robot, we sam-
ple the robot’s geometry. We determine the repulsive force
acting at each sample point on the robot. Following rigid-
body dynamics, we decompose these forces into those act-
ing on the center of mass and those applying torque. An al-
ternative approach, useful in configuration space or for disk
robots, is to apply the force on only the center of mass of
the object, ignoring torque.

Hardware-accelerated Voronoi computation is espe-
cially useful for motion planning in dynamic environments
where noa priori information is available about the motion
of obstacles or multiple mobile robots. As obstacles move,
the distance buffer is dynamically recomputed, and the re-
pulsive forces on the robot change. In most cases, the robot
will avoid the moving obstacles since the distance to each
obstacle is dynamically updated and thus the robot will be
pushed away from the obstacles. In this way, the fast com-
putation of robot-to-obstacle distance using the hardware
enables local motion planning through dynamic environ-
ments.

4.2 Use of Color Buffer

In the continuous domain, the Voronoi boundary represents
the set of points that are equidistant from the two or more
nearest obstacles and the Voronoi vertices are the points
that are equidistant from three or more closest obstacles. A
robot which moves along a Voronoi boundary follows the
maximally clear path between two obstacles. The Voronoi
vertices determine the branching points of these maximally
clear paths, providing alternative paths to the goal. Our
method finds approximate Voronoi boundaries by analyz-
ing the rendered output in the color buffer.

The color buffer gives the ID of the nearest obstacle to
each sample point. A magnified discrete Voronoi diagram
is shown in Figure 1. The pixels are treated as squares tiling
the plane. The squares’ sides and corners form a regular
4-valent graph. An edge of this graph is said to be a mem-
ber of thediscrete Voronoi boundary if its two adjacent pix-
els are colored differently. Adiscrete Voronoi vertex is a
node with three or four incident boundaries. The discrete
Voronoi boundaries and vertices form thediscrete Voronoi
graph. This graph can be qualitatively different from the
actual Voronoi diagram. For example, the discrete Voronoi
graph in Figure 1 has a two-cycle, which cannot occur in
the continuous Voronoi diagram.

From the color buffer, we compute the discrete Voronoi
graph by using a continuationmethod. We begin by search-
ing the outside edge of the color buffer for a pair of ad-

Figure 1. A portion of the discrete Voronoi
graph of three sites.

jacent, different-colored pixels and then trace out the rest
of the component by repeatedly examining adjacent pix-
els. Discrete Voronoi vertices are inserted into the graph
as they are covered by the tracing algorithm. The edges of
the graph are formed by boundary chains.

The use of the color buffer places some additional re-
strictions on the representation of the obstacles. Large,
non-convex obstacles may need to be broken up into
smaller obstacles, so that the Voronoi diagram reveals path-
ways needed for planning. However, breaking a large
obstacle into a great number of small obstacles is to be
avoided when possible, as it makes the Voronoi diagram
unnecessarily complex and cluttered, and increases the risk
of resolution error.

As with the distance buffer, the fact that we can quickly
recompute the color buffer allows us to plan through dy-
namic scenes. In this case, the update of the color buffer
and the associated Voronoi graph can be computed at inter-
active rates. This helps to identify new potential paths in a
dynamic environment.

4.3 Utilizing Both Buffers

The distance and color buffers can be used together in a mo-
tion planner. Here we describe two techniques that we have
developed and implemented successfully.

The first algorithm plans motion along the discrete
Voronoi boundary, computed from the color buffer. Along
each arc of the boundary, the distance to the nearest ob-
stacle is given in the distance buffer. When the discrete
Voronoi graph is computed, each edge is stored along with
its minimum and maximum clearances. These clearances
are used to determine a weight for each edge. For instance,
if each edge is weighted with the reciprocal of the minimum
distance, then a shortest-path graph algorithm can find a
maximally-clear path for the robot.

The second motion planning algorithm we present is de-
signed for dynamic environments. The distance buffer is
quite useful in local motion planning through a dynamic
scene, but it needs a sequence of subgoals or “milestones.”



We use the discrete Voronoi graph, obtained from the color
buffer, to determine the milestones. At each time step, we
compute the entire Voronoi graph, and weight the edges by
a combination of boundary arc length and clearance. The
nearest Voronoi vertex to the robot is chosen as the start-
ing point. An optimal path is found in this graph from the
starting point to the goal. The next Voronoi vertex in the
optimal path is chosen as a milestone. A force is applied to
the robot that attracts it toward the milestone. This force is
combined with the other forces on the robot to determine
its motion for that time step.

4.4 Sources of Error

Our techniques derive their efficiency from a uniform dis-
cretization of space. The discretization implies several dif-
ferent kinds of error, which we classify intodistance error
andcombinatorial error.

Distance error is simply the error in the distance buffer.
Such error arises primarily from two sources: meshing
error, as from approximating a cone by a fan of trian-
gles, and tessellation error, as from replacing a curved site
by a polygonal approximation. Distance error is easily
bounded, as discussed in Section 3.

Combinatorial error is qualitative rather than quantita-
tive. For instance, a discrete Voronoi boundary is found
between two sites that are not Voronoi neighbors, or two
Voronoi vertices are merged into one. A discrete Voronoi
vertex may be arbitrarily far from its corresponding vertex
in the continuous domain. Combinatorial error is usually
due to insufficient spatial sampling (as determined by dis-
play resolution). The error can be alleviated by local mag-
nification.

5 System Implementation and Per-
formance

To illustrate the application of our techniques, we have im-
plemented a simple motion planner using our system for
computing generalized Voronoi diagrams. We demonstrate
its effectiveness on a complex environment—the interior of
a house (figure 4.4)—composed of over 140,000 polygons.
Initially we consider a static environment, but later allow
dynamic obstacles. The robothas three degrees of freedom,
x- andy-translation along the ground and rotationabout the
z-axis.

The approach we use is similar to the one outlined in
Section 4.3. Each obstacle is assigned a unique identify-
ing color. For our house example, each piece of furniture is
modeled separately and gets its own color. Unfortunately,
the walls of the house were modeled as a single object. If
all walls are given the same color, then there will be no
Voronoi boundary between opposite walls, so it was nec-
essary to manually divide the house into several wall sec-

tions. Running our Voronoi algorithm on the 2D projection
of these obstacles generates a color image (Figure 4.4a) in
the frame buffer on which we run our boundary finding and
graph building algorithm, as described in Section 4.2. Fig-
ure 4.4b gives a picture of the distance buffer generated.
Figure 4.4c shows the graph connecting the Voronoi ver-
tices, which were derived from the color buffer.

We find the nearest node in the Voronoi graph to the cur-
rent position as well as the nearest node to the goal config-
uration, and perform a graph search over the Voronoi graph
edges, finding the path of minimum weight. The weight
is determined for each edge by a combination of two fac-
tors: the arc length (in theL1 “Manhattan” metric) of the
Voronoi boundary between the nodes, and the inverse of
the minimum clearance along that edge. We take the next
node in the generated path to be our next milestone. In
general, the path between each two milestones will be rel-
atively straight and wide.

Planning the path to the next milestone is accomplished
using the potential-field based approach. The repulsive
force is calculated using the distance values obtained from
the distance buffer. These forces and the resulting torques
cause the robot to avoid the obstacles locally, possibly in-
ducing rotation. The automated selection of milestones de-
scribed earlier prevents many of the problems associated
with local minima.

All computations, including the generation of the GVD,
the building and searching of the graph, and the planning
of the next step in the motion path, occurinteractively (this
entire cycle runs about 30 times per second). It is important
that the computation be performed at interactive rates since
the motion of the furniture in a dynamic scene can change
the path, both locally and globally.

6 Summary and Future Work

We have described several techniques that exploit the
fast computation of a generalized Voronoi diagram using
graphics hardware for robot motion planning in complex
static and dynamic environments. We have also demon-
strated some promising preliminary results in a proto-
type implementation. Our algorithms and implementation
presented in this paper is limited to a three-dimensional
workspace for rigid robots. We recently designed some
better sampling strategies based on Voronoi boundaries
for randomized potential field planning or probabilistic
roadmap methods [KLH98, KL94, KSLO96] and the de-
tails of this work can be found in [PHLM00]. We conjec-
ture that this approach can be extended to flexible robots or
articulated robots. There are several interesting research is-
sues that we are planning to investigate next:

� Develop smart biasing techniques using weighted
Voronoi diagrams to indicate “preferred” paths or di-
rections, when planning using generalized Voronoidi-



Figure 2. The house model, consisting of over 140,000 polygons.

Figure 3. The color buffer, depth buffer, and Voronoi graph for the house model.

agrams.

� Investigate the use of approximate generalized
Voronoi diagrams for articulated and deformable
robots, as well as planning with (non-holonomic,
visibility, etc.) constraints.

� Integrate the resulting motion planning algorithms
with six-degree-of-freedom haptic rendering for
maintainability studies.
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